
Understanding Performance-Quality Trade-offs in
Scientific Visualization Workflows with Lossy

Compression
Jieyang Chen, David Pugmire, Matthew Wolf, Nicholas Thompson, Jeremy Logan,

Kshitij Mehta, Lipeng Wan, Jong Youl Choi, Ben Whitney, Scott Klasky
Oak Ridge National Laboratory

Oak Ridge, TN, USA
{chenj3, pugmire, wolfmd, thompsonna, loganjs, mehtakv, wanl, choij, whitneybe, klasky}@ornl.gov

Abstract—The cost of I/O is a significant challenge on current
supercomputers, and the trend is likely to continue into the
foreseeable future. This challenge is amplified in scientific visual-
ization because of the requirement to consume large amounts of
data before processing can begin. Lossy compression has become
an important technique in reducing the cost of performing I/O.
In this paper we consider the implications of using compressed
data for visualization within a scientific workflow. We use visual-
ization operations on simulation data that is reduced using three
different state-of-the-art compression techniques. We study the
storage efficiency and preservation of visualization features on the
resulting compressed data, and draw comparisons between the
three techniques used. Our contributions can help inform both
scientists and researchers in the use and design of compression
techniques for preservation of important visualization details.

Index Terms—reduction, visualization, adios, sz, zfp, mgard

I. INTRODUCTION

Due to the growing imbalance between the compute and
I/O performance of leadership class HPC systems, I/O has
become one of the major bottlenecks in scientific computing
workflows. For example, the Summit supercomputer [1] at
Oak Ridge National Laboratory is 7 times faster than its
predecessor, Titan. However, the maximum I/O bandwidth is
only 2.5x faster than that on Titan. This imbalance makes it
challenging to load data required for computation, and to store
large outputs. This imbalance is expected to grow in the next
generation of exascale computing systems.

Visualization remains the fundamental mechanism by which
scientists extract insight from simulations. To provide this
capability, a number of state-of-the-art visualization tools
have been developed, including VisIt [2], ParaView [3], and
VTK [4]. In order to take advantage of the increase in
heterogeneous concurrency, tools such as VTK-m [5] have
been developed. Visualization, in general, is I/O bound [6],
and so methods for in situ processing of data are attractive.
In situ processing methods are varied, and range from direct
resource sharing with the simulation to allocating a dedicated
set of resources (staging) where simulation data are transferred
over the high-speed network [7]–[12].

Scientific simulations will often use a data workflow to
manage and process results. These workflows use a combi-

Fig. 1. Measuring the time cost ratio of I/O (file read and write) and
visualization related computations (Marching cubes and rendering) in a
visualization workflow when visualizing a single image using different levels
of computing concurrency with input data size fixed at 512 (left three bars)
and different input data sizes with the level of computing concurrency fixed to
a 1664-Core GPU (right four bars). Results show that increasing either level
of computing concurrency or input data size would make I/O more expensive
in visualization workflows.

nation of in situ processing, staging and traditional file-based
I/O. As compute capacity continues to grow, simulations will
use these larger supercomputers to solve larger and more
complex problems which continue to stress the I/O bandwidth
on foreseeable HPC systems. Additionally, with the growth
in concurrency, I/O bandwidth per core is also significantly
reduced, further exposing the I/O cost as shown in Figure 1.

Timely feedback from visualization is critical for monitoring
and understanding simulation results, and the I/O costs can
impede its usability. Although reducing image resolution can
effectively reduce visualization time, information and features
can be lost, and it does not address the fundamental bottleneck
of access to data.

Lossy compression has been an active area of research to
mitigate pressure on I/O systems. These techniques aim to
reduce the size of the data and preserve the information content
as controlled by a set of user-specified parameters. This is
very attractive for visualization as it effectively reduces the
data access bottleneck and gives users the flexibility to control
the trade-off between quality and cost. While compression
techniques are an active area of research, the impact of

2019 IEEE/ACM The 5th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5)



D.

B.

C.

A.

BP Files

Gray-Scott 
Simulation

Visualization and 
Post-analysis

ADIOS2 ADIOS2

Lossy Compressor Decompressor

Fig. 2. Our testing visualization workflow used in this work. The four components (A-D) in the above figure are discussed in Section III A-D

lossy compression within a visualization workflow is not well
studied. In this paper we study the impact of lossy compression
on a representative scientific workflow. Our focus is on storage
efficiency and visualization quality. First, storage efficiency is
critical as access to data, either from disk in a post processing
scenario, or a staging scenario where data are transferred
over the network between memory regions, is a significant
bottleneck for visualization operations. Second, the quality of
visualization results, which are often composed of a number
of operations on the data, is critical to scientific understanding
of the nature of the simulation.

Specifically, the contributions of this paper include:
• Study the impact of different lossy compressors, along

with parameters on visualization and workflow perfor-
mance.

• Identification of useful metrics for evaluating the quality
feature and information preservation using visualization
on lossy data.

• Study the impact of different lossy compressors on visu-
alization in different computing environments i.e., single-
core CPU, multi-core CPU, and GPU.

II. BACKGROUND

We evaluate three popular lossy compression algorithms:
MGARD, SZ, and ZFP.
MGARD, i.e., the multigrid adaptive reduction of data

(MGARD) [13], [14] is a recently developed technique for
reduction of scientific data. The algorithm draws on the ideas
of multigrid methods, which offers a high degree of flexibility
and guaranteed provision on loss incurred by the reduction of
the data. The loss is measured in a problem-specific Besov
norm, and allows preservation of derived quantities, e.g.,
energy spectra.
SZ [15]–[18] is a lossy compressor based on polynomial

interpolation and extrapolation. It offers three modes of error
bound settings: absolute (SZ-ABS), relative (SZ-REL), and
point-wise relative (SZ-PWR).
ZFP [19] is a general purpose compressor for floating-

point arrays, similar in character to a block discrete cosine
transform, that supports fine-grained read and write access
enabled by fixed-rate compression.

A. Data Exchange Methods in Scientific Visualization Work-
flows

Scientific visualization workflows must exchange data be-
tween numerical solvers and visualization applications. We use

the Adaptable Input/Output System (ADIOS) [20] to manage
this exchange. ADIOS is a high-performance data transfer and
management framework designed for extreme-scale scientific
data. It uses the BP self-describing file format for represent-
ing data. It uses a publisher-subscriber framework for data
exchange, where processes subscribe to a data stream that is
typically generated by a running simulation. Its performance
is mainly bound by the I/O bandwidth of the filesystem.

B. Gray-Scott Simulation

As a representative example of the type of workflows
encountered in scientific visualization, we use a numerical
solution of the Gray-Scott model of reaction diffusion [21]

∂U

∂t
= ru∇2U − UV 2 + f(1− U)

∂V

∂t
= rv∇2V + UV 2 − (f + k)V

If U and V are the concentrations of two chemical species,
then this models the reaction

U + 2V → 3V, V → P

where P is an inert species. It is chosen because it is a
hyperbolic nonlinear coupled system of PDEs which captures
many of the challenges present in cutting-edge scientific
simulations.

III. DESIGN OF THE TESTING VISUALIZATION WORKFLOW

Our workflow consists of four components: a scientific
simulation code, data compressors/decompressors, data man-
agement, and visualization/post-analyser. This is summarized
in Figure 2.

A. Simulation Code

The Gray-Scott simulation serves the role of data producer
in our workflow. The simulation has two settings: the spatial
resolution of simulation grid N , which creates a uniform three
dimensional grid of size N3, and a random noise parameter,
η, which perturbs the initial conditions of the problem. In our
experiments we use a grid resolution of N = 512, and a noise
parameter of η = 0.5 to increase the amount of meaningful
data (features) in all of our workflow examples.



TABLE I
PERFORMANCE AND QUALITY METRICS USED IN THIS WORK

Metrics Description Tool Used

Pe
rf

or
m

an
ce Compression ratio Defined by the ratio of the space needed to store original data

vs. compressed data Our post-analyser

Time cost of workflow
Including time cost for I/O (file read and write) using
ADIOS2 and visualization related computation (Marching
cubes and rendering) using VTK-h

Our post-analyser

Q
ua

lit
y PSNR Defined as 10 log10(

R2

MSE
) where MSE represents mean

square error and R is the maximum fluctuation in the input
Z-Checker

Relative L∞ error Defined as Max Absolute Error
Max Input Our post-analyser

Relative error of iso-surface area
Relative error of number of connected components Visualization specific quality metrics VisIt

B. Visualization and Analysis

We use three different tools for visualization and analysis
of the compressed simulation outputs: VisIt, a production
visualization tool, an iso-surface and rendering application
based on the VTK-m library for portable performance on
single-/multicore CPU and GPUs, and Z-Checker [22] for data
analysis. We use the visualization application to measure the
time cost for each visualization step, as well as evaluation of
the visualization quality. As a measure of quality, we consider
the surface area of the computed iso-surfaces as well as the
number of connected components (features). For convenience,
we use VisIt to compute the surface area and connected
component count from the output of the VTK-m application.
Finally, we build post-analysis tools to capture two kinds of
data quality metrics: peak signal-to-noise ratio (PSNR) and
relative L∞ error. Table I summarizes the performance and
quality metrics used in this work.

C. Data Compressors/Decompressors

We use three different lossy compression techniques on the
output data from the Gray-Scott simulation. For I/O, we are
using ADIOS, which has read and write support for each
of the compression techniques. The post processing tools
use the ADIOS library to read and decompress the data for
visualization and analysis. We discuss ADIOS in greater detail
in §III-D.

Each of the three compression techniques has parameter(s)
that allow users to specify an error bound. Each compression
technique will use this error bound to find an acceptable
reduced representation of the data. The definition of error
bound differs from compressor to compressor, and we refer
the interested reader to the works cited in §VI.

To help facilitate this work and without having to run
simulation code against each combination of compressor and
error bound, we extract the compression and decompression
process as explicitly separate operations in between simulation
code/visualization application and ADIOS. It does not impact
validity of time measuring work, but can make our testing
more efficient and accurate.

D. Data Management System

Data sharing between the Gray-Scott simulation code and
visualization applications is done through ADIOS, which is

widely used data management systems that offers state-of-the-
art performance. In our workflow, we use ADIOS to perform
file-based data sharing in our testing workflow.

IV. EXPERIMENTS

A. Experimental Environment

Our visualization workflow was run on a workstation whose
hardware specification is shown in Table II.

TABLE II
WORKSTATION HARDWARE SPECIFICATION

CPU: 20-core Intel Xeon E5-2687W v3 @ 3.1 GHz
RAM: 32 GB
GPU: Two Nvidia Quadro M4000 GPUs with 8 GB RAM in each
GPU
Disk: Seagate 4TB SATA III (max sustainable bandwidth: 182 MB/s
for read and 179 MB/s for write)

Fig. 3. Comparison on Compression Ratio

The Gray-Scott simulation implementation used in this work
is available at [23], along with the current latest VTK-m
(version 1.4), Visit (version 3.0.1) and ADIOS 2 are built
with GCC 7.4.0. VTK-m is also built with OpenMp 7.4.0 and
CUDA 10.1.168. To enable compression, ADIOS is linked
with the latest available release of MGARD (version 3), SZ
(version 2.1.6), and ZFP (version 0.5.5) compression libraries.

B. Experimental Design

We run Gray-Scott on a grid of size 5123 for 10,000 time
steps and write the values of U and V every 1000 time steps.
As we notice that the simulation enter states with complex
data patterns only after 3000 time steps, we only evaluate the



(a) Compression Ratio vs. PSNR (b) Compression Ratio vs. Relative L∞ Error

(c) Compression Ratio vs. Relative Error in Surface Area (SA) (d) Compression Ratio vs. Relative Error in Number of Connected
Components (NCC)

Fig. 4. Compression Ratio vs. Quality

data from timesteps 3000 to 10,000. We compress, visualize,
and analyze the variable V . As stated previously, we evaluate
compression using the SZ, ZFP, and MGARD compression
libraries. The default settings of each compressor are used
except for the error bound. The error bound ranges are set
so that they reach both minimum possible compression and
maximum possible compression where the compressed data
are severely distorted i.e., the relative errors of surface area
or number of connected components reach or exceed 30%.
Iso value for the surface generation is set to 0.1. We show
results of running VTK-m under three configurations: single-
core CPU, 20-core CPU, and GPU. The time taken to perform
post-analysis as shown in Table I is not counted towards the
time taken to run the workflow.

C. Error Bound vs. Compression Ratio

First, we study how the compression ratio changes as we set
different error bounds. The error bounds are defined differently
in different compressors or different compressing modes, so
the compression ratio of different cases are not comparable
even if they have the same error bound. Thus, the results
are not used to compare different compressors but to show
the possible compression ratios using different error bounds.
As shown in Fig. 3, all compressors exhibit a wide range of

compression ratios. MGARD and ZFP give better compression
ratios when the error bounds are relative tight. On the other
hand, SZ gives better compression ratios when the error
bounds are relative loose.

D. Compression Ratio vs. Quality

Comparing the compression ratio only shows how much
of the original data is reduced but does not show how much
useful information is preserved or lost. So, in this subsection
we compare the compression quality of each compressor and
show how that is related to the compression ratio as shown
in Fig. 3. Here we use four quality metrics mentioned in
Table I. Fig. 4(a) show that MGARD, ZFP, SZ-PWR give
good PSNR for low compression ratios (less than 30x). The
PSNR drops similarly for all compressors as the compression
ratio increases except for MGARD, which drops faster. Finally,
they all converge to 20-40 as the compression ratio grows
beyond 200x. Fig. 4(b) shows that the relative L∞ error
stays close to 0 when the compression ratio is less than 20x.
Then it increases fast after around 45x. It grows faster for
MGARD as compared to other compressors. Fig. 4(c) - (d)
shows that with 35x compression ratio the loss on surface
area is almost indistinguishable compared with uncompressed
data. The number of connected components is less sensitive



(a) PSNR Improvement (b) L∞ Error Improvement

(c) Relative Error in Surface Area (SA) (d) Relative Error in # of Connected Components (NCC)

Fig. 5. I/O cost reduction against four quality metrics

Fig. 6. Time cost ratio when lossy compression is applied while keeping at
most 1% change to surface area. The best lossy compressor and error bound
that leads to the most I/O reduction and meets feature loss requirement is
chosen for each case.

to errors, and it only shows considerable accuracy loss after
compressing data towards 40x. Also, less than 20% distortion
on surface area and the number of connected components
is achievable with at least 100x compression ratio if proper
compressors and error bounds are set.

E. Reduction of Time Cost for I/O

An important benefit of data compression is reduction in I/O
cost. We show how I/O cost is reduced given different levels of

loss metrics. As shown in Fig. 5, out test cases reduced 66%
- 87% of the I/O cost that includes both file read and write
time. We can see a clear trade-off that shows that more loss of
information or features can bring greater reduction in the I/O
cost. We also notice some oscillation due to the variability of
the I/O bandwidth and contention.

F. Best Reduction of Time Cost for I/O Given Different Quality
Loss Requirements

Finally, we show how the time cost ratio changes as
mentioned in Fig. 1. As in Fig. 1, Fig. 6 shows the time
cost ratios when visualizing a single image using different
levels of computing concurrency with input data size fixed at
512 (left three bars) and different input data sizes with the
level of computing concurrency fixed to a 1664-Core GPU
(right four bars). Different from the tests in Fig. 1, we apply
lossy compression. The I/O cost in time cost ratio of each
case is obtained by choosing the compressor and error bound
that gives the maximum I/O reduction while meets our quality
loss requirement i.e., less than 1% change in surface area.
Compared with Fig. 1, we can see that the time cost ratio for
I/O has considerable dropped, which shows great potentials
of using lossy compression to reduce I/O in visualization
workflows.



V. DISCUSSION AND FUTURE WORK

In this work we have sought to understand the compression
ratios and visualization and analysis quality of data output
from lossy compressors. We have conducted experiments using
several state-of-the-art lossy compression techniques and eval-
uated them against these two metrics. Our experiments showed
that lossy compression can achieve significant compression
ratios that can mitigate pressure on the I/O system. This
bodes well for workflows using in situ staging techniques
where the compressed data are moved over the network. Our
experiments highlight the importance of feature preservation
under visualization and analysis operations. This provides
insight into the types of compression to use and the appropriate
parameter settings. We feel that these, and findings through
future studies, can be helpful in guiding the research efforts
in lossy data compression.

In the future we plan to extend these tests to large-scale
distributed simulations. Tests at great levels of concurrency
and larger data would allow us to better understand char-
acteristics in production. In particular, at scale, the time
component becomes more meaningful as costs of compression
and decompression can be amortized over larger concurrency.
We are particularly interested in in situ workflows where data
staging can further reduce the I/O bottleneck for visualization
as the file system is entirely avoided. This will also present the
opportunity to study more complex workflows and understand
the impacts of lossy compression on both cost and quality. We
are also interested in studying different classes of simulations
and understanding the relationship between feature preserva-
tion under lossy compression.

VI. RELATED WORK

The impacts that lossy compression make on visualiza-
tion have been studied in many recent works. [14] shows
MGARD’s compression impact on the visualization results of
the velocity at a particulate time step of the pseudo-spectral
simulation of forced isotropic turbulence. They obtain visu-
ally indistinguishable visualization results from reconstructed
data that was compressed in 4-fold by setting the error
bound 10−2. [13] applies MGARD lossy compression on High
Reynolds number channel flow data and Community Earth
System Model atmosphere data. They report indistinguishable
visualization results when error bound is less or equal to
10−1. We obtain similar conclusion that setting the error
bound to be 10−2 and 10−1 for MGARD give 0.1% and
1% surface area error that is visually indistinguishable. [15]
studies impact on visualization when applying SZ and ZFP
using dark matter density field data from NYX simulation
and the CLOUDf field data in Hurricane-ISABELA. They
show that SZ preserves more details compared with ZFP while
keeping similar compression ratios. [19] shows the impacts on
volumetric ray tracer when integrated with ZFP. They show
that ZFP brings indistinguishable visualization impact when
keeping compression ratio equal or less than 4bpd (bits-per-
double).

REFERENCES

[1] J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen, T. Maier,
M. Ashfaq, B. Messer, and S. Parete-Koon, “Announcing supercomputer
summit,” ORNL (Oak Ridge National Laboratory (ORNL), Oak Ridge,
TN (United States)), Tech. Rep., 2016.

[2] H. Childs, “Visit: An end-user tool for visualizing and analyzing very
large data,” 2012.

[3] J. Ahrens, B. Geveci, and C. Law, “Paraview: An end-user tool for large
data visualization,” The visualization handbook, vol. 717, 2005.

[4] W. J. Schroeder, L. S. Avila, and W. Hoffman, “Visualizing with vtk: a
tutorial,” IEEE Computer graphics and applications, vol. 20, no. 5, pp.
20–27, 2000.

[5] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs et al., “Vtk-m: Accelerating
the visualization toolkit for massively threaded architectures,” IEEE
computer graphics and applications, vol. 36, no. 3, pp. 48–58, 2016.

[6] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, G. Weber,
and E. W. Bethel, “Extreme scaling of production visualization software
on diverse architectures,” IEEE Computer Graphics and Applications,
vol. 30, pp. 22–31, 05 2010.

[7] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, no. 3, pp. 277–290, 2010.

[8] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just in
time: adding value to the io pipelines of high performance applications
with jitstaging,” in Proceedings of the 20th international symposium on
High performance distributed computing. ACM, 2011, pp. 27–36.

[9] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A.
Nguyen, J. Cao, H. Abbasi, S. Klasky et al., “Flexio: I/o middleware for
location-flexible scientific data analytics,” in 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing. IEEE, 2013,
pp. 320–331.

[10] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,
H. Abbasi, and S. Klasky, “Goldrush: resource efficient in situ sci-
entific data analytics using fine-grained interference aware execution,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 78.

[11] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci et al., “Combining in-situ
and in-transit processing to enable extreme-scale scientific analysis,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 49.

[12] Y. Tian, S. Klasky, W. Yu, H. Abbasi, B. Wang, N. Podhorszki, R. Grout,
and M. Wolf, “A system-aware optimized data organization for efficient
scientific analytics,” in Proceedings of the 21st international symposium
on High-Performance Parallel and Distributed Computing. ACM, 2012,
pp. 125–126.

[13] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the multivariate
case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–
A1303, 2019.

[14] ——, “Multilevel techniques for compression and reduction of scien-
tific datathe univariate case,” Computing and Visualization in Science,
vol. 19, no. 5-6, pp. 65–76, 2018.

[15] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 2018, pp. 438–447.

[16] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp.
1129–1139.

[17] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in 2016 ieee international parallel and distributed processing
symposium (ipdps). IEEE, 2016, pp. 730–739.

[18] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2018, pp. 179–189.



[19] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[20] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield et al., “Hello ADIOS: the
challenges and lessons of developing leadership class I/O frameworks,”
Concurrency and Computation: Practice and Experience, vol. 26, no. 7,
pp. 1453–1473, 2014.

[21] J. E. Pearson, “Complex patterns in a simple system,” Science, vol. 261,
no. 5118, pp. 189–192, 1993.

[22] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285–303, 2019.

[23] “Gray-Scott Simulation Code,” https://github.com/pnorbert/adiosvm/tree
/master/Tutorial/gray-scott, [Online; accessed 2019].


