
11

Sandia National Laboratories is a multiSandia National Laboratories is a multi--program laboratory managed and operated by Sandia program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department 

of Energy's National Nuclear Security Administration under contract DEof Energy's National Nuclear Security Administration under contract DE--AC04AC04--94AL85000.94AL85000.

Robert Robert BernsteinBernstein
aand nd 

Gregory V. White IIGregory V. White II

Sandia National LaboratoriesSandia National Laboratories
Organic Materials DepartmentOrganic Materials Department

Albuquerque, Albuquerque, NMNM
rbernst@sandia.govrbernst@sandia.gov

505505--284284--36903690

Polymers/Organic Materials Aging OverviewPolymers/Organic Materials Aging OverviewSAND2013-1580P



22

LotsLots of help…of help…

Dora Derzon, Brad Hance, Don Dora Derzon, Brad Hance, Don Bradley, Roger Bradley, Roger Assink, Assink, David Lo, David Lo, 

Mark Read, David Plant, Mogon Matel, Niaz KhanMark Read, David Plant, Mogon Matel, Niaz Khan

James Hochrein, Jonelle Smith, Mike White, Kathy Alam, Laura Martin, James Hochrein, Jonelle Smith, Mike White, Kathy Alam, Laura Martin, 
Danelle Tanner,Danelle Tanner, Adam Lester, Mark Braithwaite, Mark Adam Lester, Mark Braithwaite, Mark Stavig, Stavig, Tony Tony 

Ohlhausen, Bryan Struve, Alex RobinsonOhlhausen, Bryan Struve, Alex Robinson

John Schroeder, Patti Sawyer, John Schroeder, Patti Sawyer, Ray Ray Boucher, Christina Lucero, Derek Boucher, Christina Lucero, Derek 
Wichhart, Wichhart, Roger Roger Clough, Ken GillenClough, Ken Gillen



33

OO--ringsrings Shorting PlugsShorting Plugs

TextilesTextiles

Nuclear Power Plant Cable InsulationNuclear Power Plant Cable Insulation
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Organic Materials Problems; Organic Materials Problems; 
Organic Organic Materials Aging and Materials Aging and DegradationDegradation
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‘Accelerated Aging’‘Accelerated Aging’
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General Approach/GoalsGeneral Approach/Goals

Physical propertyPhysical property Chemical PropertyChemical Property

Macroscopic levelMacroscopic level Molecular LevelMolecular Level

Tensile Tensile StrengthStrength

AdditivesAdditives

GoalsGoals

• Prediction of physical properties vs. time• Prediction of physical properties vs. time
• Predict remaining • Predict remaining lifetimelifetime of field materialsof field materials

• Develop condition monitoring method• Develop condition monitoring method

PermeationPermeation ElongationElongation

Dimensional changesDimensional changes

Sealing ForceSealing Force Compression SetCompression Set
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DeceptionDeception!!

ConclusionsConclusions derivedderived fromfrom initialinitial highhigh temperature,temperature,
shortshort durationduration (even(even outout toto 11 year)year) acceleratedaccelerated
agingaging cancan bebe misleadingmisleading..

Chemistry / mechanisms must be understood.Chemistry / mechanisms must be understood.

Results must be critically analyzed to identify and Results must be critically analyzed to identify and 
understand mechanism changes understand mechanism changes 
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ThermalThermal--oxidative Aging: Nylonoxidative Aging: Nylon
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Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. LongPolymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long--
term thermalterm thermal--oxidative and hydrolysis results 2010, 95, 1471oxidative and hydrolysis results 2010, 95, 1471--1479.1479.
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kk =Ae=Ae--Ea/RTEa/RT

Arrhenius equation:Arrhenius equation:

Arrhenius EquationArrhenius Equation

Old Chemist expression: Old Chemist expression: 
IIncrease temperature ncrease temperature by 10 by 10 °°C will double the rateC will double the rate
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Time WarpTime Warp

Back to High School….Back to High School….

…..but only briefly….…..but only briefly….
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Equation of a LineEquation of a Line

y=mx + by=mx + b

what you wantwhat you want

slopeslope

what you knowwhat you know

yy--interceptintercept
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Function of a LineFunction of a Line

y=mx + by=mx + b

xx

yy

slope =mslope =m

y intercept =by intercept =b
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kk =Ae=Ae--EEaa/RT/RT

Empirical equationEmpirical equation

Arrhenius EquationArrhenius Equation

raterate

PrePre--exponential factorexponential factor
Temperature (Kelvin)Temperature (Kelvin)

Gas constantGas constant

ee

Activation EnergyActivation Energy
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kk =Ae=Ae--Ea/RTEa/RT ln(k) = ln(A) ln(k) = ln(A) –– Ea/RTEa/RT

Arrhenius EquationArrhenius Equation

ln(k) =ln(k) =–– Ea/RT + ln(A) Ea/RT + ln(A) 

ln(k) =ln(k) =––( Ea/R)(1/T) + ln(A) ( Ea/R)(1/T) + ln(A) 



1414

Function of a LineFunction of a Line

y=y=mmxx + + bb

xx

yy

slope =slope =mm

y intercept =y intercept =bb
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Function of a LineFunction of a Line

1/1/TT

ln(k)ln(k)

slope = slope = --Ea/REa/R

y intercept =ln(y intercept =ln(AA))
ln(k) =ln(k) =––( ( Ea/REa/R)(1/)(1/TT) + ln() + ln(AA) ) 



1616

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

kk =Ae=Ae--Ea/RTEa/RT

Arrhenius equation:Arrhenius equation:

Arrhenius EquationArrhenius Equation

What is Ea?What is Ea?

kk = anything= anything

ln(k) =ln(k) =––( Ea/R)(1/T) + ln(A) ( Ea/R)(1/T) + ln(A) 
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EEaa

Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts

------Imagine a marbleImagine a marble------
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EEaa

Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts
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EEaa

Reaction coordinateReaction coordinate

EnergyEnergy

reactantsreactants

productsproducts

Intermediates/Transition statesIntermediates/Transition states

EEaa



2020

Are Diamonds Are Diamonds foreverforever??
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Kinetics vs. Thermodynamics Kinetics vs. Thermodynamics (really the same thing)(really the same thing)

Reaction coordinateReaction coordinate

EnergyEnergy

DiamondDiamond

GraphiteGraphite
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EEaa

Reaction coordinateReaction coordinate

EnergyEnergy

DiamondDiamond

GraphiteGraphite

Intermediates/Transition statesIntermediates/Transition states

EEaa
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kk ==AeAe--Ea/RTEa/RT

Arrhenius EquationArrhenius Equation

Critical assumption is that ECritical assumption is that Eaa is CONSTANT is CONSTANT 

AssAss--uu--meme

AssumeAssume
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TimeTime--Temperature SuperpositionTemperature Superposition

If same mechanism:If same mechanism:

•• same shape (log graph)same shape (log graph)
•• should be constant acceleration (multiple)should be constant acceleration (multiple)

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?Does mechanism change as a function of temperature?

1.1. Pick a reference temperaturePick a reference temperature
2.2. Multiply the time at each temperature by the Multiply the time at each temperature by the 

constant that gives the best overlap with the constant that gives the best overlap with the 
reference temperature datareference temperature data

3.3. Define that multiple as ‘aDefine that multiple as ‘aTT’ (a’ (aT T = 1 for ref. temp.)= 1 for ref. temp.)
4.4. Find aFind aTT for each temperaturefor each temperature

kk =Ae=Ae--Ea/RTEa/RT ln(k) = ln(A) ln(k) = ln(A) –– Ea/RTEa/RT

Empirical equationEmpirical equationArrhenius equation:Arrhenius equation:

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Trends in Polymer Science, Extrapolation of Accelerated Aging Data Extrapolation of Accelerated Aging Data --Arrhenius or Erroneous? 1997Arrhenius or Erroneous? 1997, , 55, 250, 250--257.257.
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ThermalThermal--oxidative Aging: Nylonoxidative Aging: Nylon
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2000 days ~ 5.5 years2000 days ~ 5.5 years
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. LongPolymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long--
term thermalterm thermal--oxidative and hydrolysis results 2010, 95, 1471oxidative and hydrolysis results 2010, 95, 1471--1479.1479.
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ThermalThermal--oxidative Aging: Nylon Shifted Dataoxidative Aging: Nylon Shifted Data
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Shift Factor
 138 °C           8.5
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 37 °C       0.08

Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. LongPolymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long--term thermalterm thermal--oxidative and hydrolysis results oxidative and hydrolysis results 2010, 95, 14712010, 95, 1471--1479.1479.



2727

ThermalThermal--oxidative Aging: Nylon Shift Factor Graphoxidative Aging: Nylon Shift Factor Graph
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Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. LongPolymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long--term thermalterm thermal--oxidative and hydrolysis results oxidative and hydrolysis results 2010, 95, 14712010, 95, 1471--1479.1479.
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Thermal ExposureThermal Exposure

PolymerPolymer OO22 Oxidized PolymerOxidized Polymer++

ThermalThermal--OxidationOxidation

Quantify amount of oxygen consumedQuantify amount of oxygen consumed

••Simple in theorySimple in theory
••Difficult in practiceDifficult in practice
••Amazingly sensitiveAmazingly sensitive
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Schematic of OxuptakeSchematic of Oxuptake

Initial Pressure of OInitial Pressure of O22

OO22

OO22

OO22

OO22

OO22OO22

OO22

OO22

OO22

OO22

OO22

OO22

OO22 + Time+ Time

PolymerPolymer Oxidized PolymerOxidized Polymer

Final Pressure of OFinal Pressure of O22
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Oxygen ConsumptionOxygen Consumption
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Enhanced Extrapolation ‘Good’Enhanced Extrapolation ‘Good’
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Enhanced Extrapolation: ‘Bad’Enhanced Extrapolation: ‘Bad’
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Diffusion Limited Oxidation (DLO) Diffusion Limited Oxidation (DLO) effects if oxygen dissolved in effects if oxygen dissolved in material material 
used up faster by reaction than it can be replenished by diffusion from used up faster by reaction than it can be replenished by diffusion from 
surrounding air surrounding air atmosphere atmosphere 

Race between:Race between:
the the oxygen consumption rate oxygen consumption rate versus the versus the oxygen diffusion rateoxygen diffusion rate

Therefore we need estimates Therefore we need estimates of:of:

1.1. OO22 permeability versus aging temperaturepermeability versus aging temperature
2.2. OO22 consumption versus aging temperatureconsumption versus aging temperature

DLO, Need to KnowDLO, Need to Know
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Diffusion-Limited Oxidation (DLO)

OO22

OO22
OO22

OO22

OO22

OO22

OO22

OO22
OO22

OO22

OO22

OO22

HomogeneousHomogeneousHeterogeneousHeterogeneous

rxn rate > diffusion raterxn rate > diffusion rate rxn rate < diffusion raterxn rate < diffusion rate
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Modulus ProfilingModulus Profiling

Measure of Inverse tensile Measure of Inverse tensile 
compliancecompliance

Closely related to tensile Closely related to tensile 
modulusmodulus

Indentation technique Indentation technique 
ca. 50ca. 50m resolutionm resolution

Excellent to examine ‘geneity’ of aging Excellent to examine ‘geneity’ of aging 
(heteo(heteo-- or homoor homo--) (DLO issues)) (DLO issues)

20 30 40 50 60 70 80 90 100
Shore A hardness
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Schematic of Modulus Profile ExperimentSchematic of Modulus Profile Experiment

Mass is applied in two stepsProbe tip, sample and mass

Gillen, K. T.; Clough, R. L.; Quintana, C. A. Gillen, K. T.; Clough, R. L.; Quintana, C. A. Polym. Degrad. Stab., Modulus profiling of polymers 1987, 17, 31Polym. Degrad. Stab., Modulus profiling of polymers 1987, 17, 31--4747
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Modulus ProfilerModulus Profiler
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Modulus Profiler SampleModulus Profiler Sample
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Modulus profiles of Modulus profiles of samples (nitrile rubber) samples (nitrile rubber) aged at aged at 6565°CC

Homogeneous AgingHomogeneous Aging

Wise, J.; Gillen, K. T.; Clough, R. L. Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermalPolymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally ly aged elastomers 1995, 49, 403aged elastomers 1995, 49, 403--418.418.
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Modulus profiles for samples aged at 95Modulus profiles for samples aged at 95°°C show that diffusionC show that diffusion--limited oxidation limited oxidation 
(DLO) is becoming important; at 125(DLO) is becoming important; at 125°°C, DLO effects are very significantC, DLO effects are very significant

Heterogeneous AgingHeterogeneous Aging

Wise, J.; Gillen, K. T.; Clough, R. L. Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermalPolymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally ly 
aged elastomers 1995, 49, 403aged elastomers 1995, 49, 403--418.418.
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Nylon: Tensile versus Oxygen ConsumptionNylon: Tensile versus Oxygen Consumption
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4242ThermalThermal--oxidative tensile:oxidative tensile:
Prediction vs. ExperimentalPrediction vs. Experimental

Arrhenius predictions severely off targetArrhenius predictions severely off target
suggestsuggest changechange inin mechanism/nonmechanism/non--
ArrheniusArrhenius behaviorbehavior

Oxygen consumption suggests no changeOxygen consumption suggests no change
in thermalin thermal--oxidative mechanismoxidative mechanism

Possible explanation involving mechanism change?Possible explanation involving mechanism change?

6464 °°CC ThermalThermal--oxidativeoxidative

InitialInitial datadata PredictedPredicted:: 9292%% atat caca.. 37003700 daysdays
ObserveObserve:: 9292%% atat caca.. 835835 daysdays

Arrhenius PredictionsArrhenius Predictions
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Nylon 6.6Nylon 6.6
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Nylon StructureNylon Structure
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Humidity Aging SchematicHumidity Aging Schematic
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Humidity Aging HardwareHumidity Aging Hardware
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Nylon ProgramNylon Program

External PublicationsExternal Publications

Bernstein, R.; Bernstein, R.; DerzonDerzon, D. K.; Gillen, K. T., Nylon 6.6 accelerated aging studies: , D. K.; Gillen, K. T., Nylon 6.6 accelerated aging studies: 
thermalthermal--oxidative degradation and its interaction with hydrolysis. oxidative degradation and its interaction with hydrolysis. Polymer Polymer 
Degradation and Stability 2005, 88 (3), 480Degradation and Stability 2005, 88 (3), 480--488.488.

Bernstein, R.; Gillen, K. T., Nylon 6.6 accelerating aging studies: II. LongBernstein, R.; Gillen, K. T., Nylon 6.6 accelerating aging studies: II. Long--term term 
thermalthermal--oxidative and hydrolysis results oxidative and hydrolysis results Polymer Degradation and Stability 2010, Polymer Degradation and Stability 2010, 
95 (9), 147195 (9), 1471--1479.1479.

Published Several Polymer Preprints (American Chemical Society)Published Several Polymer Preprints (American Chemical Society)

Currently Working on Kevlar PaperCurrently Working on Kevlar Paper

Internal PublicationsInternal Publications

Bernstein, R.; Bernstein, R.; DerzonDerzon, D. K.; , D. K.; WhineryWhinery, L. D.; , L. D.; SheddShedd, M. M.; Gillen, K. T. , M. M.; Gillen, K. T. Parachute Parachute 
Aging Studies; Nylon and Kevlar; SAND2008Aging Studies; Nylon and Kevlar; SAND2008--6540; 2008.6540; 2008.

Report is Official Use Only/Export Controlled InformationReport is Official Use Only/Export Controlled Information
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Organic Materials Aging and DegradationOrganic Materials Aging and Degradation

Specifics  Specifics  --oo--ringsrings
General path General path ––most organic materialsmost organic materials

This talk This talk ––details not important details not important (all published)(all published)
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OO--ring Published Documentationring Published Documentation

Gillen, K. T.; Celina, M.; Bernstein, R. In Gillen, K. T.; Celina, M.; Bernstein, R. In Polymer Degradation and StabilityPolymer Degradation and Stability
Validation of Improved Methods for Predicting LongValidation of Improved Methods for Predicting Long--Term Elastomeric Seal Term Elastomeric Seal 
Lifetimes from Compression StressLifetimes from Compression Stress--Relaxation and Oxygen Consumption Relaxation and Oxygen Consumption 

Techniques, 2003; Vol. 82, pp 25Techniques, 2003; Vol. 82, pp 25--35.35.

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, 
Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.

Chavez, S. L.; Domeier, L. A. "Laboratory Component Test Chavez, S. L.; Domeier, L. A. "Laboratory Component Test 
Program (LCTP), Stockpile OProgram (LCTP), Stockpile O--Rings," BB1A3964, 2004.Rings," BB1A3964, 2004.

Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OBernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone O--Ring Aging Study," Ring Aging Study," 
SAND2007SAND2007--6781, Sandia National Laboratories, 2007.6781, Sandia National Laboratories, 2007.

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the 
Lifetime of Fluorosilicone OLifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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OO--rings Backgroundrings Background

Used as environmental seals or other sealsUsed as environmental seals or other seals

O-RING CROSS-SECTIONS

UNAGED 15 yr in field

Most Most systems systems filled with inert gas filled with inert gas 
to protect interior componentsto protect interior components
from oxidation & hydrolysisfrom oxidation & hydrolysis

PreviouslyPreviously::
No technique to measure equilibrium sealing forceNo technique to measure equilibrium sealing force
No technique to rapidly achieve equilibrium compression setNo technique to rapidly achieve equilibrium compression set
No correlationNo correlation
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CSR JigsCSR Jigs

Gap of jig can be adjusted to any desired Gap of jig can be adjusted to any desired 
sizesize

OO--ring pieces cut to allow air circulationring pieces cut to allow air circulation

Measurement of force involves very slow Measurement of force involves very slow 
and slight compression until electrical and slight compression until electrical 
contact is broken between the top and contact is broken between the top and 
bottom platesbottom plates

Jigs can be placed in ovens, thus Jigs can be placed in ovens, thus 
providing isothermal measurementsproviding isothermal measurements
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Compression Stress Relaxation (CSR)Compression Stress Relaxation (CSR)

ShawburyShawbury--Wallace Compression Stress Relaxometer (CSR) MK II Wallace Compression Stress Relaxometer (CSR) MK II 

(Wallace Test Equipment, Cryodon, England) (Wallace Test Equipment, Cryodon, England) 

Commercial InstrumentCommercial Instrument
Measure of ForceMeasure of Force

--OO--ring sealing forcering sealing force
Can Adjust Gap Size to Approximate Actual Can Adjust Gap Size to Approximate Actual 
Compression in SystemCompression in System
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Accelerated agingAccelerated aging

1) Physical force decay1) Physical force decay
--Equilibrium values achieved Equilibrium values achieved ––starting pointstarting point
--Ability to get field returned oAbility to get field returned o--ring force ring force ––ending pointending point

2) Chemical force decay2) Chemical force decay
Prediction of force changes as a function of agingPrediction of force changes as a function of aging

Not talking about in this presentationNot talking about in this presentation
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Accelerated agingAccelerated aging

1) Physical force decay1) Physical force decay
--Equilibrium values achieved Equilibrium values achieved ––starting pointstarting point
--Ability to get field returned oAbility to get field returned o--ring force ring force ––ending pointending point

2) Chemical force decay2) Chemical force decay
Prediction of force changes as a function of agingPrediction of force changes as a function of aging
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Why we do Why we do isothermalisothermal measurements…measurements…
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Sealing force per unit length versus time out of a 110 Sealing force per unit length versus time out of a 110 °°C oven for two CSR jigs containing ButylC oven for two CSR jigs containing Butyl--A oA o--ring segments that had aged under ring segments that had aged under 
25% compression until the force degraded by ~42% (top curve) and ~72% (bottom curve), respectively.25% compression until the force degraded by ~42% (top curve) and ~72% (bottom curve), respectively.

~2 hrs~2 hrs

Gillen, K. T.; Celina, M.; Bernstein, R. In Gillen, K. T.; Celina, M.; Bernstein, R. In Polymer Degradation and StabilityPolymer Degradation and Stability Validation of Improved Methods for Predicting LongValidation of Improved Methods for Predicting Long--Term Elastomeric Seal Lifetimes from Compression StressTerm Elastomeric Seal Lifetimes from Compression Stress--
Relaxation and Oxygen Consumption Techniques, 2003; Vol. 82, pp 25Relaxation and Oxygen Consumption Techniques, 2003; Vol. 82, pp 25--35.35.
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All Jigs at Temperatures All Jigs at Temperatures --FluorosiliconeFluorosilicone
100

90

80

70

60

50

40

30

20

10

0

%
 F

/F
o

0.1 1 10 100 1000

Time, Days 

 Jig #3   138 °C
 Jig #4   138 °C
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 Jig #6   124 °C 
 Jig #8   124 °C
 Jig #14 109 °C
 Jig #15 109 °C
 Jig #4   80 °C
 Jig #7   80 °C

Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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TimeTime--Temperature SuperpositionTemperature Superposition

If same mechanism:If same mechanism:

•• same shape (log graph)same shape (log graph)
•• should be constant acceleration (multiple)should be constant acceleration (multiple)

Plot log(aPlot log(aTT) vs 1/T linear if Arrhenius) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?Does mechanism change as a function of temperature?

1.1. Pick a reference temperaturePick a reference temperature
2.2. Multiply the time at each temperature by the Multiply the time at each temperature by the 

constant that gives the best overlap with the constant that gives the best overlap with the 
reference temperature datareference temperature data

3.3. Define that multiple as ‘aDefine that multiple as ‘aTT’ (a’ (aT T = 1 for ref. temp.)= 1 for ref. temp.)
4.4. Find aFind aTT for each temperaturefor each temperature

kk =Ae=Ae--Ea/RTEa/RT ln(k) = ln(A) ln(k) = ln(A) –– Ea/RTEa/RT

Empirical equationEmpirical equationArrhenius equation:Arrhenius equation:

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Trends in Polymer Science, Extrapolation of Accelerated Aging Data Extrapolation of Accelerated Aging Data --Arrhenius or Erroneous? 1997Arrhenius or Erroneous? 1997, , 55, 250, 250--257.257.
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TimeTime--Temperature SuperpositionTemperature Superposition
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Shift Factor PlotShift Factor Plot

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

S
h

if
t 

fa
c

to
r,

 a
T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

~80 °C



5959

‘Accelerated Aging’‘Accelerated Aging’
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Shift Factor PlotShift Factor Plot
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Shifted Data with RT ‘Prediction’ w/o 80 C dataShifted Data with RT ‘Prediction’ w/o 80 C data
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Shift Factor PlotShift Factor Plot
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Shifted Data with RT ‘Prediction’ Shifted Data with RT ‘Prediction’ All dataAll data

100

90

80

70

60

50

40

30

20

10

0

%
 F

/F
o

0.1 1 10 100 1000

 Shifted time to 109 °C, Days 

0.1 1 10 100

Predicted Time at 23 °C, Years



6464

Shift Factor PlotShift Factor Plot
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Shifted Data with RT ‘Prediction’ Shifted Data with RT ‘Prediction’ 109 and 80 only109 and 80 only
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Shift Factor PlotShift Factor Plot
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OO--ringsrings

Sealing force arguably most important parameterSealing force arguably most important parameter

compression setcompression set

Easy to measureEasy to measure
quick and simplequick and simple

Difficult to measureDifficult to measure
slow and laboriousslow and laborious

sealing forcesealing force

Correlation between equilibrium valuesCorrelation between equilibrium values

O-RING CROSS-SECTIONS

UNAGED 15 yr in field
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Force versus Compression Set Data Force versus Compression Set Data --FluorosiliconeFluorosilicone
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6969Field Field Data*Data*
* not quite the whole story, but good enough for this conversation!* not quite the whole story, but good enough for this conversation!

Compression Compression set measurements of three fluorosilicone oset measurements of three fluorosilicone o--rings taken on rings taken on surveillance surveillance units approximately 1 day units approximately 1 day 
after removal from the unit.  The solid curve and the dashed curve after removal from the unit.  The solid curve and the dashed curve assume assume a linear relationship between set and a linear relationship between set and 
force decay. force decay. 

Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--21332133
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Other Compression Set DataOther Compression Set Data
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Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. 
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Compression SetCompression Set
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Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. 
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Arrhenius Arrhenius Plot Plot for for Compression Compression SSetet
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Arrhenius plot of the shift factors for silicone compression set which leads to an Arrhenius plot of the shift factors for silicone compression set which leads to an 
aging room temperature prediction for compression setaging room temperature prediction for compression set

Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001. 
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Force versus Compression Set DataForce versus Compression Set Data
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Force versus Compression Set DataForce versus Compression Set Data
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Correlation between current Silicone Force data and Correlation between current Silicone Force data and 
Compression set data obtained from Compression set data obtained from three different three different 
sources (and different sizes!) sources (and different sizes!) 

Fluorosilicone versus Silicone!!Fluorosilicone versus Silicone!!

Displays confidence in generalized predictions about Displays confidence in generalized predictions about 
silicone osilicone o--rings state of health (CS easy to measure) rings state of health (CS easy to measure) 
under oxidative environments*under oxidative environments*
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Butyl Force vs. Compression set; lab and field agedButyl Force vs. Compression set; lab and field aged
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Equilibrium values of compression set plotted versus F/FEquilibrium values of compression set plotted versus F/F00 for laboratoryfor laboratory--aged oaged o--rings for three butyl rings for three butyl 
materials plus field results for Butylmaterials plus field results for Butyl--B plotted assuming that FB plotted assuming that F00 = 10 N/cm.= 10 N/cm.

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--Rings 2005Rings 2005, , 8787, 257, 257--270.270.
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Heavily Filled Heavily Filled SiliconeSilicone
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SIGYY

-191 psi=133 N/cm2

-89 psi=  61 N/cm2

13 psi=    9 N/cm2

Time = 0 Time = .5sec Time =.8sec Time = 1sec 

Time = 30 years Time = 56 year Time 90 years

Slide Courtesy of David Slide Courtesy of David LoLo

Progression of Stress Relaxation due to Chemical AgingProgression of Stress Relaxation due to Chemical Aging



Polypropylene Polypropylene Experimental StudiesExperimental Studies

•• Polypropylene was isotopically labeledPolypropylene was isotopically labeled

•• Aged under thermalAged under thermal--oxidative conditionsoxidative conditions

•• Characterized using mass spectrometry Characterized using mass spectrometry 
to identify mass shifts and degradation to identify mass shifts and degradation 
productsproducts

•• Piece puzzle together to establish Piece puzzle together to establish 
mechanism for oxidative attack and mechanism for oxidative attack and 
decompositiondecomposition

CH2 CH

CH3

n

CH2 CH

CH3
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CH2 CH
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CH2 CH
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C(2) C(1,3)
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n
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CH3CH2CHSample
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Example of ThermalExample of Thermal--oxidation Productsoxidation Products

A

B

C

D

E
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G
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J

K

L

M N

O

H

Peak Chemical Structure
A Carbon Dioxide
B Acetone
C Methyl acetate
D 2-methylpropanal
E Methacrolein
F 2-Butanone
G 2-Methyl-2-propen-1-ol
H 2-Pentanone
I Methyl-isobutyl ketone
J 3-Pentene-2-one

K
4-Methyl-4-pentene-2-

one

L
4-Methyl-3-pentene-2-

one

M
2,4,6-Trimetyl-1,3-

dioxane

N 4-Methyl-2-heptanone

O 1,3,5-Trimethylbenzene

““OutgassingOutgassing” vs. “” vs. “VomitVomit””
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ThermalThermal--oxidative Degradation Products Identifiedoxidative Degradation Products Identified
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Clough,Clough, RR.. LL..,, TheThe originsorigins ofof volatilevolatile oxidationoxidation productsproducts inin thethe thermalthermal degradationdegradation ofof polypropylene,polypropylene, identifiedidentified byby
selectiveselective isotopicisotopic labeling,labeling, PolymerPolymer DegradationDegradation andand Stability,Stability, 20072007,, 9292,, 20762076--20942094



CO and COCO and CO22 Proposed MechanismsProposed Mechanisms

Thornberg,Thornberg, SS.. MM.;.; Bernstein,Bernstein, RR.;.; Derzon,Derzon, DD.. KK.;.; Irwin,Irwin, AA.. NN.;.; Klamo,Klamo, SS.. BB.;.; Clough,Clough, RR.. LL.. PolymerPolymer DegradationDegradation andand StabilityStability,, TheThe
GenesisGenesis ofof COCO22 andand COCO inin thethe ThermooxidativeThermooxidative DegradationDegradation ofof PolypropylenePolypropylene 20072007,, 9292,, 9494--102102..
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Polypropylene Polypropylene Experimental Work PublishedExperimental Work Published

(1) Mowery, D. M.; Assink, R. A.; Derzon, D. K.; Klamo, S. B.; Bernstein, R.; Clough, R. L. (1) Mowery, D. M.; Assink, R. A.; Derzon, D. K.; Klamo, S. B.; Bernstein, R.; Clough, R. L. Radiation Physics and Radiation Physics and 
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Thermal Degradation of Polypropylene:Thermal Degradation of Polypropylene:
Focus…SNL experimental, AWE theoretical Focus…SNL experimental, AWE theoretical 
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Thornberg,Thornberg, SS.. MM.;.; Bernstein,Bernstein, RR.;.; Derzon,Derzon, DD.. KK.;.; Irwin,Irwin, AA.. NN.;.; Klamo,Klamo, SS.. BB.;.; Clough,Clough, RR.. LL.. PolymerPolymer DegradationDegradation andand Stability,Stability, TheThe GenesisGenesis ofof COCO22 andand COCO inin thethe
ThermooxidativeThermooxidative DegradationDegradation ofof PolypropylenePolypropylene 20072007,, 9292,, 9494--102102..

AWE will AWE will examining this examining this proposed proposed mechanistic scheme mechanistic scheme 
using modeling techniques not readily available at SNLusing modeling techniques not readily available at SNL

Stability of the Carbon radical - Results

Modelling Results

BA C

-126.48 kCal/mol-100.71 kCal/mol-96.25 kCal/mol

Experimental Observation
C(2)                                                              C(1)                                                       C(3)
Most stable radical –
exemplified by calculated energy!

US: Robert Bernstein, James US: Robert Bernstein, James HochreinHochrein

UKUK: Mark Read, David Plant: Mark Read, David Plant

SNLSNL involvedinvolved inin experimentalexperimental studiesstudies usingusing
isotopicallyisotopically labeledlabeled polypropylenepolypropylene toto enhanceenhance
knowledgeknowledge ofof degradationdegradation mechanismsmechanisms usingusing
techniquestechniques notnot readilyreadily availableavailable atat AWEAWE



Carbon DioxideCarbon Dioxide

(a): Reactant (b): Transition state (c): Product

MolecularMolecular structuresstructures ofof thethe polypropylenepolypropylene fragmentfragment radicalradical
undergoingundergoing homolytichomolytic cleavagecleavage ofof thethe IICC–– IIIICC bondbond toto givegive
IICCOO22.. TheThe totaltotal electronelectron densitydensity isosurfaceisosurface hashas beenbeen
mappedmapped withwith thethe alphaalpha densitydensity isosurfaceisosurface toto showshow thethe
radicalradical locationlocation (dark(dark blue)blue)..

Carbon atom in the polymer % CO2 from this position

(Experimentally determined)

CO2 ∆G‡ / kJ mol

C(1)  [methylene]

C(2)  [Tertiary]

C(3)  [methyl group]

66% [±5%] 12.77

33% [±5%] 25.58

0% [<5%]

Position of Origin of COPosition of Origin of CO22 as Experimentally Determined from the Thermal Oxidation as Experimentally Determined from the Thermal Oxidation 
of Polypropylene at 110 of Polypropylene at 110 °°C and C and DFTDFT Calculated Free Energy Barriers  Calculated Free Energy Barriers  



Transition from Fundamental to AppliedTransition from Fundamental to Applied
8787

Fundamental Studies Fundamental Studies ShouldShould Have Vision Have Vision 
to Transform into Applied Studiesto Transform into Applied Studies

Help Systems Plan for FutureHelp Systems Plan for Future

Contribution to AARContribution to AAR

Validation is Key; Validation is Key; 
Anyone can make predictions!Anyone can make predictions!
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Take Take home messages…home messages…

•• Be aware of mechanism changesBe aware of mechanism changes
•• Understand Understand chemistry/be careful with the chemistry/be careful with the detailsdetails

––DLO, ODLO, O2 2 vs. Hvs. H22O etcO etc
•• Find Find something to something to measuremeasure
•• Iteration is the keyIteration is the key
•• Do Do things at many things at many temp (as far apart as possible)temp (as far apart as possible)
•• Do things for very Do things for very veryvery long timelong time
•• Validate Validate against real against real world (predictions are easy!)world (predictions are easy!)

•• It would be nice to know It would be nice to know youryour performance performance 
requirementsrequirements
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LotsLots of help…of help…

Dora Derzon, Brad Hance, Don Dora Derzon, Brad Hance, Don Bradley, Roger Bradley, Roger Assink, Assink, David Lo, David Lo, 

Mark Read, David Plant, Mogon Matel, Niaz KhanMark Read, David Plant, Mogon Matel, Niaz Khan

James Hochrein, Jonelle Smith, Mike White, Kathy Alam, Laura Martin, James Hochrein, Jonelle Smith, Mike White, Kathy Alam, Laura Martin, 
Danelle Tanner,Danelle Tanner, Adam Lester, Mark Braithwaite, Mark Adam Lester, Mark Braithwaite, Mark Stavig, Stavig, Tony Tony 

Ohlhausen, Bryan Struve, Alex RobinsonOhlhausen, Bryan Struve, Alex Robinson

John Schroeder, Patti Sawyer, John Schroeder, Patti Sawyer, Ray Ray Boucher (6632), Christina Lucero, Boucher (6632), Christina Lucero, 
Derek Wichhart, Derek Wichhart, Roger Roger Clough, Ken Gillen, Clough, Ken Gillen, 

$$$ ES $$$$$$ ES $$$
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Questions…Questions…
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Backup SlidesBackup Slides



What is ‘Lifetime’ for an OWhat is ‘Lifetime’ for an O--ring?ring?
9292

(Our) O(Our) O--ring Job description: Keep out water and airring Job description: Keep out water and air

Measure leak rate; use that to define ‘death’Measure leak rate; use that to define ‘death’
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Mark Wilson’s JigMark Wilson’s Jig

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.

Helium leak detectorHelium leak detector
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Leak Testing of OLeak Testing of O--ringsrings

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.
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OverOver--compressioncompression

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.
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? ? ?

OverOver--compression as alternative to heatingcompression as alternative to heating
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Long Term Compression Versus Force Long Term Compression Versus Force --FluorosiliconeFluorosilicone

2.65 mm (104.25 mils)2.65 mm (104.25 mils) 2.5 mm (98.5 mils)2.5 mm (98.5 mils)

Simple CompressionSimple Compression

Physical relaxation is a lengthy processPhysical relaxation is a lengthy process
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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Physical relaxation at RTPhysical relaxation at RT
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.

~3 years~3 years
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Over Compression MethodologyOver Compression Methodology
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.

> 3 years> 3 years
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00Over compression comparisonOver compression comparison
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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11Over Compression: Multiple Jigs; Different OOver Compression: Multiple Jigs; Different O--ringsrings
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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22Over Compression: Multiple Jigs; Over Compression: Multiple Jigs; SameSame OO--ringring

Good reproducibilityGood reproducibility Much shorter equilibrium timeMuch shorter equilibrium time
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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33Over Compression: Multiple Jigs; Different OOver Compression: Multiple Jigs; Different O--ringsrings

Jig#Jig# ~10 day~10 day ~After over compression~After over compression ~ % drop~ % drop
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Bernstein, R.; Gillen, K. T. "Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone OFluorosilicone and Silicone O--Ring Aging StudyRing Aging Study," SAND2007," SAND2007--6781, Sandia National Laboratories, 20076781, Sandia National Laboratories, 2007..
Bernstein, R.; Gillen, K. T. Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone OPolymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O--rings 2009, 94, 2107rings 2009, 94, 2107--2133.2133.
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44OO--ring Compression Setring Compression Set

Compression set easy to measure but Compression set easy to measure but changing changing with timewith time
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Equilibrium set can take a long timeEquilibrium set can take a long time
Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.



Compression setCompression set
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Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.
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After oven exposure; additional 210 days at room temperature only dropped the set by another 1%After oven exposure; additional 210 days at room temperature only dropped the set by another 1%

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Polymer Degradation and Stability, Predicting and Confirming the Lifetime of OPredicting and Confirming the Lifetime of O--rings 2005rings 2005, , 87, 25787, 257--270.270.


