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Sandia Water Power Overview

Technology Assessment: Reference Model Project

- Goal: obtain baseline Cost Of Energy (COE) estimates for a variety of Marine Hydro-
Kinetic (MHK) devices.

Technology Development: Modeling Tools & Advanced Materials
- Modeling Tools: predict power performance of MHK devices
- Advanced Materials: evaluate new corrosion resistant and antifouling material coatings

Market Acceleration: Environmental Impact
- SNL-EFDC: MHK —capable environmental circulation and array performance code
SNL-SWAN: tool to evaluate environmental effects of WEC arrays

OWC Dynamic Analysis Unique Capabilities

- .  SEAWOLF laboratory/field oscillatory-flow
sediment transport testing

* Sandia Lake Facility — potential for large scale
wave testing

San Francisco
Bay — water
residence time
analysis

i
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Sandia National Laboratories

* Ability to leverage defense spending on

fundamental sciences: controls,
hydrodynamics, aerodynamics,
experimentation, etc.
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Marine Hydrokinetic (MHK) Devices
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Ocean Wave Resource

Globally 2]
*3.4 TW (29,400 TWh/yr)
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United States [3!
+ 300GW (2,640 TWh/yr)

West Coast (WA, OR, CA): 67 GW (590 TWh/yr)
Hawaii: 15 GW (130 TWh/yr)
East Coast (NC thru ME): 23 GW (200 TWh/yr)
Alaska (Pacific Ocean): 155 GW (1,360 TWh/yr).
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WEC Types 1

Wave Activated Bodies

Water Depth

* Shore-Mounted.
* Near-Shore.

 Offshore. | ]
Conversion mechanism [5] =

* Oscillating Water Column (OWC). “r]

* Overtopping Device (OTD) «ﬁ-ﬂ

» Wave Activated Body (WAB) Oscillating Water Column|  Overtopping Device

Directional dependence

* Point Absorber —, [6]

 Terminator ‘ | |

* Attenuator | ‘ - © O
Point

: Attenuator Absorber
Incident Waves Terminator 7

. . . &N, U.-S. DEPARTMENT OF
i) Sandia National Laboratories A ENERGY




WEC Classification

Placement in the water column

* Surface expression or submerged

Buoyancy

* Neutrally buoyant or = buoyancy

Mooring & Anchoring Type

* Number of legs, slack or taut,
presence of subsurface floats, anchor
type, watch circle radius

Symmetry

* |Identifies directional dependence &
manufacturing constraints

Number of bodies

* Identifies complexity and indicates:

PTO reference and deployment depth
range [4]
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WEC Classification
Primary oscillation directions Sway Hméﬁm v

* Identifies primary excitation mode and w
¥ g
>k

indicates maximum theoretical energy
capture (along with directional =
dependence)

Drivetrain Type

* Component of power conversion that
converts motions of WEC into mechanical
power.

Drivetrain reference

* Identifies reference through which power
conversion happens and indicates
deployment depth range

Lifnkar Gena - .
Air Turbine Mechanical: Linear Generator
rack & pinion  (drivetrain & generator)

Oscillation constraint

* Identifies maximum extension of the @_ % % %
drivetrain components if present —<— — =
Survival strategy Q’ﬁ\
* Identifies how the device will survive
large waves that could potentially ) L |
i s

damage the drivetrain
Ground Self —inertia Self — reacting
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WEC Design

Survival Waves / Operational Waves

Survival <4—» PTO Design

Mechanism T/

Structural Design of Profile Design of

WEC--Survivability \ Arﬁﬁgsﬂﬁgd / WEC--Performance
—»

Deployment Environmental
Location Impact

.5. DEPARTMENT OF

D ENERGY

fl'l Sandia National Laboratories




Wave Climate Modeling

Modeling Ocean Waves

* Superposition of harmonic waves
— Distinct frequencies, amplitudes, and incident directions.

* Wave Spectra

— Represent distribution of energy content as a function of
frequency and direction.

— Use standard distributions to describe waves in different parts
of the world.

Linear Wave Theory Assumptions

 Velocity potential formulation
— Small amplitude motion, incompressible, inviscid & irrotational

flow
* Satisfies the Laplace Equation
62 62 62 (x,y.t) = ; cos(k;(xcosd; + ysing;) — 2nfit + ;)
de) — (;2+ f""' ?_: 0 .y Zﬂz ¥
ax* ady° 9z

— Meets bottom boundary condition (no flow),

— dynamic free surface boundary condition (no pressure
discontinuity at surface), and

— kinematic free surface boundary condition (no velocity
discontinuity at surface) A

* Dispersion relation
— Establishes relationship between wave period and wave length

fl'! Sandia National Laboratories 0
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Wave Climate Modeling

Ocean Climate

* Temporally, spatially, and energetically
diverse.

— Deployment climate is described by spectra
type, along with significant wave height
correlated to energy period and the peak
direction.

Ocean Wave Measurements

* Public Sources
— National Data Buoy Center (NDBC)
— Coastal Data Information Program (CDIP)

Directional Wave Rose

180
Wave direction rose

Survival Events—

100yr return contour
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Joint Probability Distribution of Hs and Tp populated from 15years of measured data.
Peak Period, Tp [sec]
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Wave Structure Interaction
_ Hydrodynamic Forces
Potential Flow

* Frequency Domain Response

— Superposition of incident, diffracted, and radiated potentials: @ =¢, +®, +©,
— Based on linear wave theory assumptions.

Incident Linear Theory Wave  Diffracted Wave Radiated Wave

‘v, - [8]

A

‘  —

) (-H.‘f::

=2 ERY

* Commercial programs apply potential flow theory using Boundary Element Method
(BEM) to obtain the response of a structure to incoming waves

—  WAMIT, AQWA. Heave RAOs. Air Chamber Height of 20[m]. R __, optimization = Body+Air. G =0, B . =0.
=2 [lfeeeee e — 35— mmm o [
it I = | | floating structure coupled
Hﬁ% E 30—~ L - natural resonance ~ - - - uncoupled + restore |
____ 1 N | | | |
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Performance Modeling
Frequency Domain

Equations of motion for a device are
derived from governing equation:

+F

ViscousDamping mooring

=F

hydrodynamic

+ F

hydrostatic

- F hydrodynamic &F hydrostatic are found from a
potential flow solver, like WAMIT

- F found with aid of CFD,

ViscousDamping

experiment, or targeted RAO response at

resonance

* Frptooring @re found through evaluation of
design in OrcaFlex for operational
conditions.

* Feontror» the optimal “slow tuning”

parameters are found for each sea state

- The control parameters are independent of

the PTO type at this stage.
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+F +F

0.4

Flow Response Spectrum for Hs=1.25[m] and Tp=12.7[sec], and Road opt=16[kg/m4sec].
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Performance Model Outcome

The average power for
each sea state is found
through

<P> = Rcontrol_[ ‘u‘z S(w)da)
0

Evaluating a design can
be aided by comparing
the deployment
characteristics to the
device capture
characteristics.

Goal is to match the
device design to the
deployment location.

h
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probability of
occurence of period
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Anchor and Mooring Modeling

Mooring Design Driven by Survival Waves
* Potential Flow is NOT a valid method to predict dynamics

* Morison Eq. is a valid approach to predict dynamics Aft
- fi= finertiali + fdrag- . .
g Mooring Line
. . 1 C e
= (pVisia, + pCa;VH) + 5 PCp ATilT]
1 t t
| |
Inertia force due to Inertia force due to Drag force due to
fluid acceleration discrete body relative motion of 150° 150°
relative to earth motion in water body in water

Compliance added
to aft mooring line
with 4Te buoyancy
module and 1Te
sinker weight

Fwd Starboard
Mooring Line

60°

Operating
Environment

A

Survival Condition

- Apply DNV Standards
— 100-yr return period for wave

condition and a 10-yr return
period for the current condition

= -

Sandia National Laboratories

Fwd Port

Extreme , ,
Mooring Line

Environment
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Anchor and Mooring Modeling

OrcaFlex

* 3D time domain solution of equations of motion for
bodies subjected to hydrodynamic loads

— Hydrodynamic loads calculated using extended formulation of
Morison’s equation.

Discretization Methodology
* Model rigid structure as an array of 6-DOF discrete bodies to
capture
— Buoyancy distribution

— Hydrodynamic characteristics that account for inertial and
viscous effects

* Rotational response controlled by distribution and density of
discrete bodies.

v2.sim (modified 6:38 PM on 4/10/2012 by OrcaFlex 9.5d) z [9 ]
20m

-
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Structural Modeling

Initial Design
* Use Standards to estimate structural
requirements

— Survival conditions drive structural design

— Use conservative estimates of load to generate
baseline design

* Determine Basic Properties
— Center of Gravity & Center of Buoyancy
— Moments of Inertia
— Required Ballast
— Expected natural resonances
* Select Baseline Materials
— A36 steel is often used in marine environments

Structural Integrity

 Refine Design

— Add appropriate supports while minimizing
required material

— Obtain higher accuracy loading estimates from wave-

structure modeling tools

+ Finite Element Analysis (FEA)

— Ensure design meets required Factors of Safety (FOS)
for provided loads

 Consider manufacturing constraints

— Designs requiring metal cutting and welding not only
offer points of failure but also increase expense

fl'l Sandia National Laboratories

ESTRM
4 884e-004
4.475e-004
L 4.071e-004
. 3.664e-004
. 3.257e-004
_ 2.850e-004
2.443e-004
l 2.036e-004
_ 1629e-004

L 1.222e-004

8.148e-005
4.078e-003
8.142e-008

Strain Results (98% Accurate)

URES (mm)
1 184e+001

1.086e+001

_ 9.870e+000

. §.863e+000

_ 7 .B96e+000

_ 5.909e+000
5.822e+000
l 4 935e+000

| 3.940e+000

| 2.861e+000
1.874e+000
9.870e-001
1.000e-030
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Power Conversion Chain Modeling

Designing PTO, must balance:

Large variability's:
- Across the entire deployment climate.
- Within a particular sea state—average vs.
peak values.
Single vs. Multiple Drivetrains

- Added redundancy can increase WEC
availability but may adversely effect cost or
efficiencies

Drivetrain & Generator sizes

- Must be optimized for the climate variability
Power Conversion Efficiency

Power Conversion serviceability and
reliability

- The drivetrain, generator, and other
subcomponents are the most likely to fail:
need to really consider O&M for this
subsystem

ﬂ'l Sandia National Laboratories

PENNSTATE

¢ ARL

Normalized Average Annual Power

PEEN
N

Normalized Avereage
Annnual Power (kW)

ARL in collaboration with SNL has been
developing an optimization code to optimize
average annual electrical power for various
Well’s Turbines for RM6 (BBDB OWC)
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WEC Design

Survival Waves / Operational Waves

Survival <4—» PTO Design

Mechanism /

Structural Design of chor an Profile Design of
WEC--Survivability \ , / WEC--Performance
Mooring
Design
_’ x
Deployment Environmental
Location Impact
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SAMPLEING OF SNL'S WORK IN
WATER POWER



Reference Model

* Summary
* Multi-Lab collaborative effort to obtain baseline performance
and Cost Of Energy (COE) estimates for a variety of Marine
Hydro-Kinetic (MHK) devices.
* Method to achieve cost of energy estimates is to develop public
domain designs incorporating the following:

*Power performance models *PTO Design

*Structural models *0&M / Installation
*Permitting & Environment

==
i ‘ Pl: Neary

*Anchor and mooring design
*Economic Model
* Designs are intended to be conservative, robust, and
experimentally verified.

* SNL Developed Tools

* Performance Models—WEC: developed 3-dimen model
capable of handling 7DOF in Matlab, FEC: developed CACTUS

* Survival Model—developed methodology to utilize a
Morison’s Eq. approach to model extreme conditions

* Structural Sizing Tool—developed tool that determines
weight, ballast, COG & COB locations, and natural frequencies

* PTO Sizing Tool—developed Turbine sizing tool 7 Eﬂiigﬁ_

* SNL Utilized Tools
* Hydrodynamics—WAMIT / AQWA / Fluent
* Mooring—OrcaFlex / AQWA Moor
* Structural Integrity—ANSYS / SolidWorks 94

72/». A
* Partners;PNNL, ARL, NREL, ORNL Y\__.Z y "’%% '

fl'l Sandia National Laboratories
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SNL-SWAN: WEC Array Performance ‘ ; Pl Ruehl

and Optimization

S ummary/ I mpact SWAN Tsunami Basin Model for S WEC Array
* SNL is developing a new modeling tool, SNL-SWAN, —
by modifying the SWAN source code to include a WEC

Module that accounts for wave height- and

(m)

0.04 _-

Tank Width {m)

frequency-dependent energy extraction of WECs

Tools
* SWAN — Simulating WAves Nearshore is an open

0 5 10 15 20 25 30 35
source third-generation wave model developed at Tank Length (m)

Hs =0.0758 [m], Tp = 1.82 [s], Unidirectional Waves,
Obstacle Transmission= 0 (aka 100% Absorption)

Delft University of Technology that solves the spectral
wave action balance equation.

25

Accomplishments
* FY12: SWAN Sensitivity analysis in the OSU Tsunami
Basin model domain, modeled the CPT experiments

%)
=

0.05

—_
[

(m)

-
=

Tank Width (m)

(see figures)
Partners:

0 5 10 15 20 25 30 35

* Coast and Harbor Engineering (C&H), Columbia Power Fank Lensth ()

Technologies (CPT), Oregon State University (OSU), Sea Hs =0.0758 [m], Tp = 1.82 [s],
. . Directionally Spread Waves (DSPR=4),
Engineering Inc. (SEl) Obstacle Transmission = 0 (aka 100% Absorption)

8% U.S. DEPARTMENT OF

ENERGY
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SNL-EFDC: FEC Array Performance and
Optimization

Summary/LCOE Impact
* Refine and apply SNL-EFDC: a tool for balancing MHK-
turbine energy harvest efficiency and environmental
effects.
* Maximize power and minimize potentially harmful
environmental effects
* Accurately modeling MHK-turbines addresses
performance and environmental concerns about large-
scale development.
Accomplishments
* Modified EFDC source code to include CEC module that
treats CECs as momentum sink and source/dissipation of
TKE.
* SNL-EFDC validation with flume data
* SNL-EFDC application — Mississippi River, LA

* Investigated performance, flood hazard, and sedimentation concerns for
12, 132, 534 CEC arrays (FFP)

Tools

* EFDC — Environmental Fluid Dynamics Code (RANS)

* Originally Developed by the EPA for Clean Water Act

* SNL-EFDC — adds MHK-turbine module and advanced
sediment transport routines.

Partners:
* Ocean Renewable Power Company (ORPC)
* Argonne National Lab (ANL)
* University of Maine (UM)
* Sea Engineering Inc. (SEl)

fl'! Sandia National Laboratories

Pl: Roberts

MHK Device

\AAAAAA

Treats MHK-turbine device as a momentum sink and source
of turbulent kinetic energy and its dissipation rate

A2 222 2%

Magnitude (mi/s)
Depth Averaged

r
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Blade Strike Analysis
(Collaboration with PNNL)

Summary/LCOE Impact
* Regulatory Driver: Little is known about
blade strike on marine mammals.
* Simulate strike events to characterize
potential impact to marine mammals.
* Consider multiple turbine designs and
mammal types.
Background
* SNL defines turbine properties & simulates

strike to determine dynamic impact.
* Use 3 impact velocities within turbine
operating conditions for deformation trends.
* PNNL defines mammal properties and tissue

Pl: Jepsen

response based on simulated deformation. Impact Location NE 5 WI°
Tools .
* PRESTO- SNL weapons code for L/E analysis &0
of high solid deformation events.
* RM designs and performance models (ﬁm

Partners
* Pacific Northwest National Lab \7/

Pacific Northwest
NATIONAL LABORATORY

8% U.S. DEPARTMENT OF

ENERGY
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CACTUS: Code for Axial and Cross-flow
TUrbine Simulation

Pl: Barone

* LCOE Impact

* Open-Source, publicly available, Validated, &
Rapid run-times: Coded in Fortran95,

compiled in Linux, Windows, & OSX __ chord(s)
* Performance: power predictions for T (8) chord (s)

generalized rotor geometry

* Structural: unsteady hydrodynamic load H
estimates for generalized rotor geometry 7(5) \
* Solves for wake profile without the need for <8 R
high-fidelity CFD o
» Tool Capabilities @
* Generalized Axial and Cross-Flow Turbine Y
designs, including struts and joints Cross-flow turbine blade

* Time Domain Simulation

* Blades represented as lifting lines with
forces determined from input foil data

* Rotor wake represented with vortex
elements

* Drag from support struts can be included

* Free surface effects included

* Dynamic Stall model included

Code Development: Matt, 7Erick Johnson, & Jon Murray

_::'-:f-‘i'—’—‘-':;_- U.S. DEPARTMENT OF
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‘ Pl: Hernandez-Sanchez

Materials & Coatings

* Summary
* Novel Coating Synthesis Corrosion Studies Biofilm Characterization on
* Biofouling Testing Goesn e oy Costrs . Verdant Power Systems
* Corrosion and Reliability Testing ] Deployed in East River

* Composite Fabrication and Performance Testing . e
* Material Environmental Impact :

» LCOE Impact

* Development Cycle, Performance, Reliability,
Survivability, O&M: impacted by materials &
coatings selected for component/structure Salt Water Effects

on Composites

Unclassified
er

* Industrial Assessment: impact of material choices
to be analyzed and integrated into program

* Repository of Expertise: ability to direct
industry to proven technologies

* Accomplishments Biofilm Testing of

* Novel antifouling & anticorrosion coatings Owens-Corning

with significant performance p—— . Composites

|
|

* Significant Industry Involvement . e

C. lytica

(600nm)

o
o

* Testing salt water effects on composites

Weight gain, %
o
=
L]
\\
|
|

* Ocean correlated laboratory testing

= (0), - soaking 2084 hours at 40°C _
—m— (0), - soaking 766 hours at 40°C, 1318 hours at 20°C

« ONRL: No acute Toxicity on Zwitterionic coating .~ e 0 sk 204 b 0

0 |

° Pa rtners: BYU, MS U, NDS U, ORNL 0 %00 moqnma hourlsoo 2000 2000 v Control 258 1229A 12304 12308 T2 PU 700 900
A} Sandia National Laboratories

w

Crystal Violet Absorbance
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Sediment Transport, Scour, and

Foundation Impact Analysis
Summary/LCOE Impact

* Develop public domain methods/tools for
assessing wind farm and ecosystem risk from
ocean forces & sediment mobilization

* Reduce Siting Risk and Uncertainty

* Reduce time and costs associated with

Pl: Roberts

permitting Develup Eraluatin
Focus Areas/Background - -
* Pre- and post-installation analysis of sediment
mobility and effect of underwater structures
* Fine-scale scour analysis L =_
* SEAWOLF - sediment testing for model Evaluation Datasets I
calibration and validation :
Tools :
* SNL-EFDC (unique code for macro-scale studies) éﬁ

* Fluent (commercial code)
* SEAWOLF mobile erosion test facility

Accomplishments

* Draft Sediment Stability Guidance Document

* Beta version of sediment stability mapping tool

Partners: JusRe YY) EE
* Technical: Fugro and Sea Engineering SE Mott MacDonald '% .
* Advisory: MM, Alpine, Fisherman’s, Global -; ; = \
Marine, Mott McDonald, Prysmian a MMI @Alplne

3
=
engineers « scientists « innovators
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Large Offshore Rotor Development

* Summary/LCOE Impact
* Advanced large blade design studies
aimed to reduce technology risk;
enable cost-effective large rotors
* Public domain blade project

* Objectives/Focus Areas

* |dentify trends and challenges

 Detailed 100-meter reference designs

* Targeted follow-on studies: advanced
concepts, materials, flutter,
manufacturing cost trends, thick
airfoils, CFD

* Products

* Design reports

* 100-m blade and 13.2 MW turbine

reference models

* http://largeoffshorerotor.sandia.gov
*Partners:

* None funded, 40+ users, ECN,

Altair, Bristol, Stuttgart

e0nieters =596

The Sandia 100-meter All-glass Baseline
Wind Turbine Blade: SNL100-00

SAND2013-11T8
Unimee;

The SNL100-01 Blade: Carbon Design
Studies for the Sandia 100-meter Blade

Pl: Griffith

0.0
() santa Nationa tabortories
Time = 1.1484934 sec.

Velocity Magnitude (m/s)

85.0
__ -
60.0

‘ﬁ 5°8” human scale



Innovative Offshore Vertical-Axis Wind ~ PI: Paquette & Griffith
Turbine Rotors (FOA)
Offshore System Cost with Potential

Summary/LCOE Impact VAWT Impacts
* This project focuses on the development of a deepwater, Other Capital Project

offshore VAWT design to explore possible LCOE benefits e v
* This includes optimization of the rotor in response to higher %
balance of station and O&M costs associated with the offshore
environment
* Goal is to achieve a transformative LCOE reduction for

deepwater offshore wind
Background/Current Focus
* Historical VAWT Expertise (1970s to 1990s)
* Current focus on VAWT Aero-Hydro-Elastic Design Code
development and Preliminary Design Studies
Tools
* Legacy Codes and Experimental Measurements
* New VAWT-specific aero-hydro-servo-elastic code with variable
fidelity
* VAWT-specific airfoils, manufacturing methods, and platforms

* Partners:

MAINE | R

KJM 5 i
" g TUDelft N

& o
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SNL Water Power Team

Daniel Laird:
Vincent Neary:
Jesse Roberts:

Program Manager
Technology Development Lead
Market Acceleration Lead

Primary Focus WECs:
Diana Bull
Kelley Ruehl

Primary Focus FECs:
Matt Barone
Jon Murray

Primary Focus Offshore Wind:
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