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question is: what creates variability in contact quality?

For nanoscale electronic, photovoltaic and sensing devices, the contact properties
dominate the device performance. To realize the promise of nanotechnology, good
engineering-level understanding of the contact physics is required. The approach is e
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MOtlvatlon + Uncontrolled resistance at metal contacts causes frequent device failure. From
left to right, as grown ZnO nanowires, nanowire FET device with failure due to Joule heating at the contact
interface, multiple embedded contacts to a single nanowire device, a thermoelectric device, and a high-
efficiency light emitting device. The goal is to develop an understanding of electrical and thermal
transport across contacts to nanostructures to yield improvement in performance and reliability. The
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DeVICES: We determine structure, |-V curves

and temperature maps in ZnO, GaN, and CNT in FET
and mat-like configurations using Raman spectroscopy,
thermal reflectance, and electron microscopy. We are
able to ascertain electrical resistances,
Schottky/Ohmic behavior, thermal conductivity and
thermal contact resistance. Also, we are measuring the
transient electron-phonon interaction processes.
Taken together, these data inform device simulations
and suggest the most important mechanisms
controlling transport at the nanostructure-contact
interface.

Contacts to Nanostructures
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to use cutting-edge coupled experiments and theory, to determine what is required

for contact modeling and which physical factors create good contacts.

We model the properties of carbon nanotube (CNT) field-effect transistors (FETs) using a
Green'’s function technique that accounts for CNT-metal hybridization. This allows for a
detailed study of the contact properties of ultra-small CNT FETs. ;
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How do annealing, contact composition and structural
factors determine contact quality?

Post-Annealed Au-CNT contact, showing
the formation of a dislocation in the
metal due to the nanotube "oNT Au'tdar uzs
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: Experiment (Ref. 15, Fig. 1b) In order to fit the experimental
\ 4 Experiment (Ref. 15, Fig. 30) .

® Experiment (Ref. 15, Fig. 4a) contact resistance vs. contact length,

= Experiment (Ref. 15, Fig. 5a)
Simulation, 4 =2.5 meV/
Simulation, 4 = 60 meV

we need a small value for the CNT-
metal coupling strength.

The coupling deduced from highly
symmetrical first principles modeling

is too large, suggesting the real device
interface geometries are substantially
different than idealized models.

The good fit to the
experimental subthreshold data
suggests there is no
contact metal below the CNT
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Phonon conductivity is correlated with structure and
interface strength, much like the electronic conductivity.
We investigate the structure-phonon transport relationship
with idealized but realizable interface geometries.
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The presence of an interface can increase the anisotropy in thermal conductivity
significantly beyond that inherent to the constituent materials. The thermal conductivity
of the L1, AB alloy varies by a factor of two depending on orientation. The A to AB alloy
interfaces (top), conductance varies by a factor of five depending on orientation,
whereas for the B to AB alloy interfaces follows the trends in AB alloy thermal
conductivity. We believe this is due to differing mismatch in the phonon DOS between
the pure and the layered regions

Kapitza conductance h (10" W/m®K)
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While rough interfaces
generally give rise to
increased thermal resistance,
coherent structured interfaces
and other “bridging” material
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can lower thermal resistance
at the contact.

inverse oftoral length n xdiection, 1. (1:4)

Next Steps: Given the understanding
of the physics determining contact
quality, the next step is to develop
methods to control these factors during
device fabrication. Process development
and modeling can be based on optimizing
the physical parameters we identify to
increase performance and reliability.




