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Abstract. The convergence of data-intensive and extreme-scale com-
puting behooves an integrated software and data ecosystem for scientific
discovery. Developments in this realm will fuel transformative research
in data-driven interdisciplinary domains. Geocomputation provides com-
puting paradigms in Geographic Information Systems (GIS) for interac-
tive computing of geographic data, processes, models, and maps. Because
GIS is data-driven, the computational scalability of a geocomputation
workflow is directly related to the scale of the GIS data layers, their
resolution and extent, as well as the velocity of the geo-located data
streams to be processed. Geocomputation applications, which have high
user interactivity and low end-to-end latency requirements, will dramati-
cally benefit from the convergence of high-end data analytics (HDA) and
high-performance computing (HPC). In an application, we must identify
and eliminate computational bottlenecks that arise in a geocomputation
workflow. Indeed, poor scalability at any of the workflow components is
detrimental to the entire end-to-end pipeline. Here, we study a large geo-
computation use case in flood inundation mapping that handles multiple
national-scale geospatial datasets and targets low end-to-end latency. We
discuss the benefits and challenges for harnessing both HDA and HPC for
data-intensive geospatial data processing and intensive numerical mod-
eling of geographic processes. We propose an HDA+HPC geocomputa-
tion architecture design that couples HDA (e.g., Spark)-based spatial
data handling and HPC-based parallel data modeling. Key techniques
for coupling HDA and HPC to bridge the two different software stacks
are reviewed and discussed.
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1 Introduction

High-end Data Analytics (HDA) [2] have introduced new infrastructure and
tools for data analytics that are now widely adopted in the science commu-
nity as enabling technologies for rapidly emerging data-intensive science [11].
The convergence of HDA and simulation-oriented high-performance computing
(HPC) presents tremendous opportunities for scientific advancement in comput-
ing applications and workflows by orchestrating simulations, experiments, data,
and learning-based knowledge. However, since HDA and HPC present separate
software ecosystems [2], fusing HDA and HPC, at both the application and in-
frastructure levels, requires the dismantling of the boundaries of computing- and
data-intensive paradigms so that an integrated software and data ecosystem can
be built.

In Geographic Information Systems (GIS) environments [10], geocomputa-
tion [5] provides computing paradigms for interactive computing of geographic
data, processes, models, and maps. Geocomputation is data-centric. The compu-
tational scalability of a geocomputation workflow is directly related to the scale
of the GIS data layers, their resolution and extent, and the velocity of the geo-
located data streams to be processed. Scalable geocomputation solutions have
evolved from desktop computing to distributed computing paradigms that har-
ness service computing, HDA or HPC. Because geocomputation is unique in high
user interactivity and low end-to-end latency requirements, performance will dra-
matically improve with the convergence of HDA and HPC. The application level
challenge, however, is to identify and eliminate computational bottlenecks that
arise along the entire geocomputation workflow. Indeed, poor scalability at any
of the workflow components is detrimental to the entire end-to-end pipeline.
Similar challenges have arisen in scalable database research [6].

Here, we study the convergence of HDA and HPC in geocomputation by
examining a typical large-scale geospatial application—continental flood inun-
dation mapping. We analyze the bottlenecks that arise when scaling the geo-
computation workflow from the regional level to the continental level.

2 A Geocomputation Use Case

The continental flood inundation mapping (CFIM) framework is an HPC frame-
work [18] that provides continental-level hydrologic analysis. At the national
level, the input datasets include the Digital Elevation Model (DEM) produced
by U.S. Geological Survey (USGS) 3DEP (the 3-D Elevation Program), the
NHDPlus hydrography dataset produced by USGS and the U.S. Environmen-
tal Protection Agency (EPA), and real-time water forecasts from the National
Water Model (NWM) at the National Oceanic and Atmospheric Administration
(NOAA). With these data, a hydrologic terrain raster, Height Above Nearest
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Drainage (HAND) (Fig. 1), and HAND-derived flood inundation measures are
computed for 331 river basins in the conterminous U.S. (CONUS) [37]).

Fig. 1. The HAND map at 10m resolution for CONUS, version 0.2.0, produced on
March 01, 2020. Deep blue areas are prone to flood inundation.

The CFIM computation features data-intensive vector and raster operations
for water feature querying, clipping, and reprojection, as well as data- and
computing-intensive hydrologic analysis of terrain pits, flow direction and ac-
cumulation, and stream networks. The entire workflow consists of 20 steps. The
input DEM for CONUS at 10m resolution is a 718GB raster grid of 180 billion
cells. When 1m DEM becomes available, the size of the raster grid will increase
100 fold. The vector input has 2.7 million polygons (watershed boundaries) and
lines (flow lines). A higher resolution version would have 30 million vectors. In
addition, the NWM water forecast data consists of an hourly data stream for the
subsequent 18 hours. The hydrologic analyses are parallelized using MPI [18]. In
addition, in-situ analytics of HAND and flood inundation, such as flood depth
maps, need to be delivered to web browsers and mobile apps. For instance, gen-
erating a HAND-sized map layer involves computing 230k map tiles for 8 zoom
levels or millions of contour vectors.

Currently, the CFIM HPC workflow is deployed on the Condo cluster at
the Compute and Data Environment for Science (CADES) at the Oak Ridge
National Laboratory (ORNL). The entire output at 10m resolution, including
HAND and derived raster and vector products, is about 3.7TB. Each version of
the dataset [19,20] is registered and published on the Scalable Data Infrastruc-
ture for Science (SDIS) [33], housed at the Oak Ridge Leadership Computing
Facility (OLCF). Community access is provided via HTTP download as well as
the Globus bulk transfer service.
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3 Data and Computing Challenges
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Fig. 2. The computing intensity map for the 331 HUCG6 units on CONUS, derived from
the number of data cells that are involved in actual computing. This map guides the
allocation of HPC resources for the parallel computing of all the HUC6 units.

In the CFIM HPC workflow, a two-level parallelization strategy is applied to
systematically scale HAND computation to finer DEM resolutions and flowline
scale. The first level of the parallelization strategy spatially decomposes CONUS
into contiguous hydrologic units that follow the hierarchical Hydrologic Unit
Code (HUC) system. The delineation of the HUC boundary by hydrologists
minimizes interference between neighboring HUC units and creates a batch of
high-throughput computing jobs at each HUC level, as shown in Fig. 2. For each
job, a second-level parallelization via MPI is applied to a series of hydrologic
analysis functions that operates on the entire raster grid of each HUC unit.

The most recent HAND data was computed on the CADES Condo cluster
using RAM disk and burst buffer. On average, computing an HUC6 unit took
half an hour (with a standard deviation of 1,210 seconds). The MPI paralleliza-
tion effectively accelerated the performance of several key hydrologic analysis
functions so that they were no longer bottlenecks. However, new bottlenecks
arose in the serial GIS operations, particularly those that clip DEM and HAND
rasters. These two raster clipping functions required 454 seconds, on average,
with a standard deviation of 407 seconds, which amounted to 25% of the entire
computing time.

This geocomputation scenario presents an interesting but challenging case
for further acceleration. The workflow does not read and write large geospatial
datasets only once, but applies frequent GIS and hydrologic analysis operations
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on them, generating copious intermediate data at runtime. Furthermore, in or-
der to enable first responders in extreme weather events (e.g., hurricanes), the
computing time of HAND and inundation forecast information must be further
reduced. For example, to match the pace of real-time water forecasting, the com-
puting time for inundation forecasts must be reduced from hours to minutes. In
this quest, HPC alone may not be sufficiently effective for two reasons.

1. First, GIS libraries are often built as a geospatial extension to the common
data manipulation, query, and processing capabilities of general database and
data management systems. In the literature, HPC-based GIS development
are individual efforts. A more systematic approach that manages the compli-
cated interconnectedness of the individual components is needed. Given this
base, it is then a daunting task to develop a full-scale reconceptualization of
the entire stack of data handling libraries and GIS extensions using HPC.

2. Second, GIS functions often operate on multiple layers of vector and raster
data with different resolutions and spatial extent. Accordingly, computing
a GIS function requires frequent and dynamic data operations at multiple
levels of data granularity. This requirement is overly taxing on the distributed
data management model of HPC.

Data-intensive computing software infrastructure, such as Spark [36], provide
a desirable solution to the challenges that we have identified, provided that it can
be systematically integrated into an HPC workflow. As a scalable data analytic
software infrastructure, Spark provides a rich set of data handling features with
distributed processing capabilities. Since most of the GIS operations in the CFIM
workflow are commutative and associative, it is possible to rewrite them using
the mapreduce paradigm. With the additional functional programming support
through Spark, the dependencies between the steps in the workflow can be rep-
resented implicitly in the code. For example, at the infrastructure level, Spark
provides distributed data management and associated data parallelism (through
the Resilient Distributed Dataset (RDD) abstraction). Spark jobs are executed
as Directed Acyclic Graphs (DAG) that optimize the execution plan on managed
resources. Accordingly, it is not necessary to consider the task scheduling prob-
lem at the infrastructure level. Furthermore, the lazy execution feature in Spark
allows a more performant workflow execution by reducing the intermediate data
footprints. Spark has been used for vector processing in geocomputation [14,
13,32, 35, 34,4]. Spark connectors to high-dimensional arrays have been devel-
oped [16,30]. Spark has also been utilized for large raster-based deep learning
inference [21].

4 Data-Driven Geocomputation on HDA+HPC

To harness HDA in a geocomputation workflow, we propose a general HDA+HPC
fusion model for geocomputation, shown in Fig. 3, that defines a fusion software
architecture to meet the end-to-end performance requirements in data-intensive
geospatial computing, such as those in CFIM. To effectively integrate HDA and
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Fig. 3. A geocomputation design for CFIM on integrated HDA and HPC.

HPC, an application needs to manage software and data that enables flexible
construction of computing elements in both HPC in a “move-data-to-code” fash-
ion and HDA in which code is packaged and moved to data nodes for computing
(i.e., “move-code-to-data”).

In this data-driven model, hydrology and GIS data are imported into a dis-
tributed data storage system, which are then spatially partitioned using regular
or adaptive 2D domain decomposition mechanism (e.g., adaptive quadtree) into
data blocks (e.g., partitioned RDDs in Spark) that are distributed on multiple
data nodes or a parallel file system. On a parallel file system, the data paral-
lelism is provided by the parallel IO capability of the system. A spatial index,
using the space filling curve, is built to link these partitions. This spatial index
then accelerates the spatial selection of the data blocks that participate in the
actual computing. The geodata streaming module handles data streams such as
the hourly water forecast as well as any data version update by using the spatial
data cube as runtime storage. The cube runs in a smaller sized distributed file
system (e.g., HDFS) or an in-memory database (e.g., Redis) on RAM disk or
burst buffer. The cube also serves the purpose of caching frequently accessed
datasets and maps from community users and applications. The use of the cube
in the online geospatial content mapping and delivery module provides impor-
tant and necessary performance for real-time GIS scenarios such as the CFIM
application.

Storing and indexing large geospatial datasets into data blocks provides ba-
sic computing elements for both HDA and HPC algorithms. Because the data
blocks are loaded and processed on multiple computing nodes, we are able to
execute GIS operations that do not fit into the memory of a single machine.
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Spatial knowledge on distributed data blocks can also be effectively leveraged to
make runtime scheduling decisions that affect resource management and walltime
budget. In the context of Spark, we can use spatial characteristics to efficiently
configure CPU, memory, and storage resources for a given data processing job.

Transforming sequential or HPC-based GIS functions into data-parallel al-
gorithms is key to enabling geocomputation on data-intensive computing plat-
forms. This transformation requires algorithmic innovations for existing GIS
implementations. To scale GIS data processing in CFIM, a set of Spark-based
HDA functions for vector, raster, and vector-raster operations needs to be in-
tegrated. For example, individual functions can be directly incorporated from
open source Spark-based geospatial data processing tools, such as GeoTrellis [14]
and RasterFrames [3]. However, GIS operations that can efficiently implement
the two-level parallelization in a single pass must be developed. In CFIM, it is
possible to develop an efficient clipping operation on the entire CONUS DEM
using the boundary polygons of all the HUC units. These boundary polygons
can be checked against each data block’s spatial extent to determine which ones
intersect with this HUC unit. Multiple clipped raster segments at each data
block can then be returned as a key-value list, where the key is the HUC id.
They can then be grouped at the reshuffling stage into each HUC’s boundary. In
this way, the clipping operation for all HUC units can be computed as a Spark
job. In CFIM, 70% of the operations can be converted to HDA operations. The
chaining of them in the workflow logic is captured in Spark as task DAG. This
composition and lazy execution of the DAG in Spark significantly improves a
geocomputational workflow in two ways. First, the functional programming pat-
tern in Spark provides a way to dynamically package and send the workflow code
to data nodes. Second, the delayed execution of all transformation operations on
the chain eliminates the need for storing intermediate results at each workflow
step. In HPC-based workflow solutions, these intermediate results are usually
written to and read from disk for large datasets.

We must also consider that HDA and its mapreduce programming paradigm
may not be well-suited for iterative processes that involve intensive numerical
operations, such as those in iterative modeling, simulation, and optimization. For
instance, the pit filling algorithm in CFIM operates on a large elevation raster
by flooding the entire terrain first and then iteratively letting water recede until
all the pits are filled. Such MPI parallelization does not need to be converted to
an HDA function unless a data-driven parallel algorithm is more efficient.

Note that the two-level parallelization strategy employed in the CFIM HPC
workflow is still effective in HDA+HPC. For an operation to be applied to all
of the HUC units, it can simply be invoked as an independent Spark job. Each
job’s DAG can then be executed in parallel, managed by Spark. With sufficient
resource allocation, the asynchronous actions in Spark with the FAIR scheduler
setting can be leveraged to process multiple HUC units simultaneously.

At the second level of parallelization where we run the workflow on an HUC
unit, we must determine how to invoke an HPC step in the Spark context. In
the literature, we evaluate three Spark—MPI connector solutions: Alchemist [8],
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Table 1. Comparison of three Spark—MPI connectors.

Alchemist Spark+MPI Spark-MPI
MPI coupling Spark workers contact | Spark code runs Dynamic PMI or
the Alchemist server, | mpiexec as a separate | MCA OpenRTE
which launches MPI process launch in Spark
Spark to MPI TCP/IP socket on the | Command line mpidpy
connection Alchemist server invocation in Python

Data exchange Matrix RDD to/from | Node-based HDFS Python Pickle for
the Elemental format | partitions on RAM objects; single-
disk or burst buffer segment buffer for
contiguous arrays

Data transfer TCP/IP between Spark | Distributed file IO Direct memory
protocols nodes and Alchemist access/copy with
nodes mpidpy

Spark+MPI [1] (also known as Spark MPI Adapter), and Spark-MPI [23, 24].
There are two basic requirements to interoperate the two separate software stacks
of Spark and MPI. First, we need to launch an MPI executable in the Spark
JVM. Second, we must define a message and data exchange protocol between
them. Table 1 compares the working mechanisms of these solutions. Alchemist
is a broker solution that spawns a set of Alchemist server and worker processes
to bridge the communication and data exchange between Spark and MPI. Since
it uses a matrix format as a data exchange format between Spark’s RDD and
MPT’s data structure, serializing geospatial raster data in Alchemist is desirable.
The data exchange process in Spark—-MPI can be efficient here since there is
no memory copy when contiguous arrays (such as a raster) are passed from
Spark to MPI through mpidpy. However, Spark—MPI leverages dynamic process
management features in specific MPI implementations. Portability is a potential
issue. Spark+MPI uses a file system as a data exchange media, which poses
limitations on the IO cost for frequent data exchange.

In general, the proposed geocomputation design captures three aspects of
HDA and HPC integration and interoperability. First, the aforementioned Spark—
MPI connection is an example of how to launch HPC code in HDA, which is
important for compute-intensive functions. Horovod in Spark [12] is another
example of machine learning computation using MPI within an HDA context.
Second, HDA empowers data gateway functionalities that face end users. In
geocomputation, HDA may accelerate geovisualization, spatial analytics, and
spatial data and map query, but the computing power on an online gateway
may be limited. When large-scale analytics, optimization, and simulation are
involved, middleware solutions are needed to launch HDA on HPC. For Spark,
Spark connectors are needed to conduct in-situ processing. This can be done
in two ways. First, a middleware (e.g., DASK) with application programming
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interface (APT) sends a Spark application to HPC batch schedulers, which then
instantiate a dynamic Spark cluster that application drivers connect to. Results
are sent back to the gateway using the middleware. Alternatively, a Spark con-
nector can be built in an in-situ service such as ADIOS2 [15,17]). This connector
is responsible for connecting a Spark application on gateway to a Spark cluster
in HPC and handling the data transfer between them.

At the infrastructure level, the design is based on the assumption that an
HPC environment allows the sharing of the data repository between the gateway
cloud instance and the backend HPC resources. Otherwise, data transfer cost
must be considered. A hybrid infrastructure that supports data center and HPC
operations would be desirable for our geocomputation use case.

5 Preliminary Results

GIS operations create heterogeneous computing and data load as a result of
graphic and geometric calculations between shapes and geospatial data contained
in shapes. As a GIS operation is transformed into data-parallel implementation,
it is essential to understand the associated computational performance vari-
ants in order to systematically develop algorithmic strategies for data-parallel
geocomputation. We conducted computational experiments on a representative
vector-raster operation to measure the computational scalability and load bal-
ance of a Spark cluster for handling large raster data.

Clipping or subsetting is a common GIS operation for extracting a subset of
raster within the boundary of a polygon vector. A serial implementation often
creates a rectangle bounding box of the polygon as a clipping window. The poly-
gon is then rasterized to mask the subset of raster cells within the window. The
clipped raster is then output with the same spatial extent as the window. The
data parallelization of this operation consists of three distributed functions. The
tiling() function decomposes an input raster into tiles of the same dimensions
and registers all the tiles as a binary RDD indexed by their bounding box rect-
angle. The clipping() function applies the clipping on an input tile and supports
multi-polygon clipping. The output of the clipping function on a tile is a set of
subsets on the tile, indexed by shape id. The clipped tiles of the same shape id
are then aggregated into a single raster, which is output by the save() function.
In this implementation, the tiling and clipping are map functions that can be
chained for lazy execution. A groupByKey() call in Spark shuffles the clipped
tiles using unique shape identifiers. Data shuffling is memory- and IO-intensive.
The save() function is a parallel 10 operation for saving multiple clipped rasters
simultaneously, each of which is named after their shape id. The clipping algo-
rithm is written using PySpark, the Python library of Spark.

Three test rasters of different sizes, large, medium, and small, are generated
from the national elevation dataset produced by the U.S. Geological Survey, as
shown in Fig. 4. The default tile size is 10812 x 10812. A Spark job takes an
input of all HUC6 unit shapes, whose boundary is colored in black in Fig. 4,
in a test raster and outputs a clipped raster for each of them. A Spark cluster
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Fig. 4. Study areas and raster data characteristics.

of 8 virtual working nodes is configured on a cloud instance with 128 physical
cores (AMD EPYC 7702 2GHz), 1TB memory, and 512GB disk in the private
cloud at the Compute and Data Environment for Science (CADES) at ORNL.
The 1TB memory is split into 512GB RAMDISK as Spark worker disk cache
and 512GB for the 8 Spark worker nodes. On each node, one Spark executor is
launched with 32GB memory. The number of cores per executor is specified as
a runtime parameter. A Jupyter Spark driver connects to the Spark cluster to
run each test job.
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Fig. 5. Computational performance on the three test datasets.
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Fig. 5 shows the computational scalability of the map stage (Fig. ba), in-
cluding the tiling and clipping, and the reduce stage of outputting (Fig. 5b). For
all three datasets, doubling the number of cores used by each executor, from 1
to 4, reduced the stage time. As more cores were used, the data shuffling over-
head outweighs the benefit of additional cores. Weak scaling can also be seen
by looking at the dataset-cores combinations. The (small-8 cores, medium—16
cores, large-32 cores) combination shows a sublinear increase of overhead from
increased data shuffling cost in Spark, which is normal. Since the computing
complexity of the clipping algorithm is linear, this scaling performance is not
surprising. At the same time, Spark did not introduce significant overhead in
data and task management.

12
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Fig. 6. Memory profile and load balance on the large dataset (303 tasks) using 8
executors, each using 32GB memory and 8 cores.

Fig. 6 shows the computational profile of the map stage of a run using 8 ex-
ecutors and 8 cores per executor to clip the 141GB large dataset, which contains
303 data blocks. Fig. 6a depicts the time and memory usage for each of the 303
tasks, ordered by the task time, i.e., the black solid line in the diagram. The clip-
ping time is heterogeneous among tasks, depending on how computing intensive
a shape intersection operation can be (tiles out of a shape’s bounding box is
calculated faster) and how many tile cells are intersected. The memory usage is
also heterogeneous. A time-consuming shape intersection operation may result
in a small number of data to be extracted, which explains why some tasks took
longer but consumed less memory. The four memory profiling measures show the
maximum memory usage, the number of clipped tile cells, the average runtime
memory and disk cache consumption. Fig. 6b, however, shows that the comput-
ing and data load of such heterogeneous geocomputation are evenly distributed
among the eight executors. The explanation has two components. First, RDD
data blocks are evenly sized into tiles and distributed to executors. On aggrega-
tion, the memory and cache usage among executors are thus balanced. Second,
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small variations in time and runtime memory usage, i.e., shuffle_spill_memory,
are caused by task heterogeneity but smoothed across tasks running on an ex-
ecutor.

Table 2. Turnaround clipping time (in seconds) by different clipping methods using
32 processor cores. The buffered method used a 40MB memory buffer.

clipping method|large dataset|medium dataset|small dataset
buffered 2106 726 247
in-memory 729 389 113
spark 282 166 89

The turnaround time of the Spark clipping implementation was also com-
pared with embarrassingly parallel processing of sequential clipping functions
using the open source GDAL [29] library. The existing clipping in CFIM uses a
40MB memory buffer. Another configuration that uses only in-memory process-
ing was also tested. The Spark run used 8 executors with 32GB memory and
4 cores per executor. Each scenario used 32 cores in total. Table 2 shows that
the Spark implementation clearly outperformed both batch processing methods
on each test dataset, mainly due to the RDD data parallelism and the resulting
load balance.

A CONUS clipping test was also conducted to obtain DEMs for each of the
331 HUCG6 units on the entire elevation dataset using 32 cores in total. The
map stage took 7.3 minutes to tile the input DEM and clip HUCG6 shapes, and
generated 2829 data blocks, 170GB in total. The total memory and cache usage
was approximately 475GB. The output stage took 12 minutes to dump output
rasters to a Network File System (NFS) mount due to the limitation of local
disk size. The total turnaround time was 19.3 minutes for all 331 HUCG6 units.
Compared to the average 4 minutes of single HUCG6 clipping in the existing
CFIM workflow, this is a dramatic performance improvement, which can be
further optimized by using parallel file system storage.

In summary, these computational experiments demonstrate a desirable com-
puting and data management performance for the Spark environment. Task man-
agement, DAG execution, RDD management, and memory/disk spilling at run-
time did not introduce obvious overhead and interference with actual computing
and data handling.

6 Concluding Discussion

Science communities have been actively employing both data science and sci-
entific computing for science discovery and innovation. The fusion of HDA and
HPC becomes a prominent need. Here, we have explored the convergence of
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HDA and HPC in a geocomputation scenario and studied the software com-
ponents that require technical innovations to accelerate the end-to-end perfor-
mance. Spark is a scalable data-intensive computing solution that has compre-
hensive virtualization, scheduling, and resource allocation strategies. It provides
an enabling software infrastructure for HDA in geocomputation. Integrating MPI
applications in Spark context is feasible.

Our proposed design is applicable to general geocomputation applications—
transforming an HPC workflow into data-driven HDA+HPC hybrid solutions is
a promising path for resolving the computational bottlenecks introduced by GIS
software limitations and its associated data and computing challenges. Specific
spatial characteristics and geospatial workflow patterns may also be leveraged
for improving data logistics and resource management on cloud and HPC in-
frastructure. Raster operations such as local, focal, and zonal map algebra can
be effectively transformed into mapreduce functions. Vector operations can also
be transformed using distributed graph libraries, such as GraphX in Spark [9],
and vector decomposition techniques, such as vector tiles [25]. Sequential im-
plementation can be directly incorporated into the map functions. Development
and computation of the reduce functions, however, are non-trivial and require
further computational studies. When multiple distributed datasets (RDDs) in-
teroperate, frequent data shuffling may significantly increase computational cost.
Specific spatial indexing, caching, and partitioning schemes are needed to ad-
dress the challenges in runtime data management and task scheduling.

HPC has been a major accelerator for machine learning algorithms. As deep
learning turns to self-supervised learning to identify patterns and create knowl-
edge within a dataset itself, large-scale data transformation and augmenta-
tion solutions [28] become critical for enabling scalable learning from massive
datasets. GeoAl [22, 21] is no exception. In general, as data and learning become
increasingly important in a scientific computing application, the fusion of HDA
and HPC will pave the way to a converged platform and programming interface
for domain application development. For instance, to make data interoperable,
there have been efforts to make columnized table and distributed datasets [7]
standard in data analytics and machine learning libraries for GPU [26, 27], data-
intensive computing [36, 31], and cluster computing to seamlessly share data in
different memory hierarchies.
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