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Beryllium modeling with DFT / QMD ) dena_

HCP solid

= Solid and Liquid Hugoniot states

= Longitudinal and Bulk sounds speeds
BCC and HCP

= Melt boundary, emphasis on Hugoniot

= Phase coexistence region

= Accurate pressure isotherms

= Solid/Liquid entropy differences




DFT QMD calculations with VASP h E;E.‘?‘E?.!ﬂes

» The simulations are performed with VASP (Vienna Ab initio
Simulation Program), a plane wave density functional code (with
several in-house modifications for HEDP calculations)

» Exchange and Correlation functionals are Generalized Gradient
Approximation (GGA/PBE)

» For Be we typically use 200+ atoms (BCC, HCP, and liquid); We
use Projector Augmented Wave (PAW) all-electron, frozen core
potentials for the atoms

* We generally perform our simulations in the Canonical Ensemble
(N,V,T) using either velocity scaling or a Nosé-Hoover thermostat to
regulate the temperature; Fermi statistics for the electrons

« Typical runs cover several picoseconds



Beryllium is generally believed to melt from the BCC
phase on the Hugoniot ...
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... but melt predictions ranged from 1.2 Mbar to 3.5 Mbar
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Details of the QMD beryllium melt calculations A Neona
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* We use a hysteresis* method to compute an equilibrium melt temperature from a
maximum metastable solid temperature and a minimum metastable liquid
temperature at the same pressure.

* Two-phase melting/freezing calculations are also used for the melt boundaries.

* The free energy difference Fji4(V)-Fsol(V), combined with the calculated melt curve
determines the coexistence region and the entropy change at melt.

e Poisson’s ratio is determined from the longitudinal and bulk sound speeds, or by
comparing the relative change of the longitudinal and transverse components of the
stress tensor under strain.




Our QMD calculations predicted that the shock melting of Sani
beryllium would begin around 213 GPa i) Yo
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The Hugoniot exits the coexistence region around 263 GPa




Comparison of Hugoniot and sound speed
measurements with QMD calculation for BCC Be

Onset of melt at 210 GPa in good agreement with QMD
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Comparison of Hugoniot and sound speed
measurements with QMD calculation for HCP Be
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onset of melt
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Poisson’s ratio

170
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QMD hcp Hugoniot in better
agreement with experiment

QMD bulk sound speed in decent
agreement with experiment

QMD longitudinal sound speed in
much better agreement with
experiment
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We extracted the constant-volume entropy change ) e,
Laboratories
along the melt curve
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Our calculated entropy change at melt for constant volume (0.85 +/- 0.025 kg/atom) is in very
good agreement with the ‘universal’ range (~ 0.80 +/- 0.10 kg/atom) for normal melting*
[*Duane Wallace in Statistical Physics of Crystals and Liquids] 5



Two-phase calculations suggest an HCP melt curve
that is lower than the BCC melt curve
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Our QMD calculations are consistent with the Z data ) e,
and provide new insight into the Be phase diagram
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Although much progress has been made, the beryllium ) i
phase diagram is still not complete Labortories
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= Hugoniot data for solid in best agreement with HCP
= Longitudinal sound speeds strongly favor HCP

= Predicted onset of melt (213 GPa, BCC) in very good
agreement with Z data

= Solid/liquid entropy differences in very good agreement
with ‘universal’ range for normal melting

= Data and calculations suggest changes to the Be phase
diagram -> HCP to BCC phase boundary is much closer to
the high pressure melt curve than previously believed
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Modeling Dynamic Compression of
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Modeling Ramp Compression Experiments using Large-Scale (dh E;E.‘?‘E?.!ﬂes
Molecular Dynamics Simulation

Motivation

19 » Continuum models require underlying
models of the materials behavior

» Quantum methods can provide very
complete description for 100s of atoms

° « MD can act as a bridge, incorporating
the dominant parts of the quantum
® 7 data description, extending it out to very

A hcp QMD long. large numbers of atoms
< hcp QMD bulk

Sound Speed (km/s)

¢

12 L — ‘ ‘ ‘ ‘ ‘ Objectives
35 4.5 55 6.5 7.5 85 9.5 . . .
Particle Velocity (km/s) » Develop an interatomic potential for
Beryllium that describes mechanical
Ultra-high velocity flyer plate experiments on and thermodynamic properties up to
Sandia’s Z machine, from Desjarlais, Knudson shock melting (5000 K, 250 MPa)
and Lemke, SCCM 2007 « Develop new methods for estimating

sound speed in NEMD simulations of
shock and ramp loading
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MEAM Potential for Beryllium

- Collaborated with Mike Baskes to find good
beryllium parameters for MEAM potential (Ba09i)
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- Accurately predicted elastic constants, static 200 . . : .
compression and melting pressure - :g%‘é(‘“a“”’“"ms’
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Comparison of Equilibrium and A Nt
. Laboratories
Hugoniot Melt Pressures

Ba09i equilibrium melt curve in very
good agreement with DFT estimates
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Shock and Ramp Compression of Beryllium Laboratores

Large-scale (2.3 x 3.9 x 370 nm) nonequilibrium ramp
simulations were run with 400,000 atoms on 1600

- An unexpected amorphous solid state is processors of Red Sky.
observed in beryllium between the 8 km/s '
elastic/plastic response and the liquid
response
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- Ramped impact showed similar behavior
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Examples of shock response of beryllium for three
0 50 100 150 200 250 300 different shock piston velocities. At 3 km/s the material
deforms elastically and plastically, at 5 km/s an

amorphous solid is produced, at 8 km/s the material is
fully melted. 18
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GAP Approach for Interatomic Potentials

GAP: A systematic, informatics approach

+ Based on QM and mathematics rather
than empiricism.

* Local density around each atom
expanded in 4D hyperspherical
harmonics, analogous to Fourier series

« Atomic configurations described by
bispectrum of lowest-order coefficients in
series

* Preserves universal physical
symmetries: invariance w.r.t. rotation,
translation, permutation

« (Gaussian process (GP) regression used
to interpolate energy of QM
configurations

+ 100-1000x more expensive than MEAM

« Far cheaper than QM, linear scaling

» Can trade performance and accuracy
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Diamond: Force errors for GAP fitted to
DFT. Adding higher-order GAP coefficients
systematically increases accuracy

Bartok et al., PRL 104 136403 (2010)
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SNAP: Predictive Model for Tantalum i) setora

Laboratories
Objective: model the interactions of dislocation cores with grain boundaries to understand
microscopic failure mechanisms. Existing tantalum potentials do not match key results from DFT
calculations.
Polycrystalline Tantalum Sample
Screw Dislocation Dipole in Tantalum
, . <
LAMMPS MD
N=~108
VASP DFT
N=100
VASP DFT Training Data
o118 : : : « 78 DFT configurations
NP E | ' 34 « ~100-atom supercells with perturbed atoms: BCC,
S 116 - FCC, A15, Liquid
5118 | » Relaxed Surfaces
5.11.8 - » Generalized stacking faults, relaxed and
2 115 unrelaxed
Lattice Parameter (A) 20



SNAP Potential for Tantalum

- The SNAP potential accuracy is comparable to the best existing potentials

- Efforts to further improve accuracy are underway

- Given suitable DFT training data, a SNAP potential for Be is within reach
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MD study of high-pressure high-density Be

= Shock and quasi-isentropic loading
= Atomistic techniques recently developed in LDRD

= Quantitative material properties and mechanisms
= Characteristics extraction, wave speed & plasticity analysis

= Measurement of bulk and longitudinal wave speeds for ramp
and shock wave studies.
= Stress tensor approach
= Time-of-flight analysis
= Pulse propagation

= Ramp wave evolution similar to Charice analysis to determine wave-
speed from characteristic curves.
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Scaling and dynamic similarity theory porsors
_ Driving piston velocity and position:
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Characteristic curves from wave speed

= Construction from slope definition
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Run simulation extracting continuum state variables
Calculate wave speeds over the range of states for load path

Characteristics have inverse slope, dx/dt =v = ¢, where cis the
wave speed

Starting at the piston (x,, t;), integrate to find (x,, t,), etc.

= Requires wave-speed as function of local state

Method 1: Gao (J. Mech. Phys Solids, 44, 1452) still in process
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= Sis the second Piola-Kirchoff stress tensor
= Fisthe deformation gradient tensor
= Cisthe material tangent modulus
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Method 2: Time-of-flight was used, instead

z stress (kbar) 24




Conclusions

Large-scale NEMD simulations of the melt transition are
within reach

A potential that can reproduce QMD is needed
The SNAP method may be the best approach
Need better methods for calculating sound speed

= Wavespeed from stress/strain sampling
= Wavespeed from time-of-flight
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