
A Lifeline-Based Approach for Work Requesting
and Parallel Particle Advection

Roba Binyahib*

University of Oregon
David Pugmire†

Oak Ridge National Laboratory
Boyana Norris‡

University of Oregon
Hank Childs§

University of Oregon

ABSTRACT

Particle advection, a fundamental building block for many flow visu-
alization algorithms, is very difficult to parallelize efficiently. That
said, work requesting is a promising technique to improve parallel
performance for particle advection. With this work, we introduce a
new work requesting-based method which uses the Lifeline schedul-
ing method. To evaluate the impact of this new algorithm, we ran 92
experiments, running at concurrencies as high as 8192 cores, data
sets as large as 17 billion cells, and as many as 16 million particles,
comparing against other work requesting scheduling methods. Over-
all, our results show that Lifeline has significantly less idle time than
other approaches, since it reduces the number of failed attempts to
request work.

Index Terms: Work requesting—Visualization—Parallel particle
advection—Lifeline-Based scheduling

1 INTRODUCTION

Flow visualization techniques are used to understand the behav-
ior and patterns occurring in vector fields. There are a variety of
techniques that are used in practice. Examples include streamlines,
pathlines, stream surfaces, Poincaré analysis, and Finite-Time Lya-
punov Exponents (FTLE). These flow visualization techniques are
built upon particle advection, which consists of placing a particle
in the flow and displacing its position according to a vector field.
The trajectory of each particle as it is displaced can be described
by an ordinary differential equation. In practice, this trajectory is
calculated iteratively. A particle with an initial (seed) location, X0,
is displaced to a nearby location, X1, then displaced again to another
location, X2, and so on. Each advancement, i.e., from Xi to Xi+1, is
referred to as a step. Calculating the change in position for a given
step is typically approximated using numerical methods, such as a
Runge-Kutta. These numerical methods require a number of vector
field evaluations at different spatial locations. Each visualization
technique will then use the computed trajectories of each particle
to display its representation of features within the flow field. The
representations used by each technique are varied. For streamlines
and pathlines the representations are simple, namely displaying the
trajectory of each particle. For FTLE, it is more complex, as the
technique creates derived quantities based on distances between
trajectory end points.

Because each flow visualization technique requires different rep-
resentations, the corresponding particle advection workloads are
similarly highly varied. For example, when using a streamline tech-
nique, as few as one particle can be used. For another example, when
computing an FTLE, one or more particles can be placed in each
cell of a mesh, resulting in potentially billions of particles being
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used. Further, the number of steps can vary as well, from under
one hundred steps to hundreds of thousands of steps, or more (e.g.,
Poincaré analysis [12, 20]). As a result, some particle advection
workloads have excessive computation times — billions of steps,
with each step requiring velocity field interpolations to solve an
ordinary differential equation (Runge-Kutta).

Particle advection solutions get considerably more complex in
the context of supercomputers. This setting typically adds two sig-
nificant complications: (1) data sets contain many cells and are
decomposed into blocks, and (2) the number of advection steps
to calculate is so large that parallel processing is required. Super-
computer architectures add to the complexity as well, as they are
made up of many nodes, with each node containing its own (private)
memory. Ultimately, the fundamental challenge of efficient parallel
particle advection on supercomputers is to make sure the correct
particle and vector field information are together at the same time
so a step can occur. Unfortunately, data set sizes often preclude the
simplest method for achieving this solution — loading all vector
field information on all nodes.

While there are multiple parallelization strategies, this paper
focuses on the strategy where the fundamental unit of parallelization
is a particle. In other words, the particles are partitioned over the
supercomputer’s nodes and each node calculates the trajectories of
its particles. In the simplest form, often referred to as parallelize-
over-particles (POP), a node loads blocks from disk as needed, and
purges the blocks it has already read in when it runs low on memory.
One pitfall for POP is that it suffers from idle time when some nodes
finish their calculations before others.

An important optimization for POP is to incorporate work request-
ing. Work requesting is designed to minimize idle time — nodes that
finish their calculations communicate with others nodes and request
that they share some of their work. For example, if node Ni has
finished its calculations and node Nj has to calculate the trajectories
of P particles, then Nj can send P

2 particles to Ni, to even the load.
Work requesting incorporates an underlying scheduling method, and
previous work has incorporated the Random Scheduling Method
(RSM) [11, 14].

With this work, we introduce a new algorithm for work request-
ing parallel particle advection. Our improvement is to incorporate
the Lifeline scheduling method (LSM). LSM is currently the high-
performance computing community’s preferred scheduling method
for work requesting [10, 21, 25]. Our findings show that, for parallel
particle advection, LSM is superior to RSM in all cases, and reduces
inefficiency by significant amounts. Finally, since we discovered
that RSM has some fundamental limitations for particle advection
problems, we also introduce an extension to RSM to request work
from multiple victims, which we refer to as RSM-N (N victims).
That said, we find with our experiments that RSM-5 (5 victims) is
also inferior to LSM.

2 RELATED WORK

2.1 Parallel Particle Advection

There are multiple parallel particle advection techniques [18]. The
parallelize-over-data (POD) method complements POP — POD
divides blocks over nodes of a supercomputer and communicates



particles between nodes as they travel from block to block. Several
extensions of POD have been presented to reduce the potential of
imbalance. These studies used different solutions such as round-
robin block assignment [16] and pre-processing [5, 15, 24]. Other
studies proposed hybrid algorithms [9, 17], where the algorithm
used both parallelization techniques (POP and POD) to balance the
workload.

There have also been studies that look at how to make use of
the shared-memory parallelism within each supercomputer node.
Camp et al. [3, 4, 6] ran a series of studies showing the benefits of
hybrid parallelism (i.e., using both distributed- and shared-memory
on supercomputers) for particle advection on CPUs and GPUs. Their
CPU-only studies [3] demonstrated speedups of up to 4X by hav-
ing fewer communications and increasing workload within a node.
These results have encouraged us to use hybrid parallelism in our
own study. In particular, we use the VTK-m [13] solution for particle
advection [19] within a node, and have custom MPI communication
code for distributed-memory parallelism. In a separate study [2],
Camp looked specifically at POP, and evaluated how POP perfor-
mance could be improved by utilizing deep memory hierarchies to
store more blocks (and thus reduce purges that lead to redundant
loading of blocks). This study was useful for us in setting the param-
eters for setting the cache size, i.e., the number of blocks each node
can store.

The most relevant previous works to our study are those that also
consider work requesting to accelerate parallel particle advection.
Mueller et al. [14] considered the technique for streamlines, while
Lu et al. [11] considered the technique for stream surfaces. The
key difference between their works and our own is that they employ
RSM [1] while we employ LSM [21]. That said, the work by Mueller
et al. extended RSM to have threaded communication.

2.2 Lifeline-Based Scheduling

Previous parallel particle advection solutions [11, 14], have used
work requesting to improve parallel performance for particle advec-
tion. In work requesting, once a node finishes advecting its particles,
it requests particles from another busy node. The node stealing
the particles is called a thief and the other node is called a vic-
tim. These previous solutions used random scheduling [1]. Several
works in the high-performance computing community showed im-
proved performance over random using a Lifeline-based scheduling
method [10, 21, 25], which was introduced by Saraswat et al. [21].
In our algorithm, we replace the traditional random scheduling with
the lifeline scheduling method.

The Lifeline approach begins similarly to the random scheduling
method, in that the thief node attempts some number of random
steals, w. But the lifeline algorithm differs in how to proceed if the
first w steals all fail (i.e., did not result in work being returned from
the victim, because the victim also has no work). Instead, the node
consults its lifelines (i.e., a list of compute nodes) to ask for work.
What differentiates a lifeline steal from a regular steal is that lifeline
is then engaged on behalf of the thief to find work. Each of the
lifelines will store the thief as an “incoming” lifeline. When those
lifelines search for work themselves, they will share the work with
the thief.

The key to the Lifeline approach is the “Lifeline graph,” which
directs a thief node to use specific nodes as lifelines.

The lifeline graph is a fully-connected directed graph, where
graph vertices are compute nodes on the supercomputer and edges
are lifelines. This graph must guarantee that there is a path from
each node with work to all other nodes. The simplest way to create
one lifeline for each node is to create a circular graph where the
lifeline of the rank ID p is (p+1)%N, with N the number of ranks.
This simple method is not acceptable in practice, though, since it
will result in poor performance at scale. This is because the distance
between two nodes is on average N

2 with N the total number of
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Figure 1: A lifeline graph of 4 nodes, with base = 2 and power = 2.
Each node is represented in a base of 2 and has two lifelines. For
each node, the outgoing arrows points to its lifelines.

nodes. This means that requesting work to a victim would require
on average N

2 communications, which is inefficient.
Instead, the Lifeline algorithm used a cyclic hypercubes graph to

calculate the lifelines. This guarantees that the graph is connected,
has a low diameter, and each vertex has a bound on the number of
out edges. To calculate the lifelines of nodes, the user has to choose
a base h and a power z, with the constraint hz−1 < N ≤ hz, where
N is the number of compute nodes. Each node is represented as a
number in base h with z digits, and has an outgoing edge to every
node that is distance +1 from it in the Manhattan distance. Figure 1
shows a lifeline graph for of four nodes, with base h = 2, and power
z = 2, each node has two lifelines. Full details on the method can be
found in the paper by Saraswat et al. [21]

3 OUR LIFELINE ALGORITHM

This section describes our lifeline-based algorithm, as well as other
algorithms we compare against. It is organized as follows:

• Section 3.1 describes foundational concepts.
• Section 3.2 describes two existing algorithms — POP and

RSM.
• Section 3.3 describes our LSM algorithm.
• Section 3.4 describes an extension to RSM to include more

victims (RSM-N); this algorithm allows us to evaluate lifeline
better.

3.1 Foundational Algorithmic Concepts
All four algorithms described share common elements. First, they
each begin by dividing the set of P seed points over its N compute
nodes, giving each node P

N seed points to operate on. Each node then
executes the same program, differing only in the seed points they
begin with, and the algorithm completes when all particle trajectories
are calculated. In the sections that follow, the pseudocode listed
describes the program that runs identically on each node.

The pseudocode for our four algorithms use the following build-
ing blocks:

• Particle: a data structure that contains the particle to be ad-
vected through the flow field. This data structure contains
the current location of the particle. It can optionally hold the
previous locations of the particle (i.e., the trajectory) .

• ParticleArray: a data structure that contains an array of Parti-
cles.

• ArrayOfParticleArrays: a data structure that contains an array
of ParticleArrays. For example, an ArrayOfParticleArrays with
10 entries would contain 10 ParticleArrays, with each of the
10 ParticleArrays containing a varying number of particles.

• SortParticleByBlock(): a function that sorts Particles by the
ID of the block that contains the particles. This generates



Algorithm 1 Pseudocode for the Parallelize-Over-Particles algo-
rithm (POP).

1: function POP-ADVECT(ParticleArray pv)
2: keepGoing ← true
3: ArrayO f ParticleArrays pva[NUMBLOCKS]
4: pva ← SortParticlesByBlock(pv)
5: allCompletedParticles ← /0
6: while keepGoing do
7: contParticles ← /0
8: for i in NUMBLOCKS do
9: if pva[i].size() > 0 then

10: Block b ← ObtainBlock(i)
11: ParticleArray completed, continuing
12: (completed,continuing)← Advect(pva[i],b)
13: allCompletedParticles += completed
14: contParticles += continuing
15: end if
16: end for
17: if contParticles.size() > 0 then
18: pva ← SortParticlesByBlock(contParticles)
19: else
20: keepGoing ← f alse
21: end if
22: end while
23: end function

an ArrayOfParticleArrays where the ParticleArray at index i
contains the Particles that lie within block i.

• ObtainBlock(): a function that determines the needed block
and reads it from cache or disk. The function first checks if
the block is already available in cache. If not, it loads the
necessary block and places it in cache. The size of the cache
changes depending on the size of the data.

• Advect(): a function that advects the Particles of a ParticleAr-
ray until they exit the current block or terminate. This func-
tion returns a 2-tuple — the first element is a ParticleArray
containing completed Particles and the second element is a
ParticleArray containing Particles that exited the current data
block.

• CheckForIncomingMessages(): a function that checks for in-
coming messages from other nodes. These messages can be
work requests from other nodes or notifications of particle
terminations.

• SendWork(): a function that sends half of its workload to the
thief if it has any work, or sends back a “no work” message.

• RequestWork(): a function that requests work from another
node.

3.2 Existing Algorithms
This section describes two existing algorithms used as comparators
for our study: POP and Work Requesting using the RSM.

3.2.1 Parallelize-Over-Particles

Algorithm 1 shows the pseudocode for POP. The algorithm starts
by sorting particles by block. Then it reads the needed data blocks
either from cache or disk. Next, the algorithm advects the particles
located in the current data block until they terminate or exit the
current block. When particles exit their current data blocks, they are
stored in an array to be processed in the next iteration.

Even though the algorithm divides seeds equally between nodes,
it does not guarantee an equal workload on each node. That is be-
cause nodes might load different number of blocks or have different
number of advection steps, due to the nature of the vector field and
placement of assigned seeds. For example, if the vector field has

Algorithm 2 Pseudocode for the working requesting algorithm using
RSM.

1: function RSM-ADVECT(ParticleArray pv)
2: keepGoing ← true
3: numActive ← totalNumberO f Particles
4: ArrayO f ParticleArrays pva[NUMBLOCKS]
5: pva ← SortParticlesByBlock(pv)
6: allCompletedParticles ← /0
7: while keepGoing do
8: contParticles ← /0
9: for i in NUMBLOCKS do

10: if pva[i].size() > 0 then
11: Block b ← ObtainBlock(i)
12: ParticleArray completed, continuing
13: (completed,continuing)← Advect(pva[i],b)
14: allCompletedParticles += completed
15: contParticles += continuing
16: end if
17: MSG ←CheckForIncomingMessages()
18: if MSG = PARTICLES TERMINATED then
19: numActive -= MSG.numTerminated
20: else if MSG = NEEDWORK then
21: SendWork()
22: end if
23: end for
24: if contParticles.size() > 0 then
25: pva ← SortParticlesByBlock(contParticles)
26: else if numActive > 0 & contParticles.size() = 0 then
27: randomVictim ← GetRandomVictimID()
28: RequestWork(randomVictim)
29: else
30: keepGoing ← f alse
31: end if
32: end while
33: end function

critical points attracting the particles toward them, the workload of
the node depends on the placement of its assigned seeds. Nodes that
have seeds located near the critical points will need fewer block than
particles that are far from the critical point.

3.2.2 Work Requesting using the Random Scheduling
Method

Algorithm 2 shows the pseudocode of RSM. The algorithm begins
with each node executing the POP algorithm as described in Sec-
tion 3.2.1.

The algorithm is different, however, in how it proceeds when a
node finishes its work. In this case, it sends a work request to another
node. Again, the node stealing the particles is referred to as thief
and the other node is referred to as victim. RSM chooses a victim
randomly [1]. If the victim has work, it sends half of its workload to
the thief. Otherwise, it sends a “no work” message to the thief. In
that case, the thief selects another victim randomly.

To optimize I/O, the algorithm sorts particles by block before
sending work. This reduces the number of blocks that need to be
accessed.

3.3 Our Lifeline-Based Algorithm
This section describes our particle advection Lifeline-Based algo-
rithm. Algorithm 3 shows the pseudocode of LSM. LSM shares
most of the steps of RSM, with the main difference between them
being the scheduling method.

In this algorithm, the thief performs w random steals, where the
victims are chosen randomly, and w is a user specified parameter. If
no work is found after w attempts, the thief requests work from its



Algorithm 3 Pseudocode for the working requesting algorithm using
Lifeline Scheduling (LSM).

1: function LSM-ADVECT(ParticleArray pv)
2: keepGoing ← true
3: numActive ← totalNumberO f Particles
4: ArrayO f ParticleArrays pva[NUMBLOCKS]
5: pva ← SortParticlesByBlock(pv)
6: allCompletedParticles ← /0
7: li f elines ←CalculateLi f elineGraph()
8: numRandomReq ← 0
9: while keepGoing do

10: contParticles ← /0
11: for i in NUMBLOCKS do
12: if pva[i].size() > 0 then
13: Block b ← ObtainBlock(i)
14: ParticleArray completed, continuing
15: (completed,continuing)← Advect(pva[i],b)
16: allCompletedParticles += completed
17: contParticles += continuing
18: end if
19: MSG ←CheckForIncomingMessages()
20: if MSG = PARTICLES TERMINATED then
21: numActive -= MSG.numTerminated
22: else if MSG = NEEDWORK then
23: SendWork()
24: end if
25: end for
26: if contParticles.size() > 0 then
27: pva ← SortParticlesByBlock(contParticles)
28: else if numActive > 0 & contParticles.size() = 0 then
29: if numRandomReq < w then
30: randomVictim ← GetRandomVictimID()
31: RequestWork(randomVictim)
32: numRandomReq++
33: else
34: RequestWork(li f elines)
35: end if
36: else
37: keepGoing ← f alse
38: end if
39: end while
40: end function

lifelines. The lifelines are computed using a lifeline graph following
the rules mentioned in Section 2.2. If the victim does not have any
work, it requests work for its lifelines recursively. After the thief
requests the work from its lifelines, it remains idle.

When a node receives work, it checks for incoming lifelines; if it
has any, then it sends work.

Similar to RSM, the algorithm sorts its particles by block before
dividing the workload among lifelines, to reduce I/O cost.

The number of lifelines for each node impacts the performance
of LSM. If the number of lifelines is small, it might lead to a higher
idle time. On the other hand, if the number of lifelines is large, it
might increase the communication cost.

3.4 RSM-N: Extending RSM For Multiple Victims

For evaluation purposes, we also made a straightforward extension to
the RSM algorithm, namely, to request work from multiple victims.

To conduct a fair comparison between the two scheduling meth-
ods, we adapted RSM to allow the thief to request work from the
same number of victims as LSM. If no work is found, the thief
chooses a new group of random victims.

4 EXPERIMENTS

This section describes the details, which compares the four algo-
rithms described in Section 3: POP, RSM, RSM-N, and LSM. The
additional factors considered in this study are described in the fol-
lowing subsection.

4.1 Algorithm Comparison Factors

Our study is composed of seven phases. The first phase considers
one workload in depth, comparing the four algorithms. In the other
six phases, one of six factors is varied, while holding the other five
constant. The six factors are:

• Data set (4 options)
• Number of particles (4 options)
• Maximum advection steps (i.e., duration of particle) (4 options)
• Number of blocks (5 options)
• Number of cells per block (3 options)
• Number of MPI tasks (3 options)

In total, we considered 23 (= 4 + 4 + 4 + 5 + 3 + 3) configurations.
We tested each configuration with all four algorithms, meaning 92
experiments overall.

4.1.1 Data Set

Since the complexity of the vector field impacts the performance,
we test the performance of our algorithms on different data sets that
broadly represent typical application scenarios. The four data sets
used in this study are:

• The Fishtank data set is a thermal hydraulics simulation using
the NEK5000 [8] code. In this particular simulation, twin
inlets pump water of differing temperatures into a box. The
mixing behavior and temperature of the water at the outlet of
the box are of interest. The vector field captures the fluid flow
within the box.

• The Fusion data set is a magnetically confined plasma in a
tokamak device. The simulation was performed using the
NIMROD [23] code. The vector field in this example is of the
magnetic field that exists inside the plasma that is a result of
the magnets in the tokamak device as well as the motion of the
particles within the plasma itself.

• The Astro data set is the magnetic field surrounding a solar
core collapse resulting in a supernova. This simulation was
performed with the GenASiS [7] code, a multi-physics code
for astrophysical systems involving nuclear matter.

• The RadialExpansion data set is an artificial dataset, where
the vector for each point is measured by the distance from the
location of the point to the center. The dataset was created to
test the behavior of the four algorithms in cases where the load
is highly imbalanced.

The four data sets are 3D steady data sets that were refined to a
10243 grid.

4.1.2 Number of Particles

With this factor, we consider the impact of the number of particles
on the inefficiency of the four algorithms. Four amounts of particles
are considered: 10K, 100K, 1M, and 10M.

4.1.3 Maximum Advection Steps

With this factor, we consider the impact of the advection steps on
the inefficiency of the four algorithms. Four amounts of advection
steps are considered: 100, 1K, 10K, and 100K.
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Figure 2: Streamlines visualization for the four data sets: (a) Fishtank, (b) Fusion, (c) Astro, (d) RadialExpansion.

4.1.4 Number of Blocks
With this factor, we consider the impact of the number of blocks on
the inefficiency of the four algorithms. Five numbers of blocks are
considered: 64, 128, 512, 1024, and 2048. For all five configurations,
the total data size is 10243.

4.1.5 Number of Cells per Block
With this factor, we consider the impact of the block size (i.e., the
number of cells per block) on the inefficiency of the four algorithms.
Three sizes of blocks are considered: 643, 1283, and 5123. For each
of these tests, we used 512 blocks.

4.1.6 Number of MPI Tasks
With this factor, we consider the scalability of our algorithms. This
includes increasing the number of MPI tasks, as well as the data
size and the number of particles. Three levels of concurrency are
considered:

• Test 1: 32 MPI tasks, 5 lifelines, 1M particles, and 512 blocks.
• Test 2: 128 MPI tasks, 7 lifelines 4M particles, and 2048

blocks.
• Test 3: 512 MPI tasks, 9 lifelines 16M particles, and 8192

blocks.

4.2 Hardware Used
The study was run on Cori at Lawrence Berkeley National Lab-
oratory’s NERSC facility. It contains 2,388 Intel Xeon “Haswell”
processor nodes. There are 32 cores per node, and each core supports
2 hyper-threads and 128 GB of memory per node.

4.3 Algorithms Configuration
RSM-N and LSM request work from multiple victims at each request.
LSM calculates the number of victims using the equation in Section
2.2. We used that equation to compute the lifeline graph with a
base equals to 2. All our tests except for the last phase use 32 MPI
ranks, and thus the number of lifelines is equal 5. For the RSM-
N algorithm, we used the same number of victims as LSM (i.e.,
RSM-5).

4.4 Performance Measurement
For each phase, we measure the work time (including I/O, advection,
etc.), idle time, and total time. From these measurements, we can
derive the inefficiency of the algorithm. Inefficiency affects the
performance because the execution time is determined by the time
of the slowest processor. We define inefficiency with the following
equation:

Inefficiency =
Idletime

Totaltime

The idle time in our tests only measures the time that a node
spends waiting for other nodes to finish their work. It does not
include the time spent performing redundant I/O operations, which
is more likely to happen with RSM, RSM-N, and LSM. Further, as
the number of steal increases, it is more likely to perform redundant
I/O. For this reason, we include in our results both total time and
inefficiency. The goal of reducing inefficiency is to reduce the total
execution time. It is important to make sure that the additional I/O
and communication operations done to reduce inefficiency do not
lead to a higher total execution time.

5 RESULTS

In this section, we present the results of our study.

5.1 Phase 1: Base Case

Table 1: Comparing the performance of the four algorithms in terms
of total execution time, the time for the individual routines, the idle
time, and the inefficiency. The initialization time measures the time to
initialize variables and generate initial seeds. The I/O time measures
the time to read data blocks from disk or cache. The advection time
measures the time to advect particles and to process the advection
results (e.g., terminate). The communication time measures the time
to request or send particles to other nodes and to inform other nodes
of termination. The sorting time measures the time to sort particles
by block after each round (line 18 in Pseudocode 1). The idle time
measures the time where a node is waiting for other nodes to finish or
send work. The inefficiency measures the percentage of execution
time spent in idle and is computed as defined in Section 4.4.

POP RSM RSM-
5

LSM

Total time 131s 117s 111s 107s
Initialization time 1.68s 1.60s 1.55s 1.54s

IO time 14.8s 15.3s 22.9s 20.9s
Advection time 78.4s 75.0s 74.9s 73.6s

Communication time 2.1e−4s 7e−3s 0.15s 0.04s
Sorting time 9.21s 9.05s 8.80s 8.61s

Idle time 26.5s 16.3s 2.8s 1.7s
Inefficiency 0.20 0.14 0.03 0.02

In this phase, we compare the performance of the four algorithms,
using the following configuration:

• Data set: Fishtank
• Number of particles: 1M
• Maximum advection steps: 10K
• Number of blocks: 512
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Figure 3: Performance of the four algorithms (a) POP, (b) RSM, (c) RSM-5, (d) LSM, using 32 MPI tasks to advect 1 million particles for 10
thousands steps (base case).

• Number of cells per block: 1283

• Number of MPI tasks: 32 (512 cores)

The results of this phase are presented in Table 1. The results show
a significant drop in inefficiency from 20% (POP) to 2% (LSM).

POP has the highest inefficiency, with 20% of the total execution
time is spent idle. This is due to the load imbalance between nodes,
which can be seen in Figure 3. Although the nodes have the same
number of particles, their workload varies, see Section 3.2.1 for
more discussion.

Using RSM reduces the inefficiency by a factor of 1.4. While this
reduction improves the performance, idle time still takes 14% of the
total execution time since thieves request work from one victim at a
time.

Using multiple victims in RSM-5 reduces the inefficiency by a
factor of 6.6 over POP, and a factor of 4.6 over RSM. This is because
sending multiple requests at once allows the thief to receive work
faster, and therefore reduces idle time.

LSM reduces the inefficiency by a factor of 10 over POP, a factor
of 7 over RSM, and a factor 1.5 over RSM-5. LSM reduces the
inefficiency compared to RSM-5 because the cyclic feature of the
lifeline graph guarantees to always have a path from an idle node to
a busy node.

Table 2: Comparing the number of advection steps and I/O operations
between the four algorithms.

POP RSM RSM-5 LSM

Total advection steps 9.97B 9.97B 9.97B 9.97B
Min advection steps 300M 231M 222M 230M
Max advection steps 312M 373M 383M 380M

Total # disk reads 3750 4081 5491 5381
Min # disk reads 67 87 126 128
Max # disk reads 256 221 216 198

Total # cache reads 2925 3009 3545 3587
Min # cache reads 1 4 30 28
Max # cache reads 244 223 195 207

I/O cost varies between the four algorithms. POP has the lowest
I/O cost of all four algorithms, and it has the lowest number of
I/O operations (disk and cache) as presented in Table 2. RSM has
a higher I/O cost and I/O operations than POP. This increase is
because particles are communicated between nodes and new data
blocks are needed. RSM-5 and LSM have a higher I/O cost and I/O
operations than RSM and POP. That is because more particles are
communicated between nodes.

The advection time varies between the four algorithms, even
though they are advecting the same number of particles. LSM does
a better job balancing the workload, which leads to better usage of
threads. On the other hand, when using POP the workload is not
balanced, which leads to underused threads.

The communication cost varies between the three work requesting
algorithms (RSM, RSM-5, LSM) because of the difference in their
communication pattern. RSM has the lowest communication cost
between the three algorithms since thieves communicate with one
victim at a time. This results in a lower communication time at the
cost of a higher idle time. Both RSM-5 and LSM communicate with
the same number of victims at a single request. However, RSM-5
has a higher communication cost than LSM. This is because, in case
of failure to receive work, LSM relies on its lifelines to receive work.
RSM-5, on the other hand, needs to perform another request to 5
new victims until it receives work.

Even though the inefficiency is improving by a factor of 10,
the total time is only improving by 20%. This is because there is
a maximum improvement possible when improving a part of the
program. This improvement is limited by the time needed to perform
advection steps.

5.2 Phase 2: Data Sets
In this phase, we vary the data set using the following configuration:

• Number of particles: 1M
• Maximum advection steps: 10K
• Number of blocks: 512
• Number of cells per block: 1283



Work Idle

(c) (d)

(a) (b)

Normalized time

M
P

I 
R

an
k

Figure 4: Performance of the POP algorithm on the four data sets (a)
RadialExpansion, (b) Fishtank, (c) Astro, (d) Fusion, using 32 MPI
tasks to advect 1 million particles for 10 thousands steps.

• Number of MPI tasks: 32 (512 cores)

Table 3: Comparing the inefficiency and time of the four algorithms
when varying the data sets.

Data set POP RSM RSM-
5

LSM

Fishtank: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

Fusion: Inefficiency 0.12 0.09 0.02 0.01
Total time 115s 109s 102s 101s

Astro: Inefficiency 0.18 0.12 0.03 0.02
Total time 126s 120s 103s 102s

RadialExpansion: Inefficiency 0.33 0.27 0.04 0.03
Total time 74.1s 73.5s 60.8s 54.9s

The results of this phase are presented in Table 3. The table shows
that LSM reduces the inefficiency for all four data sets and maintains
low inefficiency ratios for all cases (0.01-0.03).

For the RadialExpansion data set, the POP algorithm has a high
inefficiency ratio (30%). This is because the workload is highly
imbalanced, as can be seen in Figure 4 (a). Since vectors are moving
from the center toward the boundaries of the box, nodes that are
responsible for particles located in the center of the box have a higher
workload. RSM reduces the inefficiency by only a modest factor of
1.2 over POP. RSM-5 and LSM, however, reduce the inefficiency
over POP by a factor of 8.2 and 11, respectively.

For the Fishtank data set, the POP algorithm also has a high
inefficiency ratio (20%). This is because the workload is highly
imbalanced, as can be seen in Figure 4 (b). The velocity field
is moving toward a sink at one end of the box. Nodes that are
responsible for particles that are located on the opposite side of the
box have more workload. RSM reduces the inefficiency by a factor
of 1.4 over POP. RSM-5 and LSM reduce the inefficiency over POP
by a factor of 6.6 and 10, respectively.

For the Astro and Fusion data sets, the POP algorithm has a lower
inefficiency ratio compared to the previous data sets: 18% for the
Astro data set and 12% for Fusion data set. The workload of the
POP algorithm is less imbalanced for these two data sets compared
to the other two (Figure 4 (c) and (d)). This is because both data sets
have a more uniform vector field. However, using RSM-5 and LSM
still reduce the inefficiency significantly.

5.3 Phase 3: Number of Particles
In this phase, we vary the number of particles, using the following
configuration:

• Data set: Fishtank
• Maximum advection steps: 10K
• Number of blocks: 512
• Number of cells per block: 1283

• Number of MPI tasks: 32 (512 cores)

Table 4: Comparing the inefficiency and time of the four algorithms
when varying the number of particles.

Number of
Particles

POP RSM RSM-
5

LSM

10K: Inefficiency 0.25 0.23 0.17 0.11
Total time 15.4s 14.2s 13.0s 12.1s

100K: Inefficiency 0.28 0.20 0.15 0.07
Total time 28.6s 26.6s 23.4s 22.6s

1M: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

10M: Inefficiency 0.44 0.27 0.04 0.03
Total time 1278s 921s 501s 486s

The results of this phase are presented in Table 4. The table
shows that LSM reduces the inefficiency in all cases, with the highest
improvement being a reduction of 14.6 over POP, for 10M particles.

The table shows that the inefficiency of POP is not directly corre-
lated to the number of particles. At each test, the number of particles
is increased by a factor of 10, but the inefficiency does not change
within the same ratio and in one case it drops (in the case of 1M).
This is because the inefficiency change is not dependent on the total
number of particles, but rather on the workload distribution per node
(Section 3.2.1). On the other hand, both RSM-5 and LSM are able
to reduce the inefficiency consistently.

5.4 Phase 4: Number of Steps
In this phase, we vary the number of advection steps, using the
following configuration:

• Data set: Fishtank
• Number of particles: 1M
• Number of blocks: 512
• Number of cells per block: 1283

• Number of MPI tasks: 32 (512 cores)

Table 5: Comparing the inefficiency and time of the four algorithms
when varying the durations of particles (maximum advection steps).

Advection
Steps

POP RSM RSM-
5

LSM

100: Inefficiency 0.07 0.07 0.05 0.03
Total time 20.3s 20.4s 20.2s 18.0s

1K: Inefficiency 0.20 0.11 0.07 0.04
Total time 33.7s 31.4s 29.3s 27.1s

10K: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

100K: Inefficiency 0.19 0.12 0.02 0.01
Total time 1080s 981s 877s 791s

The results of this phase are presented in Table 5. LSM reduces
the inefficiency in all cases, with a reduction of a factor of 19 in the
case of 100K steps.

For the case of 100 advection steps, POP has an inefficiency of
7%. This is because the number of advection steps is small, making
it less likely for particles to travel across multiple blocks or exit the



domain. This reduces the probability of imbalance between nodes.
RSM has the same inefficiency ratio as POP. This is because nodes
have small workloads. Consequently, it is more difficult for a thief
to find a victim with work available.

However, both RSM-5 and LSM reduce the inefficiency over
POP by a factor of 1.4 and 2.3, respectively. As both methods are
requesting work from five victims at a time, they are more likely to
find work and therefore reduce the inefficiency.

Increasing the number of advection steps from 100 to 1k increases
the inefficiency of POP to 20%. The table shows that the inefficiency
of POP is not directly correlated to the number of advection steps
but to the distribution of workload. On the other hand, both RSM-5
and LSM are able to consistently reduce the inefficiency down to
2% and 1%, respectively.

5.5 Phase 5: Number of Blocks
In this phase, we vary the number of blocks. That said, the overall
data size remains constant through all tests (10243). The other
factors for this configuration are the following:

• Data set: Fishtank
• Number of particles: 1M
• Maximum advection steps: 10K
• Number of MPI tasks: 32 (512 cores)

Table 6: Comparing the inefficiency and time of the four algorithms
when varying the number of blocks.

Number of
Blocks

POP RSM RSM-
5

LSM

64: Inefficiency 0.32 0.24 0.19 0.06
Total time 89.1s 83.1s 82.7s 80.0s

128: Inefficiency 0.25 0.21 0.09 0.04
Total time 71.2s 68.9s 67.3s 65.1s

512: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

1024: Inefficiency 0.24 0.16 0.02 0.01
Total time 168s 151s 131s 122s

2048: Inefficiency 0.30 0.16 0.01 0.01
Total time 257s 219s 174s 172s

The results of this phase are presented in Table 6. It can be seen
that LSM reduces inefficiency including by a factor of 30 for the
largest number of blocks.

The results show that the inefficiency of the POP algorithm is
not directly impacted by the change in the number of blocks. This
is because, in the POP algorithm, nodes perform their computation
independently without communicating with other nodes. Therefore
loading more blocks on each node does not affect the overall load
balance of the POP.

The inefficiency of the three other algorithms (RSM, RSM-5,
LSM) reduces as the number of blocks increases. This is because
these algorithms respond faster to work requests as the size of the
block reduces. These algorithms run an iterative loop. At the end
of each iteration, the nodes check for work requests and send the
appropriate responses (Algorithm 2 line 17). Reading smaller blocks
reduces the time spent in I/O, reducing the time between requests.

5.6 Phase 6: Cells per Block
In this phase, we fix the number of blocks to 512 and vary the size
of blocks (i.e., data size), using the following configuration:

• Data set: Fishtank
• Number of particles: 1M
• Maximum advection steps: 10K
• Number of blocks: 512

Table 7: Comparing the inefficiency and time of the four algorithms
when varying the number of cells per block with 512 blocks in total.

Cells per
Block

POP RSM RSM-
5

LSM

643: Inefficiency 0.22 0.13 0.02 0.01
Total time 131s 123s 100s 95.7s

1283: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

2563: Inefficiency 0.36 0.23 0.05 0.04
Total time 281s 249s 222s 212s

• Number of MPI tasks: 32 (512 cores)

The results of this phase are presented in Table 7. The table shows
that LSM reduces the inefficiency for the different sizes of blocks,
with a factor of 22 for the smallest size.

The inefficiency of the three other algorithms (RSM, RSM-5,
LSM) increases as the size of blocks increases. When the size of
the block increases, the time to read the block from disk increases.
As described previously, spending more time in I/O increases the
response time to work requests, leading to higher inefficiencies.
RSM is the most impacted, because it sends only one request at a
time, whereas RSM-5 and LSM are sending five requests at the same
time. This increases the likelihood of RSM-5 and LSM to receive
work faster.

5.7 Phase 7: MPI Tasks
In this phase, we vary the number of MPI tasks, as well as the number
of particles and the data size, using the following configuration:

• Data set: Fishtank
• Maximum advection steps: 10K
• Number of cells per block: 1283

– Test 1: 32 MPI tasks (512 cores), 5 lifelines, 1M parti-
cles, and 512 blocks.

– Test 2: 128 MPI tasks (2048 cores), 7 lifelines 4M parti-
cles, and 2048 blocks.

– Test 3: 512 MPI tasks (8192 cores), 9 lifelines 16M
particles, and 8192 blocks.

Table 8: Comparing the inefficiency and time of the four algorithms
when varying the number MPI taks, number of particles and number
of blocks.

# MPI tasks POP RSM RSM-
N

LSM

32: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

128: Inefficiency 0.45 0.29 0.03 0.02
Total time 315s 252s 209s 186s

512: Inefficiency 0.54 0.36 0.06 0.05
Total time 1439s 1012s 694s 671s

The results of this phase are presented in Table 8. The table shows
that LSM reduces the inefficiency for the different test cases, with a
factor of 10.8 for the largest test case.

The POP algorithm inefficiency increases as the test size increases,
reaching 54% for the largest test case. As the size of the test in-
creases, the difference in workload between the nodes increases,
which can be seen in Table 9. This results in a higher load imbal-
ance.

The POP algorithm is the most impacted by this imbalance. Using
RSM reduces the inefficiency by a factor of 1.5 over POP in all cases.
RSM still suffers from high inefficiencies (0.36 in the worst case).
This is because the work becomes more sparse as the number of MPI



Table 9: Comparing the difference in workload balance between the
four algorithms. The table shows the minimum work time, maximum
work time, and the difference for each test. The work time in this table
indicates the time spent in I/O and advection. The Diff measures the
difference in time between the nodes with the highest and the lowest
workloads.

#
MPI
tasks

POP RSM RSM-
N

LSM

32: Min work 82.7s 82.5s 90.1s 86.1s
Max work 112s 101s 106s 100s

Diff 29.3s 18.5s 15.9s 13.9s
128: Min work 117s 112s 154s 139s

Max work 241s 204s 186s 167s
Diff 124s 92s 32s 28s

512: Min work 451s 421s 525s 513s
Max work 1209s 867s 598s 580s

Diff 758s 446s 73s 67s

task increases. Consequently, thieves are less likely to randomly find
a victim with work.

RSM-5 and LSM maintain low inefficiency ratios for all cases.
Using RSM-5 reduces the inefficiency over POP by 6.6 for the first
test, 15 for the second test, and 9 for the third test. Using LSM
reduces the inefficiency over POP by 10 for the first test, 22.5 for the
second test, and 10.8 for the third test. This is because both RSM-5
and LSM can find victims with work faster by requests work from
multiple victims at a time.

5.8 Summary of Findings

The evaluation showed that the LSM algorithm reduces inefficiency
in all cases. The algorithm adapts the number of its lifelines (victims)
as the concurrency change to make sure there is a short path from
busy nodes to idle ones. Further, in our largest test case (512 ranks,
16M particles, 17B cells data sets), LSM has the lowest inefficiency
of all four algorithms.

Overall, the evaluation demonstrates that the LSM algorithm is a
better choice for particle advection work requesting. LSM would be
particularly well suited for production visualization tools. This is be-
cause the LSM algorithm can adapt itself to better support complex
cases without requiring major user inputs. Further, production visu-
alization tools must support a large variety of use cases, including
those that lead to load imbalance with traditional approaches.

6 CONCLUSIONS AND FUTURE WORK

The contribution of this paper is three-fold: (1) we designed a work
requesting algorithm for parallel particle advection that uses lifeline-
based scheduling (LSM) method, (2) we added an extension to
random scheduling (RSM-N) to use multiple victims, and (3) we
evaluated the efficiency of the three scheduling methods as well
as POP. As discussed in the summary of findings, our LSM algo-
rithm improves the performance compared to traditional approaches,
especially on workloads that are prone to load imbalance.

For future work, we plan to implement a multi-threaded version
of the algorithm with another thread for communication. Our tests
in Phase 5 and 6 show that the LSM algorithm has lower inefficiency
in cases where the algorithm performed smaller work at each itera-
tion (reading smaller blocks), which reduces the response time to a
work request. We plan to test the ideas suggested by Sisneros and
Pugmire [22] where the algorithm advects a portion of the particles
belonging to one block, to allow the algorithm to check for work
requests more frequently. We also plan to study the impact of the
number of liflines (victims) on the performance. Finally, we plan to
test the algorithms at larger scale.
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together with the underlying flow. In In International Workshop on
Visualization and Mathematics’97 Proceedings, pp. 315–328. Springer,
1997.

[13] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the Visualiza-
tion Toolkit for Massively Threaded Architectures. IEEE Computer
Graphics and Applications (CG&A), 36(3):48–58, May/June 2016.

[14] C. Müller, D. Camp, B. Hentschel, and C. Garth. Distributed parallel
particle advection using work requesting. In 2013 IEEE Symposium
on Large-Scale Data Analysis and Visualization (LDAV), pp. 1–6, Oct
2013. doi: 10.1109/LDAV.2013.6675152



[15] B. Nouanesengsy, T. Y. Lee, and H. W. Shen. Load-balanced parallel
streamline generation on large scale vector fields. IEEE Transactions
on Visualization and Computer Graphics, 17(12):1785–1794, Dec
2011. doi: 10.1109/TVCG.2011.219

[16] T. Peterka, R. Ross, B. Nouanesengsy, T. Y. Lee, H. W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for
steady-state and time-varying flow fields. In 2011 IEEE International
Parallel Distributed Processing Symposium, pp. 580–591, May 2011.
doi: 10.1109/IPDPS.2011.62

[17] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. Scalable
computation of streamlines on very large datasets. In Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, pp. 1–12, Nov 2009. doi: 10.1145/1654059.1654076

[18] D. Pugmire, T. Peterka, and C. Garth. Parallel Integral Curves. In High
Performance Visualization—Enabling Extreme-Scale Scientific Insight,
pp. 91–113. CRC Press/Francis–Taylor Group, Oct. 2012.

[19] D. Pugmire, A. Yenpure, M. Kim, J. Kress, R. Maynard, H. Childs,
and B. Hentschel. Performance-Portable Particle Advection with VTK-
m. In H. Childs and F. Cucchietti, eds., Eurographics Symposium on
Parallel Graphics and Visualization. The Eurographics Association,
2018. doi: 10.2312/pgv.20181094

[20] A. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, and J. Bres-
lau. Analysis of recurrent patterns in toroidal magnetic fields. IEEE
Transactions on Visualization and Computer Graphics, 16(6):1431–
1440, 2010.

[21] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishnamoor-
thy. Lifeline-based global load balancing. In Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pp. 201–212. ACM, New York, NY, USA, 2011. doi: 10.
1145/1941553.1941582

[22] R. Sisneros and D. Pugmire. Tuned to terrible: A study of parallel
particle advection state of the practice. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 1058–1067, May 2016. doi: 10.1109/IPDPSW.2016.173

[23] C. Sovinec, A. Glasser, T. Gianakon, D. Barnes, R. Nebel, S. Kruger,
S. Plimpton, A. Tarditi, M. Chu, and the NIMROD Team. Nonlinear
Magnetohydrodynamics with High-order Finite Elements. J. Comp.
Phys., 195:355, 2004.

[24] H. Yu, C. Wang, and K. Ma. Parallel hierarchical visualization of large
time-varying 3d vector fields. In SC ’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, pp. 1–12, Nov 2007. doi:
10.1145/1362622.1362655

[25] W. Zhang, O. Tardieu, D. Grove, B. Herta, T. Kamada, V. A. Saraswat,
and M. Takeuchi. Glb: lifeline-based global load balancing library in
x10. In PPAA@PPoPP, 2014.


