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Organic Materials Employed in Service for Decades in 
Critical High Reliability and Performance Applications

OO--ringsrings Nuclear Power Plant Cable InsulationNuclear Power Plant Cable Insulation CapacitorsCapacitors

Textiles/FibersTextiles/Fibers Glass Fiber Reinforced EpoxiesGlass Fiber Reinforced Epoxies



How do we accelerate time?

None of these are available or approved through None of these are available or approved through SNL suppliersSNL suppliers!!



How do we accelerate time?
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Polymer Aging Polymer Aging -- Approaches/GoalsApproaches/Goals
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Applied Approach for Organic Materials

γ or n

Δ, Time

Radiation Aging

Increase TemperatureIncrease Temperature

Increase HumidityIncrease Humidity

Increase Flux or Dose RateIncrease Flux or Dose Rate



Fundamental Approach for Organic Materials

Mechanistic StudiesMechanistic Studies



NUCLEAR POWER PLANT CABLES
Model Development



Ethylene Propylene Rubber (EPR)

Highly crystalline Highly crystalline polymerpolymer Exhibits Large “Induction Time”Exhibits Large “Induction Time”

Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties – Thermal Aging
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Tensile Properties – Thermal Aging
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Tensile Properties – Thermal Aging
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Tensile Properties – Thermal Aging
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TimeTime--Temperature SuperpositionTemperature Superposition

If same mechanism:If same mechanism:

•• same shape (log graph)same shape (log graph)
•• should be constant acceleration (multiple)should be constant acceleration (multiple)

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?Does mechanism change as a function of temperature?

1.1. Pick a reference temperaturePick a reference temperature
2.2. Multiply the time at each temperature by the constant that gives the best Multiply the time at each temperature by the constant that gives the best 

overlap with the reference temperature dataoverlap with the reference temperature data
3.3. Define that multiple as ‘aDefine that multiple as ‘aTT’ (a’ (aT T = 1 for ref. temp.)= 1 for ref. temp.)
4.4. Find aFind aTT for each temperaturefor each temperature

kk =Ae=Ae--Ea/RTEa/RT ln(k) = ln(A) ln(k) = ln(A) –– Ea/RTEa/RT

Empirical equationEmpirical equationArrhenius equation:Arrhenius equation:

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Trends in Polymer Science, Extrapolation of Accelerated Aging Data Extrapolation of Accelerated Aging Data --Arrhenius or Erroneous? 1997Arrhenius or Erroneous? 1997, , 55, 250, 250--257.257.



Time-Temperature Superposition
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Time-Temperature Superposition
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation

500

400

300

200

100

0

%
E

lo
n

g
a

ti
o

n

10
2

2 3 4 5 6 7 8 9

10
3

2 3 4 5 6 7 8 9

10
4

2 3 4

t, hrs

          T, ºC
 109
 124
 138
 160

SAND2005-7331 K. T. Gillen, R. A. Assink, and R. Bernstein
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Time-Temperature Superposition
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Arrhenius Plot
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Arrhenius Plot
Eaton Dekoron Elastoset EPR Cable InsulationEaton Dekoron Elastoset EPR Cable Insulation
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MODEL VALIDATION
Field Returned Materials



Wear Out Approach
Making Predictions is easy…  Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Ultimate tensile elongation data obtained from previous accelerated aging experiments on Anaconda Durasheath EPR cables.  The data is plotted in 
predicted time at 27 C in years (shown in grey). 
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Wear Out Approach

Ultimate tensile elongation data obtained from previous accelerated aging experiments on Anaconda Durasheath EPR cables.  The data is plotted in 
predicted time at 27 C in years (shown in grey). Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs
of age, Tavg ~ 27 °C, RH ~70%, shown in red).

Prediction employed EA to be 101 kJ/mol

Making Predictions is easy…  Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Wear Out Approach

Ultimate tensile elongation data obtained from previous accelerated aging experiments on Anaconda Durasheath EPR cables.  The data is plotted in 
predicted time at 27 C in years (shown in grey). Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs
of age, Tavg ~ 27 °C, RH ~70%, shown in red) plotted with tensile data obtained from further aging of the HFIR cables.

Prediction employed EA to be 101 kJ/mol

Making Predictions is easy…  Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.



Wear Out Approach
Making Predictions is easy…  Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Wear Out Approach
Making Predictions is easy…  Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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These results can be leveraged to develop condition monitoring techniques!



Other Model Validation Examples



Other Model Validation Examples
Textiles and Fibers!Textiles and Fibers!
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FUNDAMENTAL SCIENCE 
APPROACH

Isotopic Labeling



Outgassing Studies

Isotopically labeled and unlabeled nylon
6.6 were aged in 5 cm3 stainless steel
vessels between 1 and ~450 days at RT
and 138 °C

Cryo-GC/MS

Monitor mass 
spectra for shifts

Identify degradation 
products

Use mass shifts to 
determine 

degradation 
mechanisms

Caveat:  It is critical to employ well characterized polymers in your aging studies

White et al. Poly. Deg. Stab. 97, 1396, 2012
Smith et al. J. Am. Soc. Spectr. 23, 1579, 2012



Quantitative Analysis of CO2 Formation
m/z Assignment Relative MS Intensity (%) Functional Group

44 CO2
+• 17.6 ± 0.5 Chain End

46 CO18O+• 42.3 ± 2.7 Amide Carbonyl

48 C18O18O+• 40.1 ± 3.3 Methylene

Chain End  Unlabeled CO2

Amide Carbonyl  mono-labeled CO2

CO2 Products formed when aged in 18O2

White et al. Poly. Deg. Stab. 97, 1396, 2012
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m/z Assignment Relative MS Intensity (%) Functional Group

44 CO2
+• 85.4 ± 0.2 Methylene

45 13CO2
+• 14.6 ± 0.2 N-Vicinal Methylene

N-Vicinal Methylene  13C labeled CO2

Methylene  Unlabeled CO2

CO2 Products formed when aged in air
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CO2 Products formed when aged in air

m/z Assignment Relative MS Intensity (%) Functional Group

44 CO2
+• 17.6 ± 0.5 Chain End

46 CO18O+• 42.3 ± 2.7 Amide Carbonyl

48 C18O18O+• 40.1 ± 3.3 Methylene

White et al. Poly. Deg. Stab. 97, 1396, 2012

N-Vicinal methylene groups contribute 38% of CO2 formed from the methylene groups
The other four types of methylene groups contribute 16% each to the CO2 formed  from the methylene groups.
The most labile hydrogen in the nylon backbone is therefore in the N-Vicinal methylene group.



Initiation at the N-Vicinal Methylene Group
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Note that the 13C and 18O experiments 
were run separately.  Outcomes are 
shown together in this presentation in 
order to save space. White et al. Poly. Deg. Stab. 97, 1396, 2012



QUESTIONS?
Thank you for your attention!


