

## Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors

Joint work with:

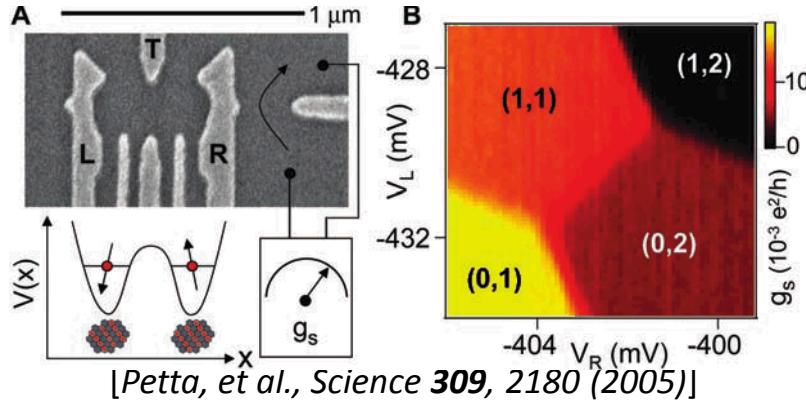
Wayne Witzel, Erik Nielsen, and Malcolm Carroll  
(Sandia National Laboratories)

Toby Jacobson

Sandia National Laboratories

# DQD singlet/triplet (S/T<sub>0</sub>) spin qubits

Inhomogeneous **B** field (e.g. Overhauser field) contributes to spin qubit dephasing  
**Goal:** Design Hamiltonian controls to suppress these errors



Treat field inhomogeneity as a classical Hamiltonian error (slow bath variation during gate time)

exchange energy

component due to B-field inhomogeneity

$$\text{Effective qubit Hamiltonian: } H(\epsilon) = -\frac{1}{2}J(\epsilon)\sigma_z + h_x(\epsilon)\sigma_x$$

*Intuition:* Singlet and triplet states vary spatial distribution with  $\epsilon$ , hence experience different perturbation from environment

## Our results:

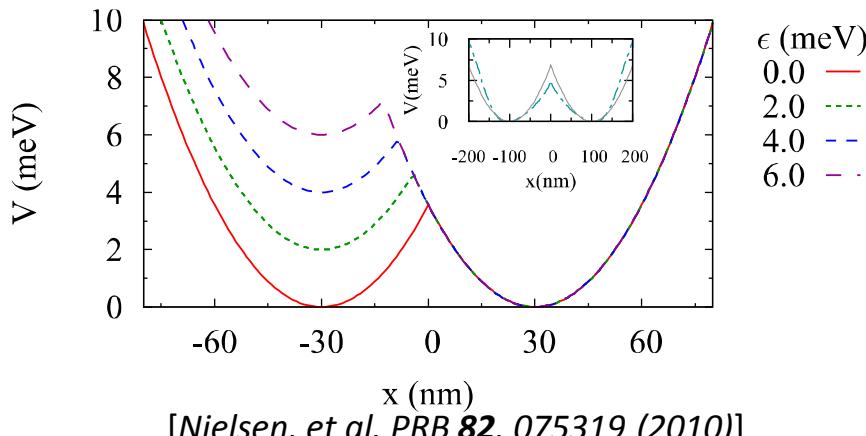
- Control-dependent Hamiltonian errors may have a significant influence on gate fidelity
- In certain operating regimes, this dependence is predictable
- Dynamically-corrected gate (DCG) sequences can be modified straightforwardly to account for these systematic errors, providing improved gate fidelity

# Modeling of the DQD

Computational basis: lowest-energy singlet (S) and unpolarized triplet ( $T_0$ ) states of the unperturbed ( $\Delta B = 0$ ) Hamiltonian

Configuration interaction (CI) basis for wavefunctions, with variationally-defined positions and sizes (Heitler-London or Hund-Mulliken approximations inadequate for accurately describing doubly-occupied regime)

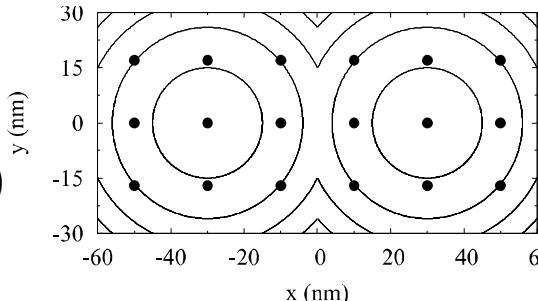
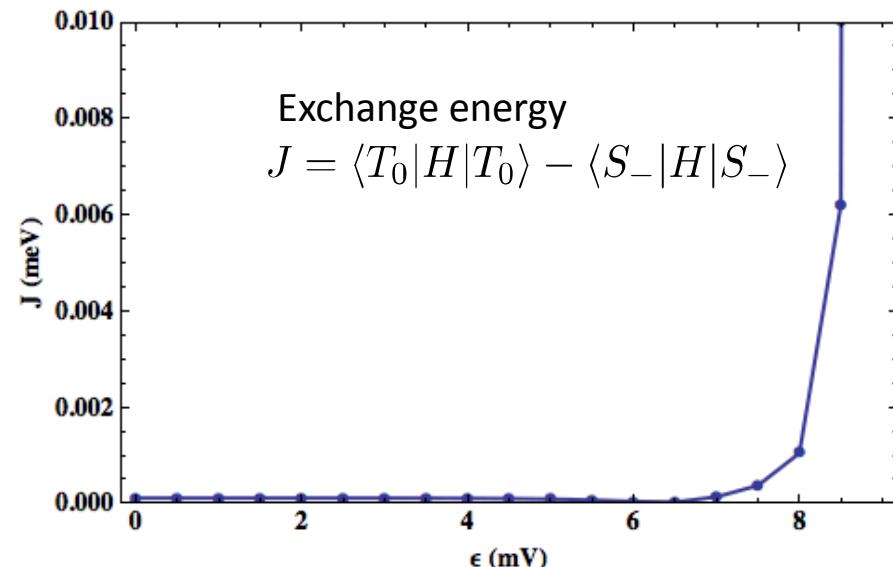
Parabolic confinement potential:



## Approximations:

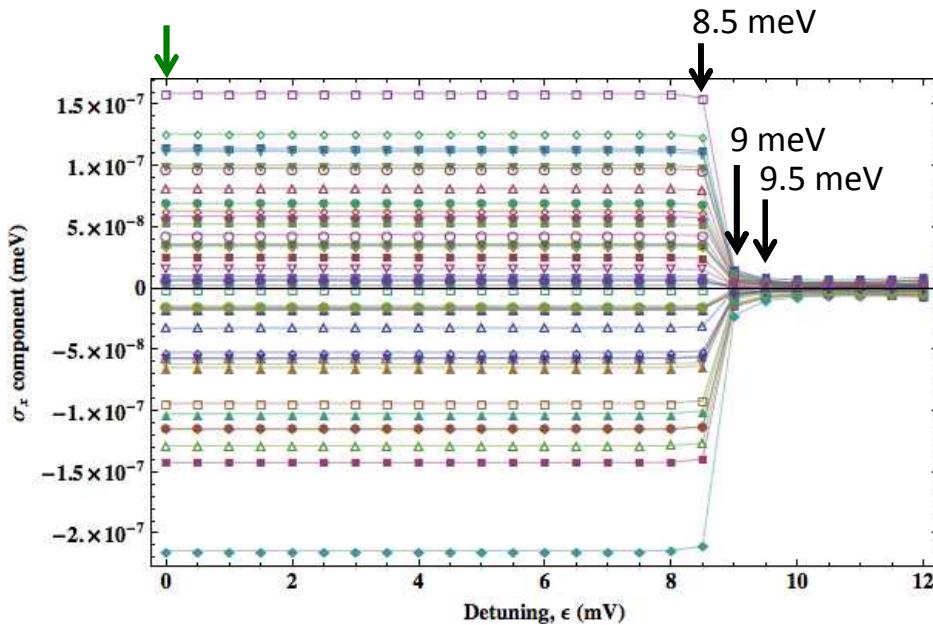
- Neglecting spin-orbit interaction (can contribute to  $\sigma_y$  term) [Stepanenko, et al. PRB **85**, 075416 (2012)]
- Assuming  $\mathbf{B} = B\hat{z}$  and  $\Delta\mathbf{B} = \Delta B\hat{z}$

Representation of positions of Gaussian basis states for CI: (9 states per dot here, but we take 4 in the following)

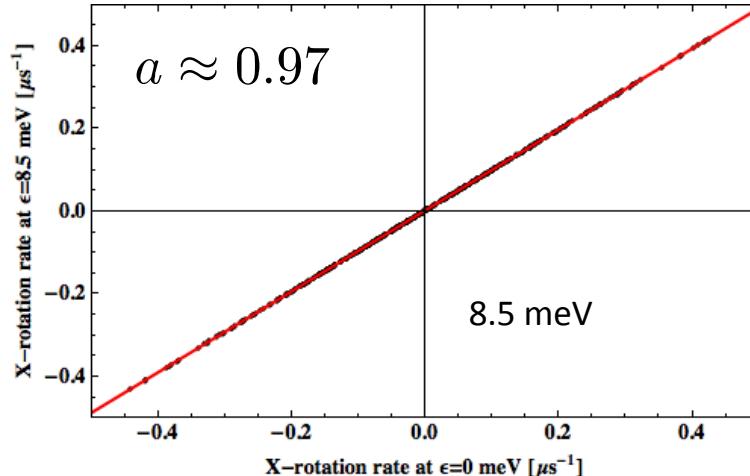
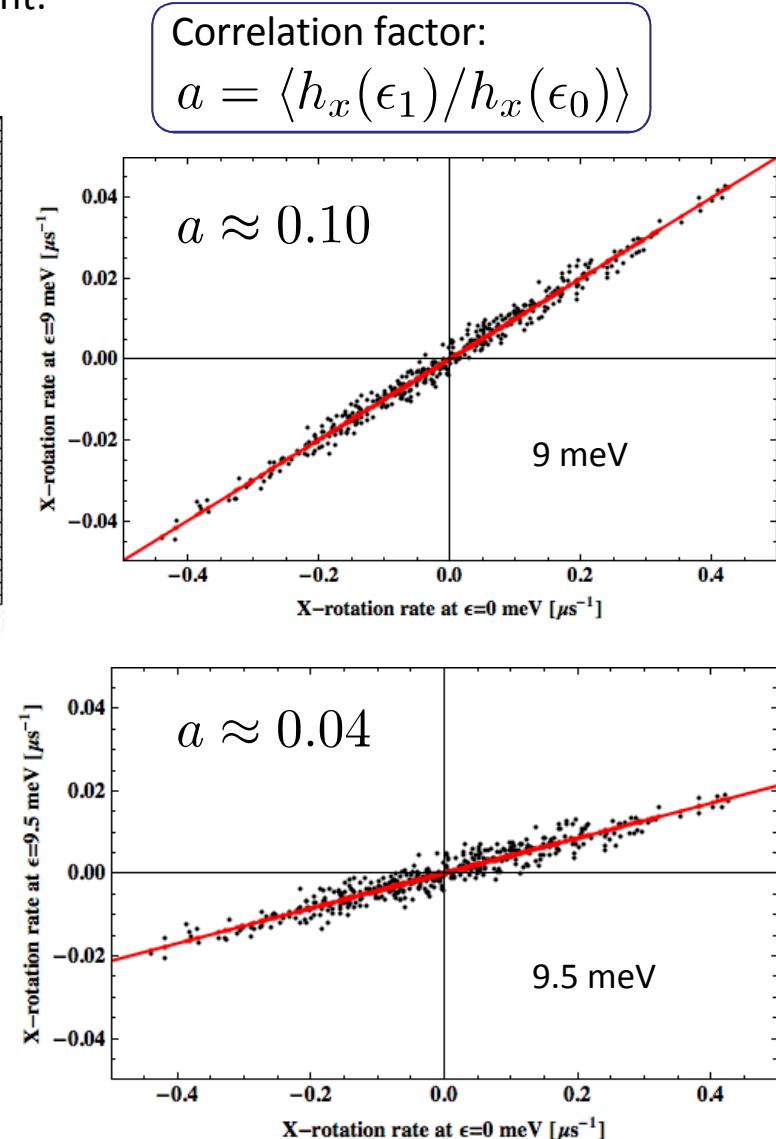


# Detuning-dependent errors

Error in  $\sigma_x$  due to B-field inhomogeneity is commonly assumed to be independent of the applied controls, but variation with controls may be significant:



$h_x(\epsilon)$  correlations:



# DCGs on S/T<sub>0</sub> spin qubits

Dynamically-corrected gates (DCGs) [refs for Kodjasteh & Viola, others]:

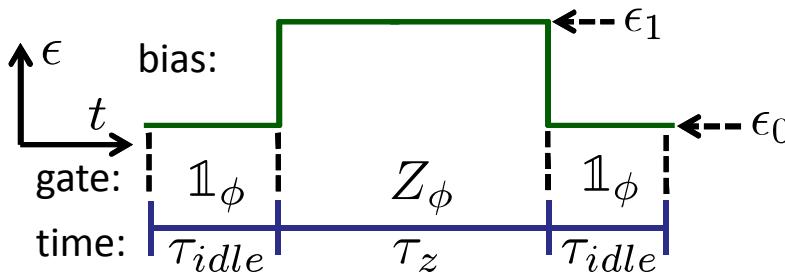
If  $h_x(\epsilon)$  is known, the DCG sequence can be adapted straightforwardly

Want to cancel the first-order error per gate (EPG):  $\Phi_{tot}^{[1]} = \sum_{k=1}^N P_{k-1}^\dagger \Phi_k^{[1]} P_{k-1}$ , where  $P_k \equiv \hat{U}_k \hat{U}_{k-1} \cdots \hat{U}_1 \hat{U}_0$  and

$$\Phi_k^{[1]} = \frac{1}{\hbar} \int_{t_{k-1}}^{t_k} ds \hat{U}^\dagger(s, t_{k-1}) H_{err}(t) \hat{U}(s, t_{k-1})$$

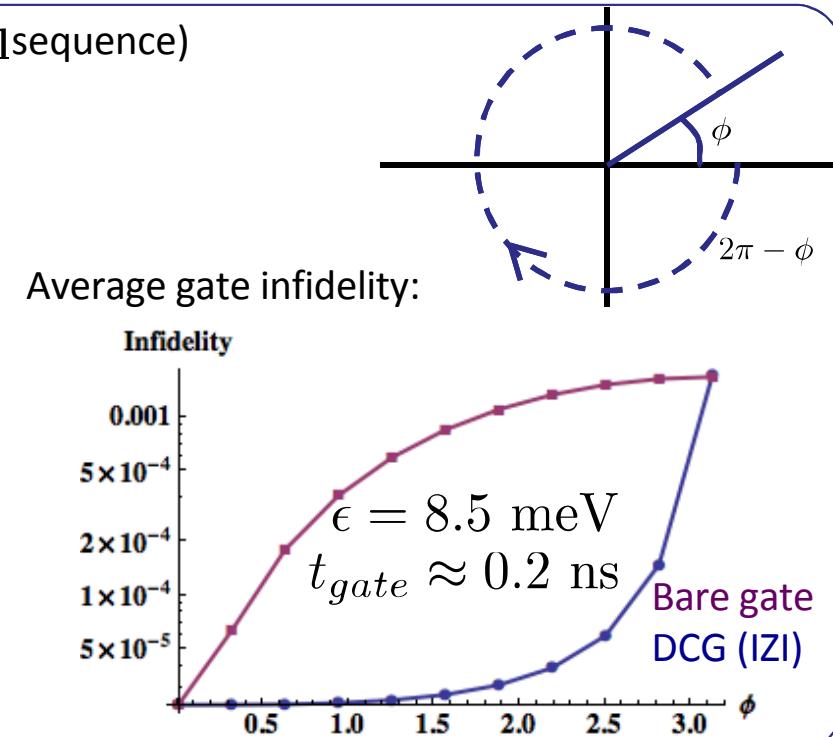
**Idea:** Given  $h_x(\epsilon)$ , adjust operating points and gate times so that “uncompensated”  $U_k$  are implemented

**Example:** Dynamically-corrected  $Z_\phi = e^{-i\sigma_z\phi/2}$  gate ( $\mathbb{1}Z_\phi\mathbb{1}$  sequence)



$$\tau_z = \frac{(2\pi - \phi)\hbar}{J_{op}}$$

$$\tau_{idle} = -\tau_z a \frac{\tan[(2\pi - \phi)/2]}{2\pi - \phi}, \phi \in [0, \pi)$$



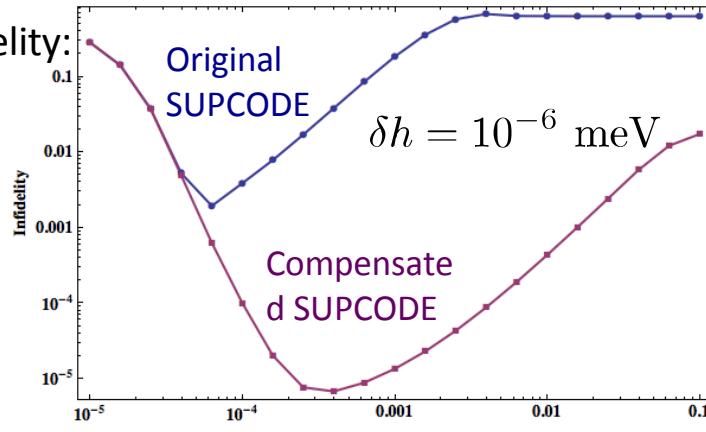
# Compensated DCG

Universal single-qubit gates: Engineer a field inhomogeneity to perform X-gates: e.g. via nearby magnet [Brunner, et al. *PRL* **107**, 146801 (2011)] or dynamic nuclear spin polarization [Foletti, et al. *Nature Phys.* **5**, 903 (2009)]

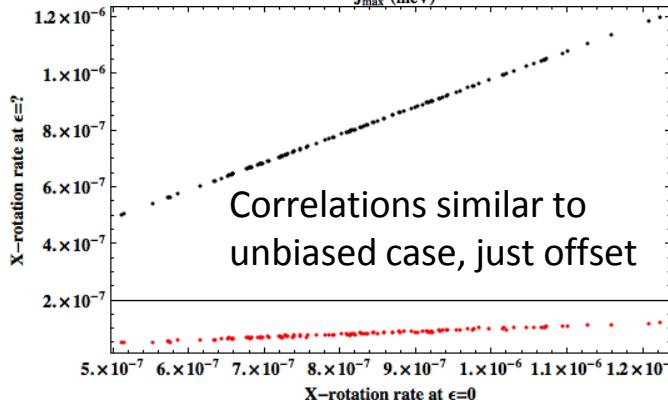
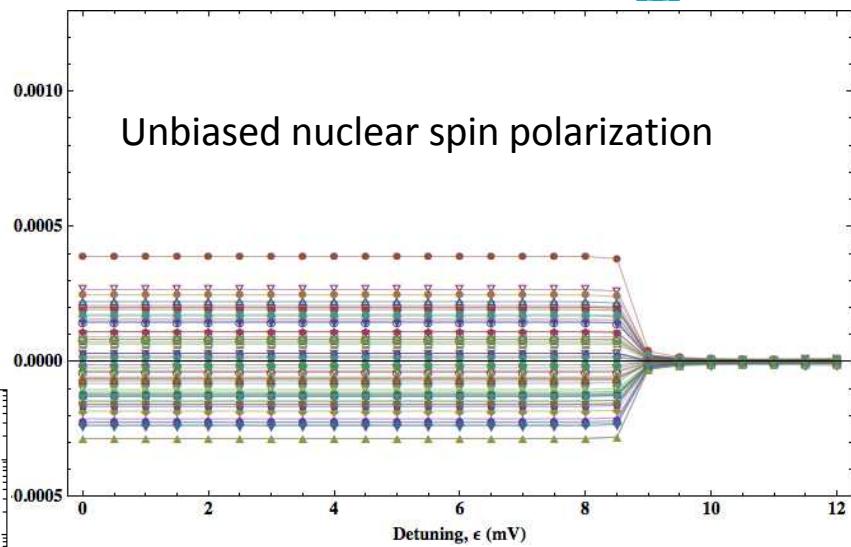
Dynamic nuclear spin polarization: (designed-in nuclear spin polarization inhomogeneity)

SUPCODE sequence [Wang, et al. *Nat. Commun.* **3**, 997 (2012)]

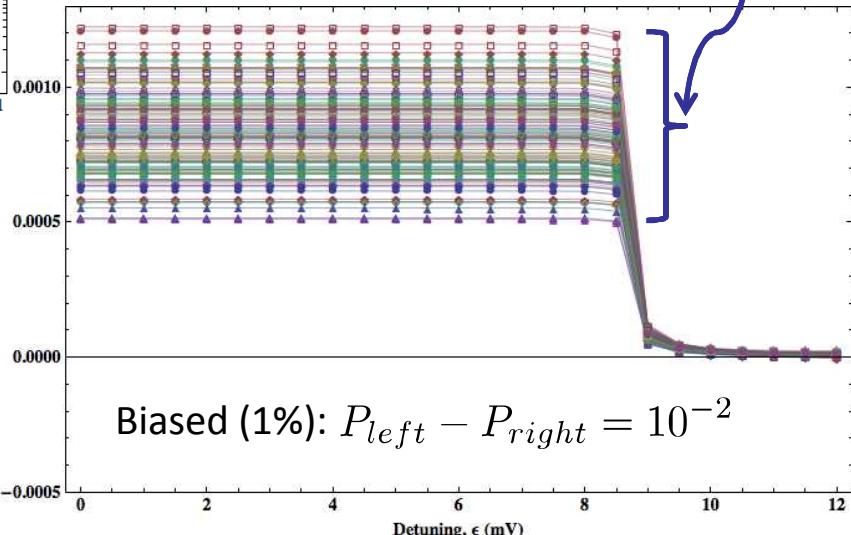
Average gate infidelity:



System parameters:  
 ~ $10^6$  GaAs nuclei in DQD,  
 L=30 nm,  $E_0=8.5$  meV, B=1.5 T  
 Gaussian basis: 16:8:4 (four Gaussians per dot)



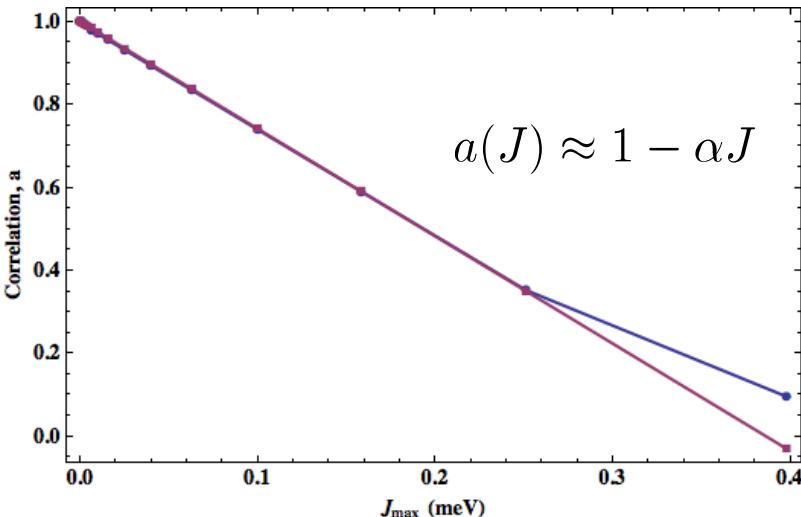
Polarization w/ feedback can narrow spread [Bluhm, et al., *PRL* **105**, 216803 (2010)]



# Conclusions

Observe a linear dependence on exchange:

$$h_x(J) \approx (1 - \alpha J)(h_0 + \delta h)$$



Essentially, need to characterize the exchange  $J(\epsilon)$  and only the single parameter  $\alpha$  to obtain the  $\sigma_x$  component  $h_x(\epsilon)$

## To do:

See if our compensation scheme can be straightforwardly adapted to account for charge noise (errors in  $\epsilon$ ), a la the updated SUPCODE approach of [Kestner, et al. arXiv:1301.0826]

## Conclusions:

Accounting for correlations in errors can lead to a significant improvement in gate fidelity

Improvement in fidelity gained by compensation is most significant when the field inhomogeneity  $\Delta B$  is large. (Especially important in context of dynamic nuclear spin polarization)

See (preceding) talks:  
 C26.00007 [Wang, et al.]  
 and  
 C26.00008 [Kestner, et al.]