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Timeline

/@ Project provides science to support
industry to develop advanced
ean/dilute-burn Sl engines for non-
oetroleum fuels.

® Project directions and continuation are
reviewed annually.

Barriers

® |nadequate data and predictive tools for
fuel property effects on combustion and
engine efficiency optimization.

® Fvaluate new fuels and fuel blends for
efficiency, emissions, and operating
stability with advanced SI combustion.

1. Lean, unthrottled DISI with spray-
euided combustion.

2. Dilute and mostly premixed charge
with advanced ignition.
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A Overview

Budget

® Project funded by DOE/VT via
Kevin Stork.

® FY12 - S750K
® FY13-S700 K

Partners / Collaborators
® P|: Sandia (M. Sjoberg)

® 15 Industry partners in the Advanced
Engine Combustion MOU.

® General Motors - Hardware.

® D.L. Reuss (formerly at GM).

® \W. Zeng (post-doc, Ph.D. on spray diag.)
® Sandia Spray Combustion (Pickett).

® | LNL (Pitz et al.) — Mechanisms and
~lame-Speed Calculations.

® USC-LA (Egolfopoulos et al.) - Flame
Measurements.

® USC-LA (Gundersen et al.) — Corona
lgnition.
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N Objectives - Relevance

Project goals are to provide the science-base needed for:

® Determining fuel characteristics that enable current and emerging
advanced combustion engines that are as efficient as possible.

DISI with spray-guided stratified charge combustion system

— Has demonstrated strong potential for throttle-less operation for high efficiency.
— Overall lean operation prevents easy aftertreatment reduction of exhaust NO..

— High-EGR operation can reduce NO, formation, but can also lead to partial burns.

— Stratified charge can easily cause soot formation.
— Hence, mastering NO, / Soot / Combustion Stability trade-off is key to success.

— These processes are strongly affected by fuel properties (e.g. ethanol content).

® Develop a broad understanding of spray-guided SI combustion

(i.e. conceptual model, including fuel effects).
— For highest efficiency, cyclic variability needs to be minimized.
—Help develop engineering tools that go beyond ensemble-averaged

combustion, and incorporate cyclic variability.

® Current focus is on E85 and gasoline, and blends thereof.

— Latest E85 specifications allow 51-85% ethanol by volume.
— Flex-fuel vehicles need to function with 0 — 85% ethanol in the fuel tank.
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A, Approach

DL

® Combine metal- and optical-engine experiments and modeling to develop a broad
understanding of the impact of fuel properties on DISI combustion processes.

® First, conduct performance testing with all-metal engine over wide ranges of

conditions to identify critical combinations of operating conditions and fuels.
—Speed, load, intake pressure, EGR, and stratification level.

® Second, apply a combination of optical and conventional diagnostics to develop

the understanding needed to mitigate barriers.
— Include full spectrum of phenomena; from intake/compression flows, fuel injection,
fuel-air mixing, spark development and ignition, to flame spread and burn-out.

Supporting modeling and experiments:

® Conduct chemical-kinetics modeling of flame-speed and extinction for detailed

knowledge of governing fundamentals.
— Collaborate on validation experiments and mechanism development.

® CFD modeling of spray penetration and mixing.

® Addresses barriers to high efficiency, robustness, and low emissions by increasing
scientific knowledge base and enhancing the development of predictive tools.
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2N Approach / Research Engine

% Two configurations of drop-down single-cylinder engine.
Bore = 86.0 mm, Stroke = 95.1 mm, 0.55 liter swept volume.

e All-metal: Metal-ring pack and air/oil-jet cooling of piston.

e Optical: Pent-roof window, piston-bowl window, and 45° Bowditch mirror.

¢ |dentical geometry for both configurations, so minimal discrepancy between
performance testing and optical tests.

e 8-hole injector with 60° included angle =
22° between each pair of spray center lines.
Spark gap is in between two sprays.
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AN Technical Accomplishments

=P ® Fxamined E85 operation with near-TDC fuel injection for ultra-low NO and soot.
=» — Spectroscopic characterization of the various stages of ignition and combustion.
— Effects of intake O, on exhaust soot emission.

— Spark-plasma stretch analysis and dual-camera high-speed combustion luminosity
imaging for understanding partial burn cycles.

=P ® Performed PIV measurements of in-cylinder flows during compression,
fuel injection and combustion.

= ® Compared NO formation for E85 and gasoline.
=» — PV measurements to understand mixing rates of hot combustion gases.

=P o |nvestigated effects of air flow (rpm & swirl) on well-mixed & stratified E70 oper.

— Determined how the combustion rate scales with engine speed,
and the effects of cyclic flow variability.

® |nitial examination of effects of fuel blend (EO to E100) on stratified operation.
=» — Spark-timing requirement for stable ignition and low soot emissions.
— Soot and NO exhaust emissions across load ranges for operation with "head ignition".

® Examined the potential of PLIF imaging of E85 using intensified high-speed camera.
® Set up and validated FORTE CFD-code to study fuel-jet penetration and mixing.
® For well-mixed operation, initialized study of fuel effects on endgas autoignition (knock).
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Parameter Space

» ® The parameter space is huge.

® Grouped as hardware, static parameters &
operating variables.

e Stratified operation for E70 and E85 often
used spark timing (ST) for “head ignition”.

¢ Stable combustion with good CA50 control.
® Head ignition can easily lead to

unacceptable soot for gasoline.
— Later spark is then needed (i.e. tail ignition).

——-14.9 mg E70, 1000 rpm, SOI = -23°CA, 19% 02
-@-12.6 mg E70, 2000 rpm, SOI = -30°CA, 21% O2

T
= N N
OO O O

o
CSD of IMEP, [%)]

-10 8 6 4 -2 \00 2 4 6 8 10
Delay "Liquid Arrival at Spark Gap" to "Spark™ [°CA]

o
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Parameter

This Presentation

CR

12

Piston Bowl

46 mm

Valve Timings

For Minimal
Residual Level

Injector &
Spray Targeting

Bosch 8 x 60°
Straddling Spark

Swirl Index

2.7

Tumble Index

0.62

Injection Pressure

170 bar

# of Injections

Single

Spark Energy

106 mJ

Tcoolant

60°C

Tin

26-28°C

Pexhaust

100 kPa

Fuel Type

Gasoline (E0) — E100

Engine Speed

1000 - 2000 rpm

Intake Pressure

18 - 105 kPa

IMEP,

20 - 637 kPa

Start of Injection

-310 to -6°CA

Spark Timing

-36 to -5°CA

EGR /[O,];,

21 —14.5% O,




2\\\

o WeII mixed lean mixtures
burn too slowly for stable
S| operation.

_T = 659 K, P = 25 bar, [0,] = 18.5%/_

= N
o

Flame Speed [cmls]
S 8 3

o

0.6 0.8 1 1.2
Equivalence Ratio [¢]

0.4 1.4

® Overcome this with fuel
stratification to raise local ¢.

* Allows lean and throttle-less engine operation.

— High vy, and no pumping losses.
= High efficiency.

e Example for E70 fuel.

e Strongest gain of fuel economy for low loads.
— 30% FE gain at %4 load to 60% near idle.

® Overall lean operation prevents
easy exhaust aftertreatment of NO,.

® This example used “head ignition” of fuel jets.

®* Head ignition allowed very small fuel
injections to be combusted stably.
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Fuel Economy Potential with Stratified Comb.
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0.05

¢ \\ith E85, can reach inside the US2010
NO/PM box, using near-TDC injection.

® E85 responds favorably to SOl retard.
— Lower peak temperatures, and less
residence time, U NO formation.

® Oxygenated fuel, and strong

vaporization cooling of ethanol.

— Suppresses soot formation.

Previous Results - Reaching Inside NO/PM Box

1457 | —A- Gasoline, SOl = -31°CA, IMEPn = 370 kPa
0045 48 | —e— E85, SOl = -31°CA, IMEPn = 370 kPa
- A ES85 SOI = -23°CA. IMEPn = 370 kPa
0.04 - = E85. SOI = -23°CA IMEPn = 250 kPa
- E85, SOI = -6°CA, IMEPn = 260 kPa
§ 0.035 - | | |
x 0.03-
= .025 - ?
E ' More EGR
7 0.02 - :
0.015 - |
- 21% Intake [O,]
001 Iy OGN 2, rm=ns \ ’"’ﬂ""’”"*’”""’"’”""”(”"”’2’,"’0’/;”
0.005/A A
b.19% 0 2 4 6 8 10 12 14 16

ISNO [g/kWh]

¢ | ess flame-like
combustion for
E85 warrants
further investigation.

Gasoline
Tail Ignition

a. 13mg Gasoline, SOI = -31°CA, EOI =

-24°CA, ST =

-25°CA, ¢ = 0.45, [O;] = 16.5%, NO = 219 ppm.

e Use spectrograph.

E85 Head
Ignition

® Nature of early
faint flames?

® Presence of soot?

COMBUSTION RESEARCH FACILITY
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2 Optical Diagnostics Setups

- YIar

® PLIF high-speed 355 nm laser — Quantronix HP-UV. Intensified Phantom v311.
® In-house developed pulsed high-intensity LED for Mie-scattering.

® PIV high-speed 532 nm laser - Quantronix Dual Hawk.
— Vertical laser sheet near spark-plug gap.

® Mie & natural luminosity imaging via Bowditch mirror.
— Notch filters to reject 532 nm laser light.

® Dual-camera setup or Spectrograph.
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A Well-mixed Spectral Response

e Spectrograph had coarse grating with 122 lines/mm.
— Low resolution, but useful for obtaining an overview of the light characteristics.

® Emissions lines near 590 nm indicate high sodium content in fuel.

¢ Stoichiometric and lean operation show emissions peak near 308 nm.
— Indicative of high levels of excited OH*.

® Spectra are consistent with CHEMKIN flame-modeling results.
® Rich combustion has weak luminosity and no peak near 308 nm.

400 Well-Mixed E85 T
250 - ol IR

300 -
>
'E CHEMKIN Model ] 250 -
% Ethanol N >
= | — Phi = 1 =200
S 20ond [ N\ S —Phi=07 | | P
= | —Phi =2 9 150 A
S ‘ ’ =
L 100 -
()]
©
= 50 -
T ARICh - e et (2
© 0 i i i i —

200 300 400 500 600 700 800

0.99 1 1.01 1.02 1.03 1.04 Wavelength [nm]

Position [cm]

COMBUSTION RESEARCH FACILITY 11 Ah| Sandia National Laboratories




¢ £85. SOI

Stratified Spectra
= -6°CA. Spark = -12°CA.

peak around 308 nm.

e Farly luminosity is weak, and shows no

— Indicative of exclusively rich combustion.

e Hypothesis: Early flame is strained along

fuel jets. Avoids extinction by existing in

¢ - regions with highest robustness.

* From 6° to 11°CA, distinct peak
near 308 nm indicates stoichiometric
and lean combustion.

¢ | ate luminosity is dominated by black-
body radiation, indicative of soot.

00 T — 400 ——  Well-Mixed E85 — m
gooo ||  Stratified : 350 1---| SpectraNearCA10 | |- ||
_ 7oo0 {L_E8S Spectra Jr 3004+ |—Phi=20 [}
3 goog4 | —20-202°CA &b A S | » — Phi =0.98 - | i
s, —tr-mecal 0 w20y b —Phio6or
2001 —6.78ca | A M] zelfowldll T o
(7)) | | : :
c 40004 —0-3°CA i aeEE ER T 13 S oo 7 | ; St0|ch N .
2 I S I I I I | | | ‘.ch 150 4 | | : L /SOdlum
€ 30004 i = \ (T "
2000 { i | 100 T lﬁf Lean HE R
1000 { | 501 M WhHewn
1 | Jf) 1 t Rich | @
0 +— = n M : 0 +— f f i i i
200 300 400 500 600 700 800 200 300 400 500 600 700

Wavelength [nm] Wavelength [nm]
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N\ NO Emissions for Gasoline and E85

e Gasoline with SOl =-31°CA, and E85 with SOI = -23°CA have very similar AHRRs.

® Yet, NO emissions are 77% higher for gasoline (219 vs. 124 ppm). Why?
— A. Intake [O,] is 1.5% lower for gasoline, so goes wrong way.
— B. Spray model shows 60K more vaporization cooling for ethanol (at ¢ = 0.8).

e \With these factors, detailed gasoline/E85 surrogate mechanism by Dr. Marco Mehl
at LLNL predicts 26K higher flame temperature at ¢ = 0.8 for E85.

® Hence, other factors must come into play as well to limit NO formation.
— C. EOIl to CA50 delay is 23°CA for gasoline but only 12°CA for E85. (Tail vs. Head Ignition).
— D. E85 has 52% more fuel injected because of its lower heating value.

® C & D implications on in-cylinder mixing rates?

W
@)

e Perform PIV measurements with and w/o IMEP,, = 370 kPa —E85,
fuel injection. 01 ‘i ********* SOI = -23°CA,
= ; | : ; . 02=18%,
e Average non-DI PIV shows development o1 T [\ = No=124ppm
g P °>, 20 - | ‘\ | | | ' — Gasoline,
- = | SOl =-31°CA,
of tumble flow in bowl. 151 — [\ ox-1e5m
104 ) \ NO = 219 ppm
5 - N
0
-5 : : : : : : :

40 -30 -20 -10 O 10 20 30 40
Crank Angle [°CA]
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Mixing Rates Vs. NO Emissions

® P|V shows that in-cylinder turbulent kinetic energy is higher during burn-out for E85.

— More closely-coupled injection and combustion.

Cycle 68: 19°CA

Gasoline

® Global ¢=0.43-0.45, so more rapid mixing
of hot combustion products with cooler unused air
has potential to stop thermal NO production.

® Consistent with E85’s observed lower NO emissions.
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Temperature [K]

— Lower heating value of E85 = 52% more fuel injected = More fuel-jet momentum.
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2\ Role of In-Cylinder Flow Field
7 DL

F

What is the role of the in-cylinder flow field for stratified-charge combustion?
— The flow generated by the intake and compression strokes.

/@ Change the flow by changing engine speed.

- e Observe AHRR changes. Well-mixed (WM) and stratified combustion.

e Well-mixed AHRR constant in J/°CA, stratified AHRR spreads out.

e WM-comb. speeds up in kW/ms. Combustion rate scales with turbulence level.

e Stratified combustion rate 45 ____ \ _
40 3 Phi =1, Well-Mixed 204 4 N— — 1000 rpm, SOI = -8°CA ||
1 { \ | 29.5mg E70, Swirl | — 1400 rpm, SOI = -13.2°CA
constant in kW/mes. e [\ [po=sokpaoaz2t%| =] I\ | =000 so1- 2rica |
O ;’g 1 N = O | [ Stratified
. i 1T ””” : i 10 12.6mg E70, Swirl
* Combustion rate governed z o [ O\ Treen 2 | Pz a5 kpa
151 - ! ‘ LN T 54  J/ N \ | [0]=19%
- 1\ 1 <904 / S \ \ N R < | N | |
by fuel/air mixing. 0 N ~_
[ ] [ ] [ ] O— 777777777777777777777777777777777777
® On average, this mixing 5 5
-20  -10 0 10 20 30 40 50 -30 =20 10 0 10 20 30 40 50 60
. - - Crank Angle [°CA Crank Angle [°CA]
is dominated by fuel-jet . rank fnste LA
Phi = 1, Well-Mixed 160 |
. 450 A ’ . | — 1000 rpm, SOla = -8°CA
] 29.5mg E70, Swirl | | | | _ .
penetration. _ 400 [Pazsokpatog=2m | 20f [ C[eowmeoe-azos
7 1, el N —2000mm || 2 80 N Stratified
e AL ¥ 250 - AN - —1400rpm | | =801 f O\ | A
® This is for E70 “head-ignition”. €551 N\ O Bpteralall N 126mg E0, Swir
<l O\ | %
(" | ey »” 100 - T
® “Tail ignition” more controlled %1 J N\ 0-
. 0 fF—~—— ! T
by flame propagation? 50— 20 b
4 -3 2101 2 3 4 5 6 7 4 3 2 -1 0 1 2 3 4 5 6 7
Time Relative Peak AHRR [ms] Time Relative Peak AHRR [ms]
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In-Cylinder Flow Field vs. Cyclic Variability

e \Well-mixed operation: Relative cyclic variability does not change.

e Stratified combustion: rpm M, in-cylinder flow field becomes sufficiently
strong relative to the fuel jets = increased variability of combustion.

® CA50 variations make
interpretation more difficult.

e Replot AHRR against % burn.
e WM shape is very repeatable.

e Stratified show large
variability in burn profile.

® | ess EGR stabilizes comb.,
but NO would increase.

e Keep EGR, but avoid slow
and incomplete burns.

® Demonstrates need to go
beyond averaged results.

® Continue study variability
with multiple diagnostics.

so4 @ | Ensemble Average ||
3 Q. | Cycles 1-250
' 40 1 WA\ . 1000 rpm
=307 &\ | E70 Well-Mixed |
g:: 2004 A \ W Stoichiometric |
< |
< 10 - |
04— ——
-10 . .
so4 | 2000rpm |
T 404 R | E70 Well-Mixed ||
&\’ 3 - | Stoichiometric
=301 /i \ N
oY | 0 NN
& 209 W N
< 1 - L e e
01— ——
-10 — T

AHRR [J/I°CA]

w B O
o O O

-30 -20 -10 O

10 20 30 40 50 60
Crank Angle [°CA]

7777777777777777777777

Pb===d==7 et mmmtimm == === == Sy

2000 rpm ||
,,,,,,, Well-Mixed |

,,,,,,,,,,

-10 0 10 20 30 40 50 60 70 80 90 100 110

Burn Point [%]
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-30 -20 -10 O
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(€]
]

77777777

777777777 2000 rpm ||
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| I |
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A Collaborations / Coordination

r -« YI»ro

® General Motors.
— Hardware, discussion partner of results, and for development of diagnostics.

/ ® D.L. Reuss (formerly at GM, now at UM).
— Development and interpretation of high-speed PIV and PLIF.

® 15 Industry partners in the Advanced Engine Combustion MOU.
— Biannual meetings with 10 OEMs and 5 energy companies.

e | LNL (W. Pitz and M. Mehl).

— Prediction of flame robustness for engine-conditions.
— Development of chemical-kinetics mechanisms for =——

~
o

(o))
o
!

N
2

)
o
;:\ L ___
2

e

Laminar Flame Speed [cm/s]

: : 404 — “E85 Mods U V. VA —

gasoline-ethanol mixtures. Gasoline Model | i
3014 —&—E85 Exp. B S

Q Gasoline‘ Exp. | 3

e USC-Los Angeles (Prof. Egolfopoulos) (not VT). 20 —

0.6 0.8 1 1.2 1.4 1.6
— Flame speed and extinction measurements FuellAir-Equivalence Ratio [4]

for gasoline/ethanol blends, and modeling. ————E85 Exporiment |

® USC-Los Angeles (Prof. Gundersen) (not VT).
— Corona Ignition.

T=393K
P=1atm |
[0,]=21% |

Extinction Strain Rate [s'1]

08 1 12 14 18
Fuel/Air-Equivalence Ratio [#]
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2\ Collaborations (2)

| Sandia Spray Combustion (L. Pickett) Ethanol
(scaled)

I ® Fuel effects on multi-hole sprays.

iso-Om/\

e Rayleigh-based measurement of

fuel vapor for iso-octane.
— Schlieren measurements indicate
that air entrainment is very
similar for ethanol.

* Rescale based on A/F,, to estimate

differences in internal ¢.
— Iso-octane: up to ¢ =3.5 at 20mm from injector. — Ethanol: up to ¢ =2.

0O 05 1.0 1.5

Project Accomplishments Cont.

* “Head Ignition” often provides stable operation with

closely coupled injection and combustion.
— Enables late SOI to drastically lower NO, emissions.

—

O
oo
1
O

Exhaust Smoke [FSN]
o o
~ o))

&
N
1

e Typically, head ignition cannot be used for gasoline.
— Spark needs to be retarded to allow rich regions 0 4+
. d d «“ d 1), -10 -8 6 4 -2 \0/ 2 4 6 8 10
to mix out and avol soot disaster". Delay 'Liquid Arrival at Spark Gap' to 'Spark' [°CA]
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N Future Work FY 2013 - FY 2014

- @ Continue PIV measurements of in-cylinder flows across speed ranges.
— Examine relative strength of flow field and fuel jets.
— Stratified operation with head and tail ignition.

e Study in detail interaction between flow field, spark plasma, and fuel jets.
— Understand cyclic variability of stratified combustion for low-NO, operation.

e Continue study effects of fuel blend (EO to E100) on stratified operation.
— Ignition stability, soot and NO, exhaust emissions.

® Examine fundamental effects of charge temperature on stratified
low-NO, / soot operation with E85 and gasoline.

e Continue the development of the fuel-PLIF technique.
— Apply PLIF to measure ¢ —fields for better understanding of fuel/air-mixing.

e Examine fuel-vaporization effects on thermal efficiency.
— Boosted operation and high ethanol content.

® Continue using CHEMKIN to investigate flame-extinction fundamentals.
— Provide better understanding of in-cylinder turbulence on flame quenching.

e Use FORTE CFD-code to study fuel effects on fuel-jet vaporization and mixing.

e Start examining the use of advanced ignition for lean/dilute combustion.
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2N Summary

® This project is contributing to the science-base for the impact of
alternative fuel blends on advanced S| engine combustion.

e Stable stratified operation was demonstrated to loads below idle.
— Fuel economy improvement of 30% to 60% relative throttled stoichiometric operation.

® Near-TDC fuel injection of E85 using “head-ignition” of fuel jets can enable
very low exhaust NO and soot.

® Spectroscopic measurements indicate that early E85 flames are exclusively rich.
— Consistent with measurements of flame-extinction rates of same E85 fuel.

e \NVith similar heat-release, NO emissions are much lower for E85 than for gasoline.

® PV measurements show that E85’s short delay from injection to combustion and

more injected fuel together lead to higher turbulence level during burn-out.
— Should contribute to limit thermal NO formation through mixing with cooler unused air.

e Well-mixed and stratified operation respond very differently to changes of rpm.
e \Well-mixed HRR in kW scales directly with engine speed via increased turbulence.
® On average, stratified HRR in kW remains invariant to increased engine speed.

® Stronger intake and compression flows at higher rpm lead to increased variability
of stratified combustion.
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