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Fluid mechanics and mixing processes are critical
aspects of all reciprocating engine technologies

Sl engines: Breathing efficiency, tumble generation and breakdown,
turbulent flame kernel initiation and subsequent propa-
gation

DISI engines: + spray/flow interactions, mixture formation processes

Diesel engines: + swirl effects, ignition, late-cycle mixing processes for

soot and CO burnout

HCCI/CAl engines: + mixture stratification, thermal stratification

The subtle interaction of air motion and fuel spray...

...Is the cornerstone of development of future ultra-low emissions and
high performance diesel engines

Ricardo Consulting Engineers, 1994




Characterization of the flow by global parameters
is insufficient
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« @Gross differences in soot emissions are seen at the same swirl ratio

- Trends observed with changing swirl ratio are opposite

These differences must be associated with differences in the details of the

mean flow structure and associated turbulence generation mechanisms
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- Conservation of angular momentum

- Rotational kinetic energy

- Mean flow examples
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- Squish-swirl interaction
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 Turbulence
- Identifying the sources
- Close-up of swirl effects

- Examples



Understanding the mean momentum equations is
key to understanding the flow development

Radial-momentum
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Understanding the mean momentum equations is
key to understanding the flow development

Tangential-momentum
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but we can simplify greatly by writing in terms of (r0, ):
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neglecting turbulent diffusion and tangential pressure gradients,

Angular momentum is conserved
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The squish/swirl interaction

The dominant factor affecting the in-

Sauish Displaced Fiuid ward penetration of a fluid element is
U ~ —% centrifugal force...
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Squish-swirl interaction also changes the rotational
kinetic energy of the flow

Compressing the flow into the bowl and
conserving angular momentum

Qpow _ Icyl _ B2

~~

~ 2
Qcyl Ipowi D

The kinetic energy ratio is

2
KL pow _ Lpowi $2bowl B2
B 2 2
K'E'Cyl [cyl Qcyl D

For typical conservation efficiencies of angular momentum (= 60%) and
B/D = 2, a 40-50% increase in rotational kinetic energy is expected.

- The source of this increased energy is work done by the piston.



Flow structures formed by a similar “spray-swir

III

interaction can enhance mixing rates during combustion
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Numerical simulations
indicate that the increased

heat release due to beneficial

flow structures formed with
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These structures are also formed from the displacement
of high angular momentum (Q) fluid

Increasing R, —>
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-« High swirl limits inward penetration of high-Q fluid, and promotes its rapid return
towards larger radii: Bowl vortex is smaller and lower in the bowl

- Higher Pinj promotes inward and upward penetration of high-Q fluid:
Bowl vortex is larger and higher in the bowl

Flow structures are under the designer's control via Rs, Pinj, bowl geometry and
spray targeting — Speed and load effects follow inductively



Displacement of angular momentum can lead to an
increase in the bulk rotational kinetic energy

momentum fluid to the bowl periphery,
high momentum fluid is displaced inward

l Fuel injection transports entrained low

An idealized 2-zone analysis, conserving
total angular momentum, suggests that
the increase in rotational kinetic energy
may be significant

-
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The source of this additional rotational

energy is the kinetic energy of the fuel ° 04 02 03 04 05
Mass fraction displaced, f
spray

Kinetic energy of the fuel spray can be stored in the bulk
rotational motion for later release




These structures form an effective mixing system

CO Mass Fraction

CO Mass Fraction
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« Counter-rotating vortices transport
unburned fuel and fresh air to a common
interface
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These vortices also generate high levels of
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+ Latein the cycle, these
structures transport
remaining unburned fuel
(CO, soot) into the squish
volume... Careful!




These structures can inhibit mixing when swirl is
excessive

Pinj = 800 bar, [05] =10%

N

Very high CO emissions are
observed at high swirl ratio
(similar to MK system swirl)
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Detrimental flow structures can also form in the

squish volume
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Fluid exiting the bowl can trigger formation of a
toroidal vortex above the bowl lip

The vortex is stable and long-lived

It also forms when no heat release occurs
(motored operation) but its formation is delayed

It impedes mixing in at

least two possible ways:

- It forms a barrier that
prevents mixing of
fluid exiting the bowl
with fluid in the
squish volume

- It may trap
soot/partially-burned
fuel within the vortex

%
Conventional combustion
20% EGR, 2000 rpm, 5 bar gIMEP

POF LIF 33°

Low-temperature combustion
56% EGR, 1200 rpm, 4 bar gIMEP



Our understanding of engine turbulence is largely

empirical
Pancake: Open cylindrical bowl:
No swirl
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Modeling studies
often predict a
local maximum
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The angular momentum distribution can also

profoundly impact the turbulence field

Radial Equilibrium:

e _ (U
or v

ros Figure adapted from:
Bradshaw, P. AGARDograph
: 169, AD-768316 (1973)

Stable if: <;U9>
- olU
""""""""" j><U9>+ <a:>dr
Avg. velocity of 5(U,) e <0

surrounding fluid: <U9>+

or dr

A swirling flow characterized by a negative mean radial gradient in
angular momentum is inherently unstable

Any perturbation of a fluid element will be amplified




Negative mean radial gradients of angular momentum
are not just an academic curiosity

- At low swirl ratios, measured
turbulence energy increases
by an order of magnitude as
the negative momentum
gradient region is approached
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With higher swirl, we measure
the negative momentum
gradient directly—along with
increased production &
turbulence energy
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RANS equations describing the production® of k can

help us understand turbulence generation by swirl
Dk

Production by — u.u. <S > —& + DlﬁMSiOl’l
anisotropic stresses Dt < l ]> Y Production by

l isotropic stresses
|

_(<”f’“3>_§k5vj (Sy) =24 (v-(U)

Vertical, diametral plane |
“squish” generated turbulence

1 0p
V- (U)x ———
Additional terms 0z Or 1 oV 1 ap%
exist that are ~ ~
not considered V ot P% Ot
here — Horizontal plane
“swirl” generated turbulence :qndependent of
ow structure
(100(U,) 2(U,) 2
—<uru9> — - —Ek(V-<U>)
r  or r

Dominant shear related

production term in _§k£a<Ur> +l a<U9> n <Ur> n a<Uz>J

swirl-supported diesels
12 r2 12
(u7) )  {w?)
*The redistributive terms associated with convection of the normal

: i : . Often determines normal stress anisotropy
stresses in a curvilinear coordinate system are included here




A closer examination of the swirl related production

—<ufu5>[1@(r<ve>) 2<U9>j . For positive

8@@]9
— 5 and (U,), the two terms are of

opposite sign. If (uu;)<0, then (uy)
- can be expected to dominate

12
<”r > - For solid-body flow ((U,) « ), the production is zero

Swirl generally tends to redistribute energy

a(’” <U6>)

T Largestu” = . \When <0, both terms are sources of turbu-
near-10° | . ;o
gy > ence, provided (u/uy)>0 .

For an axially-uniform, axisymmetric
flow on circular streamlines:

(uluy ) oc _<u,z>lw+<%2>z<ye>

"Iy Or

(Assumes shear stress is proportional to its production)

50 -40 -30 -20 -10 O 10 20 30 40 50 s
Crank Angle

Both terms can be understood
in terms of the same momen-
tum conservation principles




Direct measurements of turbulence production confirm

these ideas
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Radial gradients in (U, ) dominate
production (and anisotropy) near TDC

Squish generated turbulence is
negligible

Axial gradients in (U, ) contribute
early in the compression stoke and
during expansion

Over the course of the compression
stroke, bulk compression dominates
—especially lower in the bowl

During expansion, bulk compression
is negative—and typically dominates



We can take advantage of production by compression to
amplify turbulence‘injected’ into the cylinder

For homogeneous turbulence: 3.5

dk 2 1dV u'” o
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dt 3 V dt !
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To explore the influence of o
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turbulence generated by the injection Tt
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Closure

Many aspects of in-cylinder flows can be readily understood through
a relatively simple consideration of the governing equations

These flows are not necessarily subtle. Several “textbook” flow struc-
tures (toroidal vortices, negative radial angular momentum gradients)
can be identified.

In swirling flows, the distribution (and re-distribution) of angular mo-
mentum plays a dominant role in determining both the mean flow
evolution and the shear generated turbulence.

Turbulence generation by bulk compression is a dominant, and often
overlooked source (and sink) of in-cylinder turbulence.



