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Outline

• Security games, Stackelberg equilibria, and 
optimization

• Adversarial patrolling and stochastic games

• Computing Stackelberg equilibria in stochastic 
games

• Special cases for APGs

• Experiments in APGs

• Extensions and variations



Stackelberg Equilibria and Security Games



Game Theoretic Model of Security
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defender

protects a randomly 
chosen target
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Game Theoretic Model of Security

knows the 
probability 
each target 
is protected
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Security Games and Stackelberg Equilibria

• A security game is:

– T: a set of targets

– RD/RA: defender/attacker values for targets

– Defender: chooses a strategy p in which each 
target i has the probability pi of being covered

• Attacker: knows p; chooses a target to attack 
which maximizes expected utility RA,i (1 – pi )

• Stackelberg equilibrium: defender chooses p that 
maximizes its utility, accounting for attacker’s 
best response to p



MILP and Stackelberg Equilibria

• Much previous work has focused on fast linear / 
integer programming techniques/formulations for 
such problems

• Deployed in real applications:

– LAX canine patrol

– federal air marshall scheduling

– US coast guard



Adversarial Patrolling Games



Motivation

• Suppose the defender follows a patrolling 
schedule 

– instead of choosing a random target to cover, 
defender chooses a random sequence of targets to 
cover

• If an attacker observes defender’s current 
location, it can reveal information about where 
the defender will be next
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APG Formally (2 players)

• APG = {T,q,u,,G}
– T: set of targets
– u: vector of attacker values (assume zero-sum)
� : discount factor
– G = (T,E) a graph, T = nodes, E = edges; defender can only move 

from i to j if (i,j) is in E (Aij = 1 iff edge from i to j)

• Defender always starts at target 0
�: defender policy (choose next target as function of history)
• Attacker observes current location i of defender, and knows 
• a: attacker policy (choose whether to wait/attack; if attack, 

choose which target to attack; decisions a function of 
observed defender position)
– if attacker chooses to attack a target, attack happens 

simultaneously with the next defender move



Goal: Compute Stackelberg Equilibrium

• Stackelberg equilibrium

– For every defender policy, there is an optimal 
attacker policy (“best response”)

– Goal: compute optimal defender policy, accounting 
for attacker’s best response behavior

– We allow defender’s policies to be stochastic (can 
randomly move between targets)



Stepping Back:
Stackelberg Equilibria in Stochastic Games



APGs and Stochastic Stackelberg Games

• APGs can be viewed as a special case of stochastic Stackelberg
games

• Stochastic Stackelberg game (SSG), formally:

– 2 players: leader (L; think: defender) and follower (F; think: attacker)

– S : a set of states

– A = {AL x AF} : joint action space of players

– P : S x A -> S : transition function (Pr{s’ | s, al, af))

– RL/RA : S x A -> R : payoff functions 

– Infinite horizon: game goes on “forever”

– discounted: payoffs discounted by  at each step

– ht = {s(1)al(1)af(1)…s(t)al(t)af(t)} : history at time t (of states and 
decisions up till now)

– H : set of all possible histories



Policies in SSGs

� : H -> AL : leader’s policy, given an (arbitrary) history, 
return an action (or, in general, a probability distribution 
over actions in AL)

• Same for the follower

• If the game is infinite horizon, can’t even represent these!

• Hope: perhaps we can just focus on Markov stationary 
policies?

– stationary: doesn’t depend on time

– Markov: depends only on previous state

– Can be finitely represented and computed, but is it 
always optimal?



Restriction to Markov stationary policies

• Theorem [Vorobeychik & Singh, 2012]: There 
always exists a Stackelberg equilibrium in Markov 
stationary policies



Implication: can compute optimal policy in 
finite time

• We worked out a mixed-integer non-linear 
programming formulation

• Problem: non-convex (constraints), with integer 
variables; quite impractical!

• Idea: discretize probabilities, and use McCormick 
inequalities to linearize the non-linear 
constraints; obtain a MILP approximation

• Question: what can we say about approximation 
quality based on the fineness of discretization?

– subtle: leader’s utility function is discontinuous b/c 
of follower’s best responses



Impact of discretization

• Theorem [Vorobeychik & Singh, 2012]: Can 
bound the impact of discretization in general 
finite-action Stackelberg games.

• Corollary: since SSGs always have a Stackelberg
equilibrium in stationary strategies, can restrict 
attention to finite action sets, and apply the above 
Theorem.



The value of discretization

MILP approximation (using CPLEX) much faster, 
and better solutions than MINLP (using KNITRO + restarts)



Computing a Stackelberg Equilibrium in 
APGs

• APGs are zero-sum, so we can actually get rid of 
integer variables

• What remains is a non-linear non-convex 
program



Application: APGs

subject to

• Zero-sum game: defender wants to minimize 
attacker values defender tries to make 

constraints bind at the lowest 
possible values

Valid 
probability 
distribution

graph constraint

Compute 
attacker value



APG Extensions

• Can allow one to have multiple defense resources (e.g., patrol 
boats/cars/etc)

• Defender chooses coverage vectors

– for each target, 1 if it is covered, 0 otherwise

• State = coverage vector (observed by attacker)

• Graph constraints imply constraints on moves between coverage 
vectors

– Consider a move from s to s’

– Construct a bipartite graph with links between covered targets 
in s and those in s’ induced by the constraint graph; call this 
graph G

– Theorem: a move from s to s’ is feasible iff G has a perfect 
matching



APG Extensions

• Can also consider settings in which attacks take 
more than one time step to deploy

• State s is now a sequence of defender moves



USCG Illustration



1
1

1

0.75

0.5

0.5

0.5

0.5

0.5base

0



1

1

1

0.75

0.5

0.5

0.5

0.5

0.5base

0

 = 0.5 (impatient attacker)

(return to base from every target with positive probability)
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 = 0.75 (moderately patient attacker)
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Experiments: Adversarial Patrolling on 
Exogenous Graphs



Related Work

• Basilico et al. 2009-2011: math programming 
formulations

– No discounting

– General-sum

– An attack can take more than one time step

– Substantially different formulations from ours



Comparison to Basilico et al.

Basilico et al. clearly suboptimal, even when discount factor = 1!
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Summary

• Model patrolling problem with an intelligent adversary as an 
APG, a special case of Stochastic Stackelberg games 
(SSGs)

• SSGs always have equilibria in Markov stationary policies

• Can solve exactly in finite time, and approximate arbitrarily 
well by discretizing the probabilities

• Discretization yields a MILP which is much faster and yields 
better solutions using state-of-the-art optimizers

• APGs can be solved much faster if they are zero-sum, and 
solutions are much better than state-of-the-art


