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Outline

« Exploring chemical reactions

« Time-resolved photoionization mass spectrometry
« Complications

 Entering the 4" dimension?

« Conclusions

Sandia
National
Laboratories




How do we explore chemical reactions?

O(®P) + CzHg > products

Good questions to ask:

*\What are the reaction products?

*What is the reaction rate?

*How do temperature and collisions (pressure) affect the reaction?
*How is energy disposed in the reaction (vibration, rotation, translation)?

*What shape is the potential energy surface?

3A,, 1A,, 3A”, 1Au
within 8 kcal/mol
1 2
TR 0, H
[ Jroem, X

|
(o]
o

©
E
—
®
3]
X
'
>
o
1
)
c
L
o
2
=t
]
7]
x

Sandia
National
Laboratories




What should we measure and how?

* Goals in studying chemical reactions of neutral molecules
— Universal detection (mass spectrometry)
separation of molecules (mass / charge ratio)
— High sensitivity (detect ions -- single ion counting)
— Good selectivity at each m/z ratio
Can you tell HCN from HNC? (tunable photoionization, synchrotron)
— Simultaneous detection (multiplexed mass spectrometry)
— Dependence of signals on:

Temperature & pressure (when collisions are allowed)

Initial & final quantum state selection (single collisions conditions)
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Photoionization Source

The Advanced Light Source
Lawrence Berkeley National Laboratory

« Chemical Dynamics Beamline
« VUV tunability 7.3 - 15 eV
« Resolution 10-50 meV
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Quantitative branching ratios from
photoionization spectra
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—— allene + propyne 10nization spectra
— allene we can extract the
proportion of each

—— propyne
Mixture: 28% allene, 72% propyne isomer present

Fit: 30% allene, 70% propyne
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CcH,, Isomers: high selectivity is possible
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Studying reactions through 3-D imaging

Techniques for multidimensional studies of chemical reactions
Three dimensions:
1) Mass
2) time (distance or velocity)
3) photoionization energy

*Low pressure flame studies with molecular beam mass spectrometry (Nils Hansen)

*|solated elementary reactions with photoionization crossed molecular beams (Jim Lin)

*Reaction kinetics with time-resolved photoionization mass spectrometry (Osborn, Taatjes)
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Multiplexed Photoionization Mass Spectrometer

Dimension Use
Mass / charge ratio Identify / quantify species Detector
Reaction Time Observe reaction kinetics

Photoionization Spectra | Identify / quantify species
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Reactor, pinhole, and skimmer
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Three-Dimensional Data: S(m, ¢, hv)
193 nm

C3H3C1 > C3H3 + (1 [C;H;] ~ 4 x 102 molec/cm?
=4 Torr
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Upgrade to Orthogonal Acceleration TOF

HCCQO m/z = 41.0028 amu CsHs m/z =41.0391 amu

50

m
® — ~ 2000
Am

30

Intensity

50 kHz
20 repetition
rate
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Propargyl Radical Addition Pathways
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Radical-Radical Potential Surfaces

Chemical Reaction -
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ig. 11. Reaction coordinate diagram for head-to-head and tail-to-tail recombination of propargyl (C;Hs) radicals (Miller and Melius [77]).
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C;H; Kinetics

C;H; + C3H; 2> CiH,

— fit_C3H3

—— Res_C3H3
A C6H6

= sim_C6H6

Time (ms)

[C5H,] ~ 4 x 102 molec/cm?
P =4 Torr

T=305K

hv=10.2 eV

Is CgHg benzene?
or a mixture of isomers;




C;H; + C;H, photoionization efficiency
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Basis Functions

— 1,2,4,5 hexatetraene CBS-QB3 method
—— hexa-1,2-diene-5-yne

dimethylenecyclobutene
cis 2-ethynyl 1,3-butadiene
cis 1-ethynyl 1,3-butadiene Conjugated
trans 1-ethynyl 1,3-butadiene
fulvene
- benzene €<— Aromatic
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*M. Bobeldijk, W. J. van der Zande, and P. G. Kistemaker, Chem. Phys. 179, 125 (1994).
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Residuals

Residuals

O Experiment, 4 torr
- --- Miller-Klippenstein Predicted PIE
—— Fit A: 3 initial adducts
—— Residual: Fit A
— Fit B: add conjugated species
—— Residual: FitB
— Fit C: add benzene

— Residual: Fit C (3" reduced 25%)|
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Fit to the data:

Residuals

O Experiment, 8 torr
- - - Miller Klippenstein Predicted PIE
— Fit
—— Residuals
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Criegee’s hypothesis and his “intermediate”

In 1949, Rudolf Criegee proposed a mechanism for degradation of alkenes in
the presence of ozone

Many indirect studies support Criegee’s hypothesis that ozonolysis is a major
component in tropospheric removal of hydrocarbons — makes Criegee
biradicals

Criegee intermediates are isomers of more stable products, organic acids or
esters
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Example: O; + C,H,

Criegee
Intermediate

Reaction of CH,00 with NO, is 50 times what is used in models
If other Criegee intermediates react similarly, Criegee
reactions are significant NO; source

Reaction of CH,00 with SO, is up to 10 000 times models

If other Criegee intermediates react similarly, Criegee

reactions are major SO, oxidant
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Our Needs / Wants in a Light Source

* Needs
— Repetition Rate 50 kHz or greater
— High average power (> 10'3 photons / s at 0.1% bandwidth)
— Continuous, rapid tunability (7.3 — 16 eV)
— Light with no harmonics (at least 1 part in 10%)
— High brightness (spot size ~1 x 1 mm)

 Wants
— Much higher average power (10"7 photons / s at 0.1% bandwidth)
— Tunability from 6.0 — 16 eV
— Only moderate peak power (to avoid multiphoton processes)
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High mass resolution is valuable

 Cumulative evidence for e
eCH,00e
— Correct mass

— lonization energy agrees
with calculations

— CH3SO0O co-product observed
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« Can we study reactions of
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Could we add a 4t dimension?

It is hard to distinguish isomers when:
— Two isomers have similar ionization energies
— More than 4 isomers are present at one m/z ratio

» Rydberg Field lonization Techniques
— ZEKE: Provides a threshold photoelectron spectrum for each ion
— MATI: Provides a mass-selected threshold cation spectrum

* Measure photoelectron — photoions in coincidence? (PEPICO)
— Provides a true photoelectron spectrum for each cation

* Double resonance (IR + VUV)
— Sort isomers by infrared spectra

It will be challenging to stay highly multiplexed
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Infrared Spectra: Benzene vs. 1,5-hexadiyne
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It is hard to beat the selectivity of infrared spectroscopy.
If only it were mass-selected!
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IR-UV Double Resonance
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Spectral Widths

High resolution is neither needed nor desired. 1 -5 cm'is plenty

Acetone (C;H;0)
P =0.32 torr
T=298K
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c=1x10"® cm?, 1 mm x 1 mm spot size, 6.6 x 10-20 J/photon =
0.66 mW cw power required @ 3300 cm-?
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Photoelectron — Photoion Coincidence

== RoentdeR™~~__

iy

 For each ionization
— Collect electron

— Collect its coincident
cation

— Sensitivity decrease of
2-3X (Ne ~ 33 — 50%)

* Photoelectron
spectrum (0 — 800
meV) at each m/z ratio
gives better fingerprint

e Could be time-stamped

)

FIG. 1. (Color online
A. Bodi et al.,

ment.

Mass-selected TPE signal

to provide kinetic Swiss Light Source
information
« But, spectroscopy is of
cation! —
Energy / eV
ﬁ?‘aﬁ'ﬂ%. M. Steinbauer et al., ChemPhysChem,
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Conclusions

Multi-dimensional experiments using valence photoionization
are powerful tools to study gas phase chemical reactions.

— Mass-to-charge sorting of species

— Time / distance / velocity information

— Photoionization spectra to sort species
Valence orbitals cover the whole molecule - isomer specific
High repetition rate, low peak power VUV sources needed

Challenges for the future
— Greater sensitivity (high pressure chemistry)
— More selective probes (PEPICO, MATI, double resonance)
— Maintaining a highly multiplexed experiment
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Challenges of High Pressure

Future engine designs will critically depend on our
understanding of chemistry at:
— Pressure: 50 — 150 atmospheres
— Temperatures: 600 — 1100 K
Extrapolations to these regimes require solid science
Pseudo-first order conditions
— C,H; + O, 2 CH,O + HCO (in great excesys of helium)
— Rate = -d/dt [C,H;] = {k[O,]} [C,H;] = K'[C,H,]
0.01 atm - 100 atm increased dilution by104.
Best solution is increase of VUV photon flux by 104.

—molecules cm-3




Photoionization experiments for high-pressure chemical Kinetics

\(\J | . Time-Sensitive
Y ‘ A\ MCP Detector

Internal volume: ~1 mL

Pressure: safe up to 500 bar, realistic
experiments up to 10 bar
Temperature: up to 1000 K

Material: Inconel, Stainless Steel

Tunable ionizing hv
(ALS or Discharge)

HP cell

Excnmér' Photoly5|s
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Valence photoionization cross sections are large
Ethene (CH,=CH,), mass = 28 amu

Valence Photoionization
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Core Photoionization

Satellite S,
. threshold

—— Photoabsorption

€ Auger yield

—&— C1s™", % all vib.

O Cis™', £ allvib. + Sat
W ZEKE [20]

-8~ C1s ' (v'i=0)

Cross section (Mb)

CH, C1s

300 310 320 330
Photon energy (eV)

Fig. 4. The C Is photoionisation cross-section of C;H; the bold
solid line represents the photoabsorption cross-section after
subtraction of the valence ionisation contribution.

B. Kempgens et al., J. Elec. Spec. Relat.
Phenom. 93 (1998) 39




Our Needs / Wants in a Light Source

* Needs
— Repetition Rate 50 kHz or greater
— High average power (> 10'3 photons / s at 0.1% bandwidth)
— Continuous, rapid tunability (7.3 — 16 eV)
— Light with no harmonics (at least 1 part in 10%)
— High brightness (spot size ~1 x 1 mm)

 Wants
— Much higher average power (10"7 photons / s at 0.1% bandwidth)
— Tunability from 6.0 — 16 eV
— Only moderate peak power (to avoid multiphoton processes)
— Tabletop source ?
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Balancing information with understanding

Enformatiorq
= &nderstandinﬂ

A §
*Too much overlapping information = obscures interpretation
*Too little information = doesn’t allow definitive results

Multi-dimensional data can provide rich
information without obscuring understanding

<

[ Valence photoionization detecting positive ions ]
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Isomer distributions are a sensitive
probe of reaction mechanisms

* Isomers often show different reactivity, steering downstream
chemistry in new directions.

C;H; + O, = products

isomerization 1somerlzat10n \
H
H H “ H 7/ <|_|
H H
cyclopropyl methylvmyl
| +0, fast slow 10, fast

reaction reaction reaction
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Valence photoionization examples

Propene (CH;-CH=CH,), mass = 42 amu

—— m/z=42 (parent)
— m/z=41

— m/z=40

— m/z=28

- - - Total cross section

1 Mb =108 cm?
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Valence compared to core ionization

allene

propyne

294,

J

Structure

Valence Orbitals
*Whole molecule
*e- + cation only
*Sensitive to
molecular structure

Energy (eV) Energy (eV)

-10.32 -10.49

-305.78 -305.28

Core Orbitals
*Tightly localized
*Significant
fragmentation
Limited sensitivity
to structure

-305.79 -305.73

-306.47
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CCSD(T)/aug-cc-pVTZ// B3LYP/6-311G**




What photon characteristics do we need?

Desired characeteristics Example: Advanced Light Source,
Lawrence Berkeley Lab, Beamline 9.0.2

Linear spectroscopy 500 MHz Low resolution Medium resolution
(high average power, repetition rate mode mode

low peak power,
high repetition rate) 10'® photons / s 5x 10" photons / s

(16 MW @ 10 eV) (80 uW @ 10 eV)

Small photon beam cross section 1 mm x 1 mm
(needed for high mass resolution)

Tuning range, 7.3 —24 eV, AE/E ~4% AE/E ~ 0.2%
tuning rate, seconds per
resolution step;

Fractional light absorption /1y = e(oNL) 10% of light 0.03% of light
(Gabs = 1x 1077 cm?) absorbed absorbed
(N=3.2x 10" cm3)

(L=1cm)

Fraction of sample ionized o*Fluence
(Gioniz =1x10" sz)
(spot size = 0.01 cm?)
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Every silver lining must have a cloud

Problems with tunable valence photoionization techniques

*Photoionization spectra can change when the molecule is internally excited

*Spectral overlap can prevent isomer identification when many isomers are present
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Franck-Condon factors determine spectral shape

e signal

Vertical transition
(not much temperature dependence)

| Non-vertical transition
(significant temperature dependence)
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Photoionization Energy Dependence

Indene ionization as a function of temperature

— 930K
— 800 K
— 600K
— 298K

>
=
(72}
C
(O]
-—
£
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e}
I

(<2}
)

Indene
IE=8.14 eV

Indene photoionization is essentially temperature independent
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Photoionization Energy Dependence

3-phenyl-1-propyne PIEs as a function of temperature
— 298 K 3p1p

— 600 K 3p1p

— 800 K 3p1p

— 930 K 3p1p

- == 930 K 3p1p (slow flow)

H

N\
H—C—C=cC—H
3-phenylpropyne
IE = 8.86 eV

>
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n
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Spectral overlap can be severe (e.g., C.H,)

— 1,5 hexadiyne } initial adducts lonization Energy and FCFs:

— 1,2,4,5 hexatetraene CBS-QB3 method
—— hexa-1,2-diene-5-yne

dimethylenecyclobutene
cis 2-ethynyl 1,3-butadiene
cis 1-ethynyl 1,3-butadiene Conjugated
trans 1-ethynyl 1,3-butadiene
fulvene
- benzene €<— Aromatic

Cross-section estimation*
C-C > 6 Mb
C=C->8Mb

C=C > 25Mb
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*M. Bobeldijk, W. J. van der Zande, and P. G. Kistemaker, Chem. Phys. 179, 125 (1994).
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Rydberg Spectroscopy: Pulsed Field Ionization

Field ionization produces

an electron and an ion
L. with near zero kinetic
10nization
continuum H"+ ¢ CH,"+e energy (threshold)
n = infinity - _
(ionization A We can detect either one
energy) Tonize with to locate .
— E field electronic
~5V/cm vibrational
rotational
-~ level
hv evels
n=52, =0 - 51
n=51, /=0 - 50
n=50, /=0 - 49
Hydrogen Atom C,H,
Sandia

National
laboratories




ZEKE vs. MATI spectroscopy

« Zero Electron Kinetic
Energy Spectroscopy

— Detects the nearly zero
kinetic energy electron
ejected near a threshold

— All electrons identical: no
information on the cation
produced

* Mass Analzyed Threshold
lonization Spectroscopy

— Detects the cation that just
lost a nearly zero energy S
electron : ZEKE

— This information is mass 6a's
analyzed — useful for 16b%,
mixtures, clusters, etc.

)

Photo—-Ion

Photoionization: All Cations

Field—Ion
MATI

n
=

c
o
0

t
2
=
]
=
>
Z
=

2
16b%,

e o027 226 225 224 223 222
— Sensitivity 100 — 1000x PROBE LASER WAVELENGTH (nm)
lower than direct ionization

— Zhu and Johnson, JCP 94, 5769 (1991)
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