
Sublogarithmic monotonicity testers for boolean functions

Deeparnab Chakrabarty
Microsoft Research India

dechakr@microsoft.com

C. Seshadhri
∗

Sandia National Labs, Livermore
scomand@sandia.gov

ABSTRACT
Given oracle access to a Boolean function f : {0, 1}n 7→
{0, 1}, we design a randomized tester which takes as input
a parameter ε > 0, and outputs Yes if the function is mono-
tone, and outputs No with probability > 2/3, if the function
is ε-far from monotone. That is, f needs to be modified at ε-
fraction of the points to make it monotone. Our algorithms
makes O(n0.95ε1.45) queries to the oracle.

This answers a more than decade old question of Goldre-
ich et. al. [12], who exhibitied a O(n/ε) tester, and asked
whether testers exist with a significantly lower dependence
on n. In fact, for a large class of functions, namely func-
tions with low average sensitivity, we can show that O(

√
n ·

poly(1/ε)) queries suffice. This is optimal for non-adaptive
testers, since the Ω(

√
n) lower bound examples of [11] have

low average sensitivity.

Our tester is based on random walks on the directed hy-
percube. We show the following rather curious result: if
S be a subset of points on the boolean hypercube of size
ε2n; then the probability that a particular random walk
on the directed hypercube starts and ends in S, is at least
Ω(ε2/ ln(1/ε)). Observe that the probability two indepen-
dent samples lie in S is ε2; the start and end points of a
random walk are highly correlated.

The above result forms the first piece of our analysis. Along
with this idea, we need to use some of the techniques devel-
oped in an earlier paper [7] by us, and a non-trivial result
of Lehman and Ron [14], to complete the analysis.

General Terms
Theory

∗Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

Keywords
Property Testing, Monotonicity, Random walks

1. INTRODUCTION
Testing monotonicity of boolean functions is one of the fun-
damental questions in the area of property testing. The
boolean hypercube {0, 1}n defines the natural partial order
≺ where x ≺ y iff xi ≤ yi for all i ∈ [n]. A boolean function
f : {0, 1}n 7→ {0, 1} is monotone if f(x) ≤ f(y) whenever
x ≺ y. We are interested in testing whether a boolean func-
tion, given oracle access, is monotone, making as few queries
as possible.

The distance of a boolean function to monotonicity is the
minimum fraction of points at which it needs to be mod-
ified to make it monotone. This parameter is denoted as
εM (f). In the property testing framework, a monotonicity
tester is given a parameter ε > 0, and it is supposed to (a)
accept, if the function is monotone, and, (b) reject, if the
function is ε-far from monotone, that is, εM (f) ≥ ε. The
algorithm is allowed to be randomized, and in that case, one
expects (a) and (b) to occur with non-trivial probability (say
> 2/3). An algorithm is called a one-sided tester if case (a)
occurs with probability 1. An algorithm is non-adaptive if
the queries made by the algorithm doesn’t depend on the
answers given by the oracle.

The quality of a monotonicity tester is governed by both
the number of queries it makes, and the running time of
the algorithm. Goldreich et al. [12] suggested the follow-
ing, rather simple, algorithm: query the function value on a
pair of points which differ on exactly a single coordinate and
reject if monotonicity is violated. In other words, the algo-
rithm samples a random edge of the hypercube and checks
for monotonicity between the two endpoints. This is called
the edge tester for monotonicity; it is clear the running time
is of the same order as the query time.

Goldreich et al. [12] show that O(n/ε)-queries by the edge
tester suffice to test monotonicity. They also show that their
analysis is tight; the edge tester can do no better. They
explicitly ask the obvious question: does there exist some
other tester with an improved query complexity in terms
of n? Fischer et al. [11] show that any non-adaptive, one-
sided tester1 for monotonicity must make Ω(

√
n)-queries for

constant ε > 0. Since then, no significant2 progress has been

1[11] also show a Ω(logn) lower bound for 2-sided testers.
2However, see §1.2

SAND2012-9447P

made on this decade long question. In this paper, we answer
the question of [12] in the affirmative.

Theorem 1. There exists an O(n0.95ε−1.45)-query tester
for monotonicity of boolean functions f : {0, 1}n 7→ {0, 1}.

Our tester is one-sided and non-adaptive. In fact, our tester
falls in the class of what are known as pair testers. We
describe a distribution on pairs (x ≺ y) independent of the
function, and make independent queries on pairs drawn from
this distribution. We reject if and only if some drawn pair
violates monotonicity. Observe that the edge tester is a
special pair tester.

At a high level, the distribution is defined via random walks
on the directed hypercube with an arc from x to y if x ≺ y
and differ in exactly one coordinate. We consider a random
path from 0n to 1n and sample a pair of points on this path.
(We do need some more technical conditions, but this should
suffice for now.) We call this tester the random path tester.
Our final tester which proves the above theorem is obtained
by running either the random path tester or the edge tester
with probability 1/2.

Although the exponent of n in Theorem 1 seems quite close
to 1, we believe the analysis of the random path tester may
be improved. In particular, we do not know whether the
tester needs to make ω(

√
n)-queries when ε is a constant. We

leave this as an open question. What we can show is that for
a large class of functions, the random path tester does indeed
work with O(

√
n)-queries. More precisely, if a function is ε-

far from monotone and has low average sensitivity (smaller
than any polynomial in n), then the random path tester

detects a violation with Õ(1/
√
n) probability.

Given a boolean function f , the influence of dimension i,
denoted as Infi, is defined as the fraction of edges on the
hypercube crossing the ith dimension whose endpoints have
different function values. In other words, Infi measures how
sensitive the function is to the flip of dimension i. The
average sensitivity, also called the total influence, is the sum
of all the n influences. The average sensitivity of a function
f is denoted as I(f). Clearly, I(f) ≤ n, for any boolean
function f . It is not too hard to show that for monotone
functions, I(f) ≤

√
n. In fact, one can show that if I(f)

is ‘high’, say ≥ 1.1
√
n, then in fact O(

√
n)-queries of the

edge tester can detect non-monotonicity. Our next theorem
shows that the random path tester is good for ‘low’ average
sensitivity functions.

Theorem 2. For any boolean function which is ε-far from
monotone, the random path tester detects a violation with

probability Ω
(

1√
n
· poly

(
ε

I(f)

))
. As a corollary, the ran-

dom path tester is an O(n
1
2
+o(1)poly(1/ε))-query monotonic-

ity tester for functions with average sensitivity no(1).

The class of functions having average sensitivity no(1) is non-
trivial. For instance, it contains boolean functions captured
by constant depth circuits [15]. Furthermore, it includes

the example of Fischer et al. [11]. In fact, the function of
[11] has constant average sensitivity implying that our tester
is optimal, as far as the dependence in n is concerned, for
constant average sensitivity functions.

We end the introduction by putting our results in perspec-
tive. Monotonicity is a fundamental property of functions,
and has been extensively studied [9, 12, 8, 14, 11, 1, 10,
13, 16, 2, 3, 4, 6, 5, 7]. In this paper, we focus on boolean
functions defined over the hypercube. However, one could
ask the same question in richer domains and ranges. Im-
proving on a line of work, the authors of this paper show [7]
that the edge tester of [12] works in O(n/ε)-time for any
range for functions over the hypercube. This is optimal for
non-adaptive, one-sided testers [6], and close to optimal for
general testers [5]. [7] also give the best testers known when
the domain is the hypergrid [k]n. One of the main techniques
of that paper is a charging scheme based on matchings and
alternating paths; in this paper we make use of (a simplified
version) of that scheme as one part of our argument.

1.1 Main Ideas.
As stated above, our algorithm samples a random path and
picks two vertices randomly from it. The inspiration for our
algorithm is a recent paper by Ron et al. [17] who provide an
O(
√
n)-query randomized algorithm to estimate the average

sensitivity of a monotone function. Loosely, the algorithm
described in [17] performs a random walk of around Θ(

√
n)

steps from a random point and checks if the endpoints are
different. In fact, Ron et al. [17] explicitly ask whether an
algorithm “in the spirit” above can be used for monotonicity.
The answer is yes.

The key observation that [17] use is the following: for mono-
tone functions, a path from 0n to 1n cannot contain more
than one influential edge. Given this, the analysis reduces
to calculating the probability that a random walk crosses a
given edge, and then adding over all the influential edges.
The problem with general non-monotone functions is that a
random walk could cross two influential edges, one violating
and the other not, and discover nothing from the values at
the endpoints. Therefore, this idea doesn’t seem to directly
pan out for monotonicity testing.

Nonetheless, the idea of taking a random walk and testing
“far away” points is useful. To see this, consider a toy ex-
ample. Consider a function f : {0, 1}n+1 7→ {0, 1} such that
f(0, x) = 0 if |x| ≤ n/2 −

√
n and 1 if |x| > n/2 −

√
n.

However, f(1, x) = 0 if |x| ≤ n/2 +
√
n and 1 otherwise.

Note that the violations to monotonicity are across the first
dimension (which, by the way, the tester isn’t aware of) on
the edges ((0, x), (1, x)) for n/2−

√
n ≤ |x| ≤ n/2+

√
n. The

function is ε-far from monotone for some constant ε. Also
observe the edge tester needs Θ(n) queries.

How does the random walk tester fare? With constant prob-
ability it picks a random point (0, x) with n/2−

√
n < |x| ≤

n/2. So, f(0, x) = 1. Then suppose it makes
√
n steps. If in

any of these steps it flips coordinate 1, then observe that it
will catch a violation. This is because it’ll end up at (1, x′)
with n/2 < |x′| ≤ n/2 +

√
n which evaluates to 0. What is

the probability that this dimension 1 is flipped in
√
n steps?

It is Θ(1/
√
n); and thus the random walk tester works with

O(
√
n) queries for this function.

Consider, now, the case of what we call almost monotone
functions. Such functions can be thought of as two mono-
tone functions defined on two hypercubes, with all the vi-
olations between these hypercubes. That is, all violations
to monotonicity are along one unknown coordinate. Note
that the above ‘flip once in

√
n steps’ argument can be car-

ried over if we could lower bound the probability that we
start at an endpoint of a violated edge and end at the end-
point of another violated edge. Since the function is ε-far,
we know that the number of such endpoints is Ω(ε2n), but
unlike in the example of the previous paragraph, these could
be peppered throughout the cube.

Our first result is precisely bounding such a probability. In
particular, we show that if a constant ε fraction of the points
in the hypercube are, say, colored blue, then the probabil-
ity a random walk starts and ends at blue is Ω(ε2/ ln(1/ε)).
Note that if we sample two points independently, the proba-
bility that they are both blue would be ε2; our result shows
that the correlation caused by the random walk doesn’t de-
grade too much.

The above idea can be extended to the case where instead of
all violations being along one coordinate, we rather have a
large, that is of size Ω(ε2n), matching of violated edges. In
almost monotone functions, this was indeed the case. The
idea is to look at the endpoints of this matching which evalu-
ate to 1, and use the above argument to show that the tester
will pick a pair of these with poly(ε) probability. After that,
we can charge these events to events which pick a 1-endpoint
and a ancestor 0-endpoint, taking a loss of ε√

n
. The match-

ing property is crucially used in the charging. However, to
make this idea go through, we need to modify the random
walk a bit which leads to a slight degradation in the param-
eter of ε in the ‘blue’ result mentioned above. Basically, we
need to make sure the walk doesn’t end “too fast”.

What if there is no large matching of violated edges? Since f
is ε-far, we know that any maximal matching M of violated
pairs has |M | ≥ ε2n−1 [8]. If the average length of these
pairs is not too large, then we show via a simple counting
argument that there must lie a large enough matching of vio-
lated edges reducing it to the previous case. Of course, there
is a loss in the size, and this is why the exponent of n takes
a hit. What if the average length of every maximal match-
ing is large? This is where we use the machinery developed
in our previous paper [7]. We show that if the matching
which minimizes the average length is still “too long”, then
there must be lots of violated edges. And therefore, the edge
tester suffices.

1.2 Comparison with a result of Briët et. al.
In a recent paper, Briët et al. [6] prove a lower bound of
Ω(n/ε) on non-adaptive, 1-sided monotonicity testing for
general ranges. The ranges of their bad examples are of size
Θ(
√
n). Using a ‘range reduction’ result of Dodis et al. [8],

they deduce that there can be no o(n
ε logn

)-query pair testers
for monotonicity of Boolean functions. In particular, Dodis
et al. [8] prove that if there is a distribution on pairs such
that for any Boolean function f , the probability a violation
is caught is at least εM (f)/C(n), then for any function g

with range R, the probability (w.r.t. the same distribu-
tion) a violation is caught is at least εM (g)/(C(n) log |R|).
Thus, if pair testers could detect violations with probability
≥ εM (f) logn/n, then it would violate the lower bound for
general monotone functions as proven by Briët et al. [6].

Our tester is a pair tester, and we claim a much better de-
pendency on n than n/ logn. The reconciliation lies in the
exponent of ε. Note that in Theorem 1, the exponent of ε
is smaller than −1. Briët et al. [6]’s result shows that this
degradation is necessary. We remark that the reduction of
Dodis et al. [8] doesn’t work if the success probability of the
Boolean tester is guaranteed to be, say ε2M (f)/C(n). In par-
ticular, nothing, as far as we know, rules out a pair tester
running in time O(

√
n · poly(1/ε)).

2. THE TESTER AND ITS ANALYSIS
Recall, we are given a parameter ε > 0; we want to accept if
the function is monotone, and reject if εM (f) ≥ ε. We may
assume ε ≤ 1/2 since any function can be made monotone
by changing at most 1/2 of its values. Set parameter ` :=

2Cε
√
n, where Cε =

√
10 ln(1/ε). We use |x| to denote the

number of 1’s in a binary vector x ∈ {0, 1}n. The directed
hypercube is the directed graph with vertex set {0, 1}n, and
an arc from x to y if x ≺ y and |y| − |x| = 1.

Random Path Tester.

1. Let P be the collection of paths in the directed hy-
percube from 0n to 1n. Pick a path p ∈ P u.a.r. Let
Xp := {z ∈ p : |z| ∈ [n

2
−Cε
√
n, n

2
+Cε
√
n]}, |Xp| = `.

2. Sample x ∈ Xp uniformly at random.

3. Let Yp(x) := {z ∈ Xp : ||z − x||1 ≥ b ε`
32Cε
c}. Sample y

uniformly at random from Yp(x).

4. Reject if (x, y) violate monotonicity; that is, f(x) <
f(y), x � y or f(x) > f(y), x ≺ y.

We also have the edge tester which picks a random edge
(x, y) of the hypercube and checks for violations among this
pair. Our final tester flips a coin and with probability 1/2
performs either the edge test or the path test.

Observe that both the edge tester and the path tester always
accept if the function f is monotone. Therefore, our tester
is a one-sided tester. To prove Theorem 1, it suffices to show
that if f is ε-far from monotone, then the probability our
tester rejects is at least Ω(n−0.95ε1.45). Henceforth, we as-
sume the function f is ε-far, and we call the rejection event a
success. Recall, since f is ε-far from monotonicity, any max-
imal set M of disjoint, violating pairs, which we henceforth
call a matching of violated pairs, satisfies |M | ≥ ε2n−1 [8].
The lower bound on the success probability is derived from
the following four easy pieces.

• Suppose one colors any ε-fraction of the points on the
hypercube blue. Our first lemma (Lemma 1) shows

that the probability that both the points x, y sampled
by the path tester is blue, is at least Ω(ε4.5).

• Our second lemma (Lemma 2) shows that if there is a
collection of hypercube edges, E, which from a match-
ing and each edge in E is a violation, then the proba-
bility that the path tester succeeds is at least

ε√
n
· Ω

((
|E|
2n

)4.5
)
.

• Our third step argues that if the average length of pairs
in a maximal matching M of violated pairs (where
length of (x, y) is just |y| − |x|) is small, say ≤ r,
then there exists a matching of violated edges, E, with
|E| ≥ |M |/16r2. This, along with the second point
above, proves Theorem 1 when the average length, r,
is small, that is r ≤ n0.05ε0.45.

• We choose the maximum cardinality matching Mof vi-
olated pairs which minimizes the average length. Using
a technique from our earlier paper [7], we prove that
if the average length of M is r, then the number of
violated edges is ≥ r

ε
2n. This implies that the edge

tester succeeds with probability Ω(rε
n

). This proves

Theorem 1 when r ≥ n0.05ε0.45.

2.1 Piece 1.
Assume ε-fraction of the hypercube is colored blue. Let x
and y be a pair sampled by the path tester. We are interested
in the event

E : x and y are both blue

Let’s b(p) denote the number of blue points in the set Xp

corresponding to a path p. At times, we abuse notation,
and let it be a random variable corresponding to the path
p chosen u.a.r from P. The probability that the first point
sampled by the random path tester is blue, conditioned on

the probability that p is sampled, is precisely b(p)
`

.

The probability that the second point is blue is at least

|blue points in Yp(x)|
|Yp(x)| ≥ b(p)− ε`/16Cε

`
.

This is because there are at least (b(p)−ε`/16Cε) blue points
in Yp(x). Therefore, the probability that both points sam-
pled by the random path tester are blue, is

Pr[E] ≥ 1

|P|
∑
p∈P

(
b(p)

`
· b(p)− ε`/16Cε

`

)
. (1)

We now lower bound the RHS of the above. To do so, we
perform the sum only over paths p with b(p) ≥ `ε/8Cε.
Let us use Q := {p : b(p) ≥ ε`/8Cε}. In that case, the
numerator of the second fraction becomes at least b(p)/2.
Therefore we get,

Pr[E] ≥ 1

2|P|
∑
p∈Q

(
b(p)

`

)2

. (2)

We now investigate how b(p) looks like. Let Li denote the
set of points in the hypercube having i ones. That is,

Li := {x ∈ {0, 1}n : |x| = i}. Note that

|Li| ≤

(
n

n/2

)
≤ 2n

√
n
.

Let ni be the number of blue nodes in layer Li. If we let Xi

be the indicator variable for the event whether the ith layer
vertex in p is blue or not, then we get

b(p) = X1 + · · ·+X`.

Now, a p chosen u.a.r from P contains a vertex in layer Li

u.a.r. as well, for all i. Therefore,

Exp[Xi] =
ni

|Li|
≥
√
n

2n
· ni.

Furthermore, by a standard application of Chernoff bounds,
we get that the number of points of the hypercube not lying
in any of the Li’s is at most 2ε5 · 2n. Even if all of them are
colored blue, we get∑

i

ni ≥ (ε− 2ε5)2n ≥ (ε/2)2n.

since ε ≤ 1/2. Thus,

Exp[b(p)] ≥
√
n

2n

∑̀
i=1

ni ≥
√
n

2
ε =

`ε

4Cε
.

Taking the expectation now path-by-path, we get that

1

|P|
∑
p∈P

b(p) ≥ `ε

4Cε
. (3)

From (3), we get

Pr[p ∈ Q] := Pr[b(p) ≥ ε`/8Cε] ≥ ε

8Cε
(4)

This is because the maximum value of b(p) is `. If (4) didn’t
hold we would get,

Exp[b(p)] ≤ ` · Pr[b(p) ≥ ε`/8Cε] + `ε/8Cε · 1 < `ε/4Cε

contradicting (3).

Now we are ready lower bound Pr[E].

Lemma 1.

Pr[E] ≥ 1

2|P|
∑
p∈Q

(
b(p)

`

)2

≥ ε3

1024 C3
ε

= Ω(ε4.5).

Proof. The first inequality is the same as (2). Note that
this can be restated as

Pr[E] ≥ 1

2

|Q|
|P| ·

1

|Q|
∑
p∈Q

(
b(p)

`

)2

. (5)

From (4), we get that

|Q|
|P| ≥

ε

8Cε
. (6)

By Jensen’s inequality, we get that

1

|Q|
∑
p∈Q

(
b(p)

`

)2

≥

(
1

|Q|
∑
p∈Q

b(p)

`

)2

. (7)

Since for each p ∈ Q, b(p) ≥ ε`/8Cε, we get that(
1

|Q|
∑
p∈Q

b(p)

`

)2

≥ ε2

64C2
ε

. (8)

Plugging (6),(7),(8) in (5) gives the lemma. The last in-
equality in the lemma follows from the definition of Cε, and
the rather weak inequality, ln(1/ε) ≤ 1/ε.

2.1.1 An Aside
We think that the ideas presented in the previous subsection
are worth distilling in this separate subsection. Consider the
following simplification of our random path tester: pick the
path p randomly from P, and then sample two points x, y
independently from p. What’s the probability of the event
E that x and y are both blue?

The calculation becomes slightly simpler. We get

Pr[E] =
1

|P|
∑
p∈P

(
b(p)

`

)2

≥

(
1

|P|
∑
p∈P

b(p)

`

)2

= Ω

(
ε2

ln(1/ε)

)
(9)

where the second inequality follows from Jensen’s inequality,
and the last inequality follows from (3). Finally note that
the above random process can be thought of as the following
random walk.

DirRandWalk: Pick i, j ∈ [n
2
− Cε

√
n, n

2
+ Cε

√
n] u.a.r. Pick

x ∈ Li u.a.r. and perform a random walk starting from x
up the directed hypercube for j steps. End at vertex y.

It is not hard to see that the distribution on pairs (x, y) is the
same as produced by the random process described above:
for any x ≺ y with number of ones in [n

2
−Cε

√
n, n

2
+Cε

√
n],

the probability we get (x, y) is precisely 1
`2
· t!s!(n−s−t)!

n!
,

where |x| = t and |y| − |x| = s. Therefore, we have the
following theorem.

Theorem 3. Given a subset S of points in the hypercube
of size |S| ≥ ε2n, the probability that the DirRandWalk starts
and ends at S is Ω(ε2/ ln(1/ε)).

Observe that if x, y were sampled independently, then the
probability both would be in S is ε2. The theorem above
shows that one gets a qualitatively same probability even
with the highly correlated pairs generated by the directed
random walk.

2.2 Piece 2.
We now show that if there is a large matching E of violating
edges of the hypercube, then the path tester succeeds with
large probability. We assume that all edges of E lie between
the layers (n/2−Cε

√
n, n/2+Cε

√
n). That is, for all (x, y) ∈

E, we have n
2
− Cε

√
n < |x|, |y| < n

2
+ Cε

√
n. We call such

edges to be in the middle layer.

Lemma 2. Suppose there exists a collection E of match-
ing, violated edges in the middle layer of the hypercube. Then
the random path tester succeeds with probability

Ω

(
ε√
n

)
·
(
|E|
2n

)4.5

.

Proof. Given the matching E, let’s denote the set of
endpoints of edges in E, as B. We partition B into B0 and
B1, to indicate the points where the function evaluates to
0 and those where the function evaluates to 1, respectively.
Note that |B0| = |B1| = |E|. Let η denote the fraction
|E|/2n.

Let us focus on pairs (x, y) ∈ B1 × B1. Let Exy denote the
event that the path tester chooses x and y. If we think of
the vertices in B1 to be colored bluw, then Lemma 1 implies,∑

(x,y)∈B1×B1

Pr[Exy] = Ω(η4.5). (10)

We can also think of the event Exy as picking a path con-
taining both x and y, and conditioned on this, sampling x
and y. In other words,

Pr[Exy] =∑
p:x,y∈p

Pr[p sampled] · Pr[x, y sampled | p sampled].

The crucial observation is that the probability x and y are
sampled conditioned on the path p is the same irrespective
of p, and depends only on x and y, as long as p contains
both of them.

Say x is the first point to be sampled. If y /∈ Yp(x), then
the probability y is the second point sampled is 0. Observe
that if y /∈ Yp(x), then x /∈ Yp(y) as well. If y ∈ Yp(x),
then the probability y is the second point sampled is 1

|Yp(x)| .

Note that |Yp(x)| is independent of p and depends only on
|x|. Therefore, we get that for x, y ∈ Xp,

Pr[x, y sampled | p sampled] =

θxy =

{
0 if ||y − x||1 < b ε`

32Cε
c

1
`

(
1

|Yp(x)| + 1
|Yp(y)|

)
otherwise.

(11)

Thus, we can write

Pr[Exy] = θxy
|Pxy|
|P| (12)

where Pxy are paths from 0n to 1n containing both x and y.

Till now, we have been looking at the probability of picking
two vertices in B1. What we really need to sample is a vertex
x in B1 and ancestor y′ in B0. Here’s where the matching
will help us. We can map every event Exy′ to the event Exy,
where y = E(y′), the matched pair of y′. Since we have a
matching, the mapping is one-to-one. Now, we can lower

bound our success probability as

Pr[success] ≥
∑

(x,y′)∈B1×B0

Pr[Exy′]

=
∑

(x,y)∈B1×B1

Pr[Exy] · Pr[Exy′]

Pr[Exy]

We claim that θxy′ is almost as large as θxy.

Claim 1. θxy′ ≥
(

1− 1√
n

)
θxy

Proof. Note that since |y′| = |y|+1, we have ||y′−x||1 >
||y − x||1 implying if θxy′ = 0, so is θxy. Furthermore, since
|y′| < n/2−Cε

√
n, for all paths p containing both x and y′,

we have y′ ∈ Xp.

Also note that |Yp(y′)| ≤ |Yp(y)|+ 1 since the number of 1’s
in y and y′ differ by at most 1. Therefore, we get

θxy′

θxy
≥ |Yp(y)|
|Yp(y)|+ 1

.

The claim follows by noting that |Yp(y)| ≥ ` − ε`
16Cε

≥
√
n,

since ε < 1/2 and ` = 2Cε
√
n,Cε =

√
10 ln(1/ε).

Using the above claim in (12)

Pr[Exy′]

Pr[Exy]
≥
(

1− 1√
n

)
|Pxy′ |
|Pxy|

(13)

The good thing is that we know exactly what both the num-
bers in the RHS are. Say |x| = t and |y| = t + s. Note
s ≥ ε`/32Cε. Also note |y′| = |y|+ 1. Then,

|Pxy| = t!s!(n−s−t)! and |Pxy′ | = t!(s+1)!(n−s−t−1)!

Plugging in (13), gives that

Pr[Exy′] ≥
(

1− 1√
n

)
s+ 1

n− s− t .

The denominator is Θ(n) since |y| ≤ n/2 + Cε
√
n. The

numerator is at least ε`/32Cε = ε
√
n/16. Thus we get

Pr[Exy′] = Ω

(
ε√
n

)
· Pr[Exy].

Therefore the probability of success is at least∑
(x,y′)∈B1×B0

Pr[Exy′] = Ω

(
ε√
n

)
·

∑
(x,y)∈B1×B1

Pr[Exy]

= Ω

(
ε√
n

)
η4.5

where the last inequality follows from (10). This completes
the proof of the lemma.

2.3 Piece 3.
Let M be a maximal matching of violated pairs. Suppose
the average length of the pairs in M is r. That is,∑

(x,y)∈M

∣∣∣|y| − |x|∣∣∣ = r|M |

Since f is ε-far, we know that |M | = Ω(ε2n) [8]; we will
remove all pairs which have either endpoint x with |x| /∈
(n
2
− Cε

√
n, n

2
+ Cε

√
n). From a Chernoff bound we know

we have removed at most 2ε52n pairs, and thus |M | remains
Ω(ε2n). Therefore, we may assume that all pairs of M have
both endpoints in the middle layers. The main result in this
section states that there is a comparable collection of match-
ing, violated edges in the middle layer of the hypercube.

Lemma 3. If the average length of M is r, then there ex-
ists set E of matching, violated edges in the middle layers of
the hypercube with |E| ≥ |M |/16r2.

Proof. Since the average length ofM is≤ r, by Markov’s
inequality at least |M |/2 pairs have length ≤ 2r. Therefore,
there exists a length ` ∈ [1, 2r] such that at least |M |/4r
pairs have length exactly `. Let these pairs be called M ′.
Partition M ′ into 2` ≤ 4r classes as follows: (x, y) falls in
class Ci if |x| (mod 2`) ≡ i. One of the classes, say Ci,
consists of at least |M |/16r2 pairs.

The class Ci consists of matched pairs whose endpoints are
respectively in the hypercube levels (i, ` + i), (2` + i, 3` +
i), (4`+ i, 5`+ i) and so on. Suppose there are nk matched
pairs with one end point in layer k` + i and other in layer
(k+ 1)`+ i; note that

∑
even k nk ≥ |M |/16r2. We now use

the following theorem of Lehman and Ron [14].

Theorem 4 (Lehman-Ron). Let S,R be two subsets
of points of the hypercube such that |S| = |R| = m and all
points in S (respectively, R) have s (respectively, r) ones,
with r < s. Furthermore, suppose there is a mapping φ :
S 7→ R such that φ(r) � r. Then there exists m vertex
disjoint chains that contain all of S and R.

For our purposes, S is the set of endpoints lying on the
(k + 1)` + 1 layer and R is those on the k` + 1 layer. The
mapping φ is defined by the matching. Therefore, we get
nk disjoint paths, each starting at R and ending at S. Note
that all vertices in R have function value 1, while all vertices
in S have function value 0. Therefore, in each of these paths
there must lie a violating edge. Since the paths are disjoint,
the edges form a matching. Finally, edges between layer
k`+ i and (k+ 1)`+ i cannot intersect edges found between
the layers (k + 2)` + i and (k + 3)` + i. Thus, we have
demonstrated a matching E of size |E| ≥

∑
even k nk ≥

|M |/16r2. Observe that the set E lies in the middle layers
of the hypercube, since M has all pairs lying in the middle
layers of the hypercube.

2.4 Piece 4.
For the final piece, we use the flexibility on choosing the
maximal matching M . In particular, we choose M as the
maximum cardinality matching of violated pairs which min-
imizes the average length. Clearly, M is maximal. Let
Mi be the set of pairs which cross dimension i, that is,
Mi := {(x, y) ∈ M : xi = 0, yi = 1}. The following the-
orem falls in the framework developed in the paper [7]; we
provide a proof here for completeness.

Theorem 5. The number of violated edges across dimen-
sion i is at least |Mi|.

Proof. Let H be the perfect matching formed by the
edges crossing the dimension i. Let X be the endpoints of
Mi. For all x ∈ X, we define a sequence S(x) as follows. The
first term Sx(0) is x. For even i, Sx(i+ 1) = H(Sx(i)). For
odd i, if Sx(i) ∈ X, or is M -unmatched, then Sx terminates.
Otherwise, Sx(i+ 1) = M(Sx(i)). Above, we have used the
shorthand M(v) and H(v) to denote the partners of v in the
matchings M and H, respectively.

The best way to think about Sx is via alternating paths and
cycles formed by the matchings M and H. We start at x
and take the H-edge along the alternating path. We keep
on moving till we reach an endpoint or another vertex in X.
Thus, each Sx terminates. It’s not too hard to see that if Sx

ends at y ∈ X, then Sy is just Sx in reverse. Furthermore,
Sx and Sy are disjoint unless y terminates Sx. Therefore
the number of sequences is at least |X|/2 = |Mi|. Now we
claim that for all x, Sx contains a violated edge in H. This
will prove the theorem.

Suppose this is not true for some vertex x. We now show
that Sx can’t terminate which will end the proof. For brevity,
let’s use si to denote Sx(i). Also let (x, y) be the i-crossing
pair in Mi. We use s−1 to denote y. Wlog, assume x � y,
thus xi = 1 and yi = 0. Also f(y) = 1 and f(x) = 0 since the
pair is a violation. Note that s1 = H(x) has ith coordinate 0.
Since there is no violating edge, f(s1) = 0 as well. Note that
s1 � y, as well, and therefore (y, s1) forms a violating pair. If
s1 were not matched in M , then M−(x, y)+(y, s1) would be
a matching which would decrease the average length. There-
fore s1 must be matched. Since f(s1) = 0, M(s1) = s2 ≺ s1.
In particular, the ith coordinate of s2 and s1 are both 0, and
therefore the edge doesn’t lie in Mi. So s2 /∈ X. The same
argument shows no other vertex can be in X. Once again,
check that s3 = H(s2) ≺ s0 = x. If s3 weren’t matched,
then we can replace the edges (x, y) and (s1, s2) in M by
(y, s1) and (s0, s3) to get a matching with smaller average
length. Therefore, anytime we reach a vertex which is not
M -matched, we get a better matching. Therefore, we never
encounter a vertex which is in X or is M -unmatched. This
contradicts the termination of Sx, and therefore, there must
exist a violating edge in Sx. This proves the theorem.

This following lemma is a corollary to the above theorem.

Lemma 4. If the average length of the matching M is r,
then there are ≥ εr2n−1 violated edges.

Proof. The proof follows by noting that∑
i |Mi| =

∑
(x,y)∈M

∣∣∣|y| − |x|∣∣∣ = r|M |, since a pair (x, y)

appears in precisely |y| − |x| different Mi’s. Theorem 5 im-
plies that the number of violated edges is at least

∑
i |Mi|,

and therefore, since |M | ≥ ε2n−1, the lemma follows.

2.5 Putting it all together.
In this section we prove Theorem 1 and Theorem 2.

Proof of Theorem1: We start off with the matching de-
scribed in Piece 4. Let r be the average length. Then the
edge tester succeeds with with probability Ω(εr/n). Let’s
calculate the success probability of the path tester. We
find matching violated edges of size |E| = |M |/16r2. Since
|M | ≥ ε2n−1, this gives |E| ≥ ε

32r2
· 2n. Thus, we have

η = ε
32r2

. Plugging in Lemma 2, we get that the random
path tester succeeds with probability

Ω

(
ε5.5

r9
√
n

)
Therefore, the hybrid tester succeeds with probability at
least

Ω

(
max

(
rε

n
,
ε5.5

r9
√
n

))
= Ω

(
n−19/20ε1.45

)
The equality follows by setting r = n1/20ε0.45. 2

Proof of Theorem2: Let M be the maximum cardinality
matching which minimizes the average length, as in Piece 4,
and let r be the average length. Lemma 4 gives us that the
number of violated edges is at least εr2n−1. This in turn
implies that I(f) ≥ εr/2; every violated edge is a ‘sensitive’
edge. In other words, r = O(I(f)/ε). Theorem 2 now follows
from Lemma 3 and Lemma 2. 2

3. CONCLUSION
In this paper, we make progress on a decade old question
of testing monotonicity of boolean functions over the hy-
percube. In particular, we exhibit a o(n)-query tester. Al-
though our current exponent is far from the known lower
bound of

√
n, for a large class of functions we show that our

analysis suffices to give optimal results.

It should be clear to the reader that we haven’t optimized
the exponent on n, ε in the previous analysis. In particular,
the exponent 4.5 of ε in Lemma 1 is suboptimal and we chose
it so that we don’t bear logs around. How far can our current
analysis hope to bring down the exponent? The exponent of
ε in Lemma 1 can’t be smaller than 2, and the exponent of
r in Lemma 3 can’t be smaller than 1. Therefore, if now one
does a similar calculation as in the proof above, one could
hope to get the exponent of n down to 5/6 ≈ 0.833, but no
smaller. We haven’t been able to do, as yet, but this shows
our current analysis cannot come much close to the optimal
n1/2 result.

Looking ahead, we believe the random path tester may well
be a O(

√
n)-query monotonicity tester for Boolean func-

tions. But as is with many problems in property testing,
the crux lies in the analysis. We think one would need a
new idea than those described in this current paper to make
this go through. This is the obvious open direction. Finally,
there may be a different algorithm which one may think of
for ‘high’ average sensitivity functions. That is also an ex-
citing direction to explore.

4. REFERENCES
[1] N. Ailon and B. Chazelle, Information theory in

property testing and monotonicity testing in higher
dimension, Information and Computation 204 (2006),
no. 11, 1704–1717.

[2] N. Ailon, B. Chazelle, S. Comandur, and D. Liu,
Estimating the distance to a monotone function,
Random Structures and Algorithms 31 (2006), no. 3,
1704–1711.

[3] T. Batu, R. Rubinfeld, and P. White, Fast
approximate PCP s for multidimensional bin-packing
problems, Information and Computation 196 (2005),
no. 1, 42–56.

[4] A. Bhattacharyya, E. Grigorescu, K. Jung,
S. Raskhodnikova, and D. Woodruff, Transitive-closure
spanners, Proceedings of the 18th Annual Symposium
on Discrete Algorithms (SODA), 2009, pp. 531–540.

[5] E. Blais, J. Brody, and K. Matulef, Property testing
lower bounds via communication complexity,
Computational Complexity 21 (2012), no. 2, 311–358.

[6] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and
A. Matsliah, Monotonicity testing and shortest-path
routing on the cube, Combinatorica 32 (2012), no. 1,
35–53.

[7] D. Chakrabarty and C. Seshadhri, Optimal bounds for
monotonicity and lipschitz testing over hypercubes and
hypergrids., Unpublished manuscript. (2012).

[8] Y. Dodis, O. Goldreich, E. Lehman,
S. Raskhodnikova, D. Ron, and A. Samorodnitsky,
Improved testing algorithms for monotonicity,
Proceedings of the 3rd International Workshop on
Randomization and Approximation Techniques in
Computer Science (RANDOM) (1999), 97–108.

[9] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and
M. Viswanathan, Spot-checkers, Journal of Computer
Systems and Sciences (JCSS) 60 (2000), no. 3,
717–751.

[10] E. Fischer, On the strength of comparisons in property
testing, Information and Computation 189 (2004),
no. 1, 107–116.

[11] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova,
and R. Rubinfeld, Monotonicity testing over general
poset domains, Proceedings of the 34th Annual ACM
Symposium on the Theory of Computing (STOC)
(2002), 474–483.

[12] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and
A. Samordinsky, Testing monotonicity, Combinatorica
20 (2000), 301–337.

[13] S. Halevy and E. Kushilevitz, Testing monotonicity
over graph products, Random Structures and
Algorithms 33 (2008), no. 1, 44–67.

[14] E. Lehman and D. Ron, On disjoint chains of subsets,
Journal of Combinatorial Theory, Series A 94 (2001),
no. 2, 399–404.

[15] N. Linial, Y. Mansour, and N. Nisan, Constant depth
circuits, fourier transform, and learnability, Journal of
the ACM 40 (1993), no. 3.

[16] M. Parnas, D. Ron, and R. Rubinfeld, Tolerant
property testing and distance approximation, Journal
of Computer and System Sciences 6 (2006), no. 72,
1012–1042.

[17] D. Ron, R. Rubinfeld, S. Safra, and O. Weinstein,
Approximating the Influence of Monotone Boolean
Functions in O(

√
n) Query Complexity., Proceedings

of the 15th International Workshop on Randomization
and Approximation Techniques in Computer Science
(RANDOM), 2011.

	Introduction
	Main Ideas.
	Comparison with a result of Briët et. al.

	The Tester and its Analysis
	Piece 1.
	An Aside

	Piece 2.
	Piece 3.
	Piece 4.
	Putting it all together.

	Conclusion
	References

