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Understanding the Li intercalation pathway in Li-ion battery electrode materials is of crucial

technological importance. The mechanisms governing the dynamics of Li transport directly

determine the current density, charge/discharge rate and efficiency of the cathode. An intimate
understanding of these mechanisms gives us the opportunity to enhance them by engineering
optimized microstructures.

Li,FePO, (0 < x < 1) is one of the most promising positive battery electrode materials. It undergoes section (too large to show here).

a first-order phase transformation at well known compositions when Li is added or removed. There

have been many proposed mechanisms for this phase transformation in the literature (shown

below).
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Phase Transformation
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The Mosaic Model4:56

Answering how the phase transformation occurs requires measuring the Li content across the
entire cross-section of the electrode particle by particle. There are two major challenges is
making such a measurement:
1. How to section an electrode so that its particles are not rearranged and it is thin enough for
electron microscopy?
2. How to perform high spatial resolution electron spectroscopy and prevent electron beam

damage from changing the sample during the observation?

We developed two new capabilities in response to the questions above.

1. An ultramicrotome technique for making thin electrode cross sections that span the entire

electrode.

2. A quantitative TEM-based spectroscopy approach to measure the Fe oxidation state in
Fe3*PO, and and LiFe?*PO, without electron beam damage.
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We compared our EFTEM-SI based measurements to data collected from a synchrotron-based
scanning transmission x-ray microscope (STXM). The two measurements agreed well, which
validated our EFTEM-based approach. In the figures below we show that the MSA output finds two
pure spectral components with a ~1.5 eV shift in the position of the Fe L23 edge. These
components correspond to the pure LiFe?*PO* and Fe3*PO, phases. We also show references
used for a multiple least squares (MLLS) fitting of the data. This creates composite maps that are
yellow when the two phases mix and give a direct comparison to the STXM data.
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Sample preparation using the ultramicrotome produced large, thin
electrode areas for spectroscopic analysis. The image at the right is
an example of ultramicrotomed electrode. The morphology of
individual particles is readily visible and many particles are in the
field of view. The thin area extends along the entire electrode cross
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Sample Preparation: Diamond FP
We thin sections of electrodes from disassembled Thin slices KT
are caught in ' sample rocks ooy

operational batteries using the ultramicrotome.
This keeps the electrode microstructure intact,

does not cause artifacts or damage, and produces

a sample appropriately thin for TEM and EELS.

Data Collection:

The electron beam can change the sample. We
show on the right that in FePO,, the electron beam
removes material (arrow) and changes the
oxidation state of the Fe after 50 sec of exposure.
Therefore we will use a technique that uses a
parallel electron beam (energy-filtered TEM) rather
than a focused one to slow the damage process.
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Data Processing:

j Single (MSA) software developed at

up and down

The small shifts in energy of the Fe
L23 edge are detected with the use
of Multivariate Statistical Analysis
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When a large number of particles are investigated we find that only 2% of them are a mixture of the
LiFePO, and FePO, phases. The mixed (yellow) areas in the map are more commonly caused by the
overlap of multiple particles in the viewing direction or non-linear thickness effects. Our data confirms
the proposed mosaic model for the transformation route.
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 We developed a technique for cross-sectioning battery electrodes using the ultramicrotome that
does not introduce artifacts (e.g. the FIB damages the sample).

 We developed a quantitative TEM-based spectroscopy technique for measuring Fe oxidation state
with none of the beam damage artifacts introduced by other TEM techniques.

« The charge/discharge reaction depends entirely on the nucleation rate of the phase transformation.
After nucleation, the rate at which an individual particle transforms is irrelevant.

« Our experiments led us to develop a simple model for nucleation-limited charge/discharge
transformation kinetics. The results show us that measurements of nucleation rate with time would
allow us to determine the overpotential (b) at different states of charge. Ultimately this information
could be used to optimize the performance of a battery.
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