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A Toy Example
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Supervised Machine Learning from 10K Feet
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Successful Applications:
» Bing (Microsoft)
» Kinect (Microsoft)
» Friend Recommendations (Facebook)
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A Troubling Assumption

Machine learning assumes future data looks like past data.
What happens if:
> anew category appears?

» future data is noisier?

> a category evolves (e.g., malware)?

Answer: user gets a prediction, business as usual.
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Can we detect when machine learning is
extrapolating?

Focus: decision tree ensembles
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Notation

» X = (X1,X,...,X,): the input feature space
> x = (x1,X2,...,X%n) € X: afeature vector

» Y ={y1,y2,..., Y.} the set of possible classes

In supervised learning, the training data are labeled input-output pairs:

7= {0,y M), @,y |

Given 7, a learning algorithm outputs a probability estimator
h:X— O(Y)

where ¢(Y) = (Pr(Y = y1),...,Pr(Y =y.)) € D(Y).



Extrapolation Risk

Following Hooker (2004), define extrapolation risk for x as

Julx)
R(x)= ——F———
Ju(x) + fr(x)

> fu(x): data density at x assuming a uniform distribution

> fr(x): data density at x assuming the same distribution that
generated the training data

Note:
» R(x) €[0,1]
» 0 —> safe
» 1 — highrisk



R(x) in One Dimension

 fulx)
R = )+

Density / Risk

Relationship between Risk and Densities
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Two Approaches to Estimating Prediction Risk

Builtin Risk (BR) — provided by classifier
» most classifiers can report prediction confidence
» free! (or almost)
» standard practice

Auxiliary Risk (AR) — provided by separate risk model

> need to train another model! (density/outlier)
» independent of classifier model
» relatively unexplored
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Two Approaches to Estimating Prediction Risk

Builtin Risk (BR) — provided by classifier
» most classifiers can report prediction confidence
» free! (or almost)
» standard practice
Auxiliary Risk (AR) — provided by separate risk model
> need to train another model! (density/outlier)
» independent of classifier model
» relatively unexplored

Sneak Preview: BR(x) and AR(x) have complementary strengths.
Only one aligns with R(x).
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BR(x) for Decision Tree Ensembles
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Detour:
Decision Trees
and Ensembles

Source:
http://xkcd.com/242/
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Decision Tree Review

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak
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Decision Tree Review

internal node = feature

/ test

Outlook
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Decision Tree Review

branch =
feature value
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Decision Tree Review

internal node = feature

/ test

branch = Outlook
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Decision Tree Strengths & Weaknesses

Strengths:

» Handle numeric and categorical features.

\4

Missing values are okay.

v

Invariant to monotonic feature scaling.

v

Robust to noisy training labels.
> Fast.

v

Low bias.

Weaknesses:

» High variance.
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Figure 1. Bias and variance in

dart-throwing.
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Domingos (2012). A few useful things to know about machine learning.

Communications of the ACM 55(10):78-87.
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Review of Simple Ensemble Learning

Bagging: simple ensemble learning algorithm [1]:
» draw random sample of training data
> train a model using sample (e.g. decision tree)
> repeat N times (e.g. 25 times)

» bagged predictions: average predictions of N models

D R TSI
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Ensemble Learning Intuition

Ensemble machine learning: wisdom of crowds

v

v

v

Truth 1 0 1 1 0| Accuracy
Modell 1 0 0 1 1 60%
Model2 O 1 1 1 O 60%
Model3 0 0 1 0 O 60%
Model4 1 1 1 1 1 60%
Model5 1 0 0 0 O 60%
Votel-5 1 0 1 1 O 100%

No one model has to get it all right

Performance of ensemble outperforms individuals

Usually more reliable / robust

Reduces variance
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Back to BR(x) for tree ensembles...
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BR(x): Vote Margin

Margin
Margin is the gap between the class with the most votes and the class
with the 2nd most votes.

BR(x)

BR(x) = 1 — margin

Example: suppose an ensemble with 100 trees votes:

Class y; | Class y, | Class y3 | Margin | BR(-)
x( 65 35 0 0.30 | 0.70
x? 30 25 45 0.15 | 0.85
x3) 0 100 0 1.00 | 0.00
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Synthetic Data Results

Training Data R(x) - True Extrapolation Risk
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Summary:
BR(x) mainly useful for detecting uncertainty caused
by instability.

.. et’stry AR(x) ...
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AR(x): Big Picture

Model Building

Training Data

Supervised Risk
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AR(x): Building Block
Hooker (2004) proposed confidence and extrapolation risk trees
(CERT) for estimating extrapolation risk.

» Idea: frame as classification problem.

Foreground Class Background Class
(all train data) (uniform)

x2

» Pr(Y = background | x) ~ R(x)

» Could use any classification algorithm that estimates
probabilities.



AR(x): Building Block (2)
Problem:
High dimensions = sparsely sampled background
— high variance

Solution: don’t sample!

» Decision tree learning minimizes entropy of subregions r:

c
Entropy(r) = — Y p(y) log, p(y/)
i=1
= — p(foreground) log, p(foreground)
— p(background) log, p(background)

with

- #y, €r

~ # foreground € r + # background € r

pyi) =Pr(Y =y;|r)

» Compute # background analytically.



R(x): CERT Ensemble

o o e O

Extend Hooker’s work by applying bagging to CERT:
» draw random sample of foreground data
» train CERT model using sample
» repeat 100 times

» ensemble prediction is AR(x)
AR(x)

100

AR(x) = Z Pr;(Y = background | x)

100
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Questions about AR(x)

Figure 1. Bias and variance in
dart-throwing.

. . . . Low High
1. Better risk estimation by using Variance Variance

ensemble? % xx X
» Bagging reduces variance. . . ol ’ ‘X
» ...but no variance in background
data.

2. Does AR(x) work? - ® @
X

X
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Synthetic Data Results

Training Data R(x) - True Extrapolation Risk
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Ensembles improve CERT

Training Data
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Case Study I: Detect Novel NYT Topic



Experiment: Detect Novel NYT Topic

Data:
» 22,926 NYT articles

> 48.9% NY Region
» 48.6% Paid Death Notices
» 2.4% Real Estate

» 9 numeric features (LSA)

> 1/2 train, 1/2 test

Experiment Design:
» Real estate topic omitted
from training.
» Find real estate in testing?

» BR(x): vote margin
» AR(x): CERT ensemble
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BR(x): Low Confidence? AR(x): High Risk?
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Take Away #2: Auxiliary Risk Model Needed

NY Region
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Why is BR(x) worse than random?

Classification model ignores feature x3
— which is important for finding the novel class.

Comparison of Feature Weights (NYT Topic)
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Case Study II: Predict if EXE is Malware



Use Case: Predicting Reliability of Malware Classifier

Scenario: predict when model classifying EXE files might be wrong.!

Data:
» Training Data: 2010
> 18,588 examples Setup:
» 44.8% malware » Train classifier to predict
» Testing Data: 2011 goodware or malware.
> 16,432 examples » Train auxiliary risk model.

> . 1 . .
79.3% malware » Does classifier make mistakes

> Extracted Features on high risk test points?

» 57 categorical features
> 63 numeric features

'Data from Ken Chiang, Michael Karres, and Levi Lloyd.



Sometimes, BR(x) is what you need!

ROC: Detecting Errors
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Sometimes, BR(x) is what you need!
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Hypothesis: more errors from class overlap than outlier data
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Future Work: Combining BR(x) and AR(x)

Algorithm 1: Simple Risk Combination Baseline

if BR(x) is high then
| declare prediction risky;
else
if AR(x) is high then
| declare prediction risky

else
| declare prediction safe




Conclusions & Next Steps

» Builtin and auxiliary risk measures are complementary.

» BR(x) useful for finding unstable predictions.
» AR(x) good for detecting extrapolation risk.

» Ensembles improve CERT’s risk assessments.

Future work:
» Further validation on real data sets.

» Try other risk learning algorithms: density estimation, outlier
detection.

» Benefit from combining?

Questions?
mamunso @sandia.gov
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Aside

Cool. But wouldn’t it be better to do density
estimation from first principles?



CERT vs DET

Compare density estimation trees [3] to CERT. Default params.

(a) Training Data (1000 pts)

Training Data

X2

AV on s o ®

Single Density Estimation Tree

(b) Oracle

R(x) - True Extrapolation Risk

X2

A on s o ®

(d) CERT

Single Confidence Extrap Risk Tree
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