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Organic Materials Employed in Service for Decades in ) i,
Critical High Reliability and Performance Applications

Laboratories

Glass Fiber Reinforced Epoxies




How do we accelerate time? ) s,

ALCELERATOR

AGES WINE

N

None of these are available or approved through SNL suppliers!
T




How do we accelerate time? ) s,

A

Temperature

Reaction Coordinate




Polymer Aging - Approaches/Goals @

Macroscopic level
Physical Properties

Tensile Property

Compression Set

Permeation Elongation

Dimensional changes

Flexural Strength

Goals

Molecular Level

Chemical Properties

Mass Spectrometry

* Prediction of physical properties vs. time
* Predict remaining physical properties of field materials

» Develop condition monitoring method
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Applied Approach for Organic Materials LUf
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Fundamental Approach for Organic Materiald®.
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Model Development

NUCLEAR POWER PLANT CABLES




Ethylene Propylene Rubber (EPR) .

Eaton Dekoron Elastoset EPR Cable Insulation
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Tensile Properties — Thermal Aging @E&.

Eaton Dekoron Elgstoset EPR Cable Insulatiorll
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Tensile Properties — Thermal Aging

Eaton Dekoron Elgstoset EPR Cable Insulatiorll
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Tensile Properties — Thermal Aging

Eaton Dekoron Elgstoset EPR Cable Insulatiorll
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Tensile Properties — Thermal Aging @E&.

Eaton Dekoron Elgstoset EPR Cable Insulatiorlm
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Time-Temperature Superposition

Does mechanism change as a function of temperature?

If same mechanism:

» same shape (log graph)
» should be constant acceleration (multiple)

—

Pick a reference temperature

2. Multiply the time at each temperature by the constant that gives the best
overlap with the reference temperature data

Define that multiple as ‘a;’ (a; = 1 for ref. temp.)

Find a; for each temperature

B W

Plot log(at) vs 1/T linear if Arrhenius

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erroneous? 1997, 5, 250-257.

Arrhenius equation: Empirical equation

k =AeEalRT In(k) = In(A) — Ea/RT
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Time-Temperature Superposition @

Eaton Dekoron Ellastoset EPR Cable Insulatlion
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Time-Temperature Superposition @

| Eaton Dekoron Ellastoset EPR Cable Insulatilon
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Time-Temperature Superposition @

Eaton Dekoron Ellastoset EPR Cable Insulatlion
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Arrhenius Plot )

Eaton Dekoron Elastoset ElPR Cable Insulation
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Arrhenius Plot )

Eaton Dekoron Elastoset EPR Cable Insulation
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Thermal-Oxidative Prediction ) .,

Eaton Dekoron Elastoset EPR Cable Insulation
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Field Returned Materials

MODEL VALIDATION




Wear Out Approach h .

Making Predictions is easy... Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Ultimate tensile elongation data obtained from previous accelerated aging experiments on Anaconda Durasheath EPR cables. The data is plotted in
predicted time at 27 C in years (shown in grey).
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Making Predictions is easy... Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Ultimate tensile elongation data obtained from previous accelerated aging experiments on Anaconda Durasheath EPR cables. The data is plotted in
predicted time at 27 C in years (shown in grey). Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs
of age, T,y ~ 27 °C, RH ~70%, shown in red).
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Wear Out Approach ) e
Making Predictions is easy... Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Ultimate tensile elongation data obtained from previous accelerated aging experiments on Anaconda Durasheath EPR cables. The data is plotted in
predicted time at 27 C in years (shown in grey). Ultimate tensile elongation data for Anaconda Densheath EPR cables returned from HFIR at ORNL (~45 yrs
of age, T,,4 ~ 27 °C, RH ~70%, shown in red) plotted with tensile data obtained from further aging of the HFIR cables.



Wear Out Approach

Making Predictions is easy... Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.
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Making Predictions is easy... Comparison of predictions with field returned data provides confidence
in both the predictions and the methodologies employed in our aging programs.

These results can be leveraged to develop condition monitoring techniques!
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Other Model Validation Examples @&
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Other Model Validation Examples &=
Textiles and Fibers!

| | | | |
200 -
(@)] ¢ Field Aged Data
E = = Prediction, 21 °C
=
®
&
o 150- B
e
L
IS}
c SRS ® o0
(O] :0 < " o §° ®
= 100_ M”'-f S —
U) ‘zgo“’o?’ z‘.:‘~.
) ‘0“ ?”’;‘ ....‘.-n
% WS, Tl
CICJ o @ 3 ¢ .'~..
I_ 50_ M ¢ ..~... L
52 -
]
(@)]
)
@
3: O_| | | I i .
0 20 40 60 80 100

Age, years
White G. V., Bernstein, R.B., “FY11 Materials Testing and Analysis” Internal Memo, January 19, 2012



Isotopic Labeling

FUNDAMENTAL SCIENCE
APPROACH



Sandia
ﬂ" National
Laboratories

Outgassing Studies
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Caveat: It is critical to employ well characterized polymers in your aging studies”




Quantitative Analysis of CO, Formation

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6+0.5 Chain End
46  CO"™0" 42.3+2.7 Amide Carbonyl
48 C"o"™0™ 40.1+3.3 Methylene

CO, Products formed when aged in 1802
0 [ -

A C~ic  Chain End > Unlabeled CO,

H I

©_1 0=C=0

MH{CV\AC NWHJ@“ Amide Carbonyl = mono-labeled CO,

o
18 =Cc=0
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White et al. Poly. Deg. Stab. 97, 1396, 2012
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Quantitative Analysis of CO, Formation @&z,

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6 £0.5 Chain End m/z Assignment Relative MS Intensity (%)  Functional Group
46  CO"™0" 423+2.7 Amide Carbonyl 44 Cco,” 854+0.2 Methylene
48 C'o"o™ 40.1+£3.3 Methylene 45 Bco,” 14.6+0.2 N-Vicinal Methylene

CO2 Products formed when aged in air

0="3Cz0
MH{(@V\/\S H\E'CJH\/\F/LC\HQNJf N-Vicinal Methylene - 13C labeled CO,
0="3Ccz0
‘C O
o MH{CWC ﬂSCHWCHQ Jr Methylene - Unlabeled CO,
l_'_l
0O=C=0

White et al. Poly. Deg. Stab. 97, 1396, 2012




Quantitative Analysis of CO, Formation @&z,

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6 £0.5 Chain End m/z Assignment Relative MS Intensity (%)  Functional Group
46  CO"™0" 423+2.7 Amide Carbonyl 44 Cco,” 854+0.2 Methylene
48 C'o"o™ 40.1+£3.3 Methylene 45 Bco,” 14.6+0.2 N-Vicinal Methylene

CO2 Products formed when aged in air

0="3Cz0
MH{(@V\/\S H\E'CJH\/\F/LC\HQNJf N-Vicinal Methylene - 13C labeled CO,
0="3Ccz0
O= C O
MH{CWC ﬂSCHWCHQHJ[ Methylene - Unlabeled CO,
l_'_l
0O=C=0

40% of CO, comes from the methylene groups
15% of all CO, comes from the N-Vicinal methylene groups
25% of all CO, comes from all other methylene groups

White et al. Poly. Deg. Stab. 97, 1396, 2012
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Quantitative Analysis of CO, Formation

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6 £0.5 Chain End m/z Assignment Relative MS Intensity (%)  Functional Group
46 Cco"™0™ 423+2.7 Amide Carbonyl 44 Cco,” 85.4+0.2 Methylene
48 C'o"o™ 40.1+£3.3 Methylene 45 Bco,” 14.6+0.2 N-Vicinal Methylene

CO2 Products formed when aged in air

0:1351:0
@)
MH{CV\/\C H\‘C"CJH\/\/CHQNJP' N-Vicinal Methylene - 13C labeled CO,
@)
0="3C=0

O-= C O
MH{CWC ﬂgCHWCHQ Jr Methylene - Unlabeled CO,

l_'_l
0O=C=0

40% of CO, comes from the methylene groups
15% of all CO, comes from the N-Vicinal methylene groups
25% of all CO, comes from all other methylene groups

N-Vicinal methylene groups contribute 38% of CO, formed from the methylene groups
The other four types of methylene groups contribute 16% each to the CO, formed from the methylene groups.

The most labile hydrogen in the nylon backbone is therefore in the N-Vicinal methylene group.
White et al. Poly. Deg. Stab. 97, 1396, 2012




Initiation at the N-Vicinal Methylene Group 8.
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order to save space. White et al. Poly. Deg. Stab. 97, 1396, 2012



Sandia
rl'l National

Laboratories

Thank you for your attention!

QUESTIONS?




