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Background

Double quantum dots (DQDs) as qubits
R)

and |T)

— Charge qubit: 1 electron,

— Spin qubit: 2 electrons,

— ? Spin qubit: N electrons, N even, and \T} ? (E.g. N=6)

 Central Question of this talk:

6e  DQD 2e- DQD
N

* 2 e- fill lowest “shell” of dot (single valley assumption)
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Motivation

Why many-electron DQD qubits?

* Charge Impurities & Noise [Barnes et al., PRB 84, 235309 (2011)]
* Easier to realize

* Richer Manipulation?

* More robust to control noise / systematic error?
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6e  small-dot DQD

(representative system)
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» Singlet and unpolarized triplet isolated ground space
* Init & read-out: Regions with order meV splitting
e Manipulation: smooth avoided crossings
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Zoom to avoided crossings
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Comparison: 6e vs. 2e

* Exchange energy oe: hu = 2420mev, B = 287
. . 2e: h_wo = 14.78meV, B = 1.7T (O
(qubit z-rotation) 2 5w aem
iéi 2 electrons O 2
~ of ( 6e has two
on
2 plateaus
.:z 6 electrons
z 2 -
(1 1 (2,4)
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2-electron case 6-electron case

* Charge sensor -
sensitivity to
the dot state
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What about larger dots

(what can go wrong?)

When dot size is larger:

*  Dots could merge together (but easy to keep dots separated)
*  Smaller optimal magnetic fields for tuning J may conflict with B needed to split triplets

*  Orbitals gaps are smaller:

— Shell-filling picture breaks down; becomes a strongly correlated double-dot system
— Intervening levels (e.g. multiple triplets below a singlet) / loss of isolated qubit space

— Nonsinglet (or triplet) ground states?
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Conclusion

6e DQDs are theoretically viable as qubits:

 Initialization, manipulation, and read-out are similar to the
2e case, and are no harder to perform (perhaps easier)

 They are more robust to random charge impurities & charge
noise (they screen better)

* They may offer richer control capability, depending on the
tunable range of the DQD, perhaps resulting in increased
robustness to control noise.

e (Caveat: dots cannot be too big (25-50nm diameter GaAs dots
are borderline but ok; Silicon dots?)
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Method: Configuration Interaction

* Solve many-electron Hamiltonian

H:iﬂ'—l—z ¢ H-—(ﬁ_eA)Q V(R + —5. B
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* We use two independent implementations:

— CI-1: 1e states = Fock Darwin Bl = - e
states at dot center RN
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— Cl-2: 1e states = s-type Gaussians g(,y) = Ne-anl—0)e=a, (-0’
at different centers x e5i (Vor—woy)
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J-Plateaus: tunable with B-field

Parabolic DQD (E0=10meV, L=30nm) with 6 electrons
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e Exchange energy plateaus are tunable by varying the magnetic field.

* Two plateaus could be useful for:
* Separate initialization and rotation plateaus (want different O(magnitudes) )
* Multiple speeds of rotation = more possibilities for dynamical correction
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2-electron Spin DQD qubits

Splitting btwn |S) and |T) = exchange energy J = rate of qubit z-rotation

DQD potential (min of parabolas): Example: EO = 14.78meV, L=20nm, B=1.7T
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