

1 **Sulfur Donating Extractants for the Separation of Trivalent Actinides and Lanthanides**

2 N.P. Bessen, J.A. Jackson, M.P. Jensen, J.C. Shafer

3 *Department of Chemistry, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States of America*

4 **Abstract:**

5 The effective separation of trivalent actinides and lanthanides is capable of reducing the long
6 term radiation hazard associated with used nuclear fuel. This class of separation exploits the
7 tendency of ligands containing large and polarizable soft donor atoms to preferentially bind to
8 the trivalent actinides instead of the lanthanides. Among the soft donors, nitrogen and sulfur
9 based ligands have received the most attention with sulfur donors generally having greater
10 selectivity for the actinides. Herein, the speciation, mechanism, and selectivity for the extraction
11 of lanthanides and actinides from aqueous media into an organic phase by various sulfur
12 containing extractants is reviewed.

13 **Graphical Abstract**

14 **Keywords:** Solvent extraction, Lanthanide, Actinide, Soft donors, Separations, Sulfur

15 **Highlights:**

- 16 • Synthesis and extraction mechanisms of sulfur donating extractants.
- 17 • Speciation of actinide and lanthanide complexes in solvent extraction.
- 18 • Collection of Am/Eu separation factors for assorted dithiophosphinic acids.

19 **Abbreviations:**

20 SF, separation factor; D, distribution ratio; CMPO, carbamoylmethylphosphine oxide; TRUEX,
21 transuranic extraction; CMPS, carbamoylmethylphosphine sulfide; XRD, x-ray diffraction;
22 HDEHP, bis-(2-ethylhexyl)phosphoric acid; HDEHTP, bis-(2-ethylhexyl)monothiophosphoric
23 acid; HDEHDTP, bis-(2-ethylhexyl)dithiophosphoric acid; TBP, tributyl phosphate; HC302,
24 bis(2,4,4-trimethylpentyl)monothiophosphinic acid HC301, bis(2,4,4-
25 trimethylpentyl)dithiophosphinic acid; FS-13, phenyltrifluoromethylsulfone; DFT, density
26 functional theory; HC302, bis-(2,4,4-trimethylpentyl)monothiophosphinic acid; HC272, bis-
27 (2,4,4-trimethylpentyl)phosphinic acid; SANS, small angle neutron scattering; XAFS, extended x-
28 ray absorption fine structure; TPP, triphenylphosphate; DPSO, diphenylsulfoxide; TtBP, tri-*tert*-
29 butyl phosphate; TOPO, trioctylphosphine oxide; HTTA, thenoyltrifluoroacetone; TBPS, tri-*iso*-
30 butylphosphine sulfide; HSTTA, thiothenoyltrifluoroacetone.

31 **Contents**

32 1. Introduction	2
33 2. Origin of Selectivity	3
34 3. Organic Phase Sulfur Donating Extractants	4
35 3.1 <i>Carbamoylmethylphosphine sulfide</i>	6

1	<i>3.2 Di- and mono- thiophosphoric acids</i>	7
2	<i>3.3 Dithiophosphinic Acids</i>	9
3	<i>3.3.1 Synthesis</i>	9
4	<i>3.3.2 Effect of varying alkyl and aryl groups</i>	11
5	<i>3.3.3 Mechanisms</i>	14
6	<i>3.3.3.1 Cyanex 301</i>	14
7	<i>3.3.3.2 Dithiophosphinic Acids in Synergistic Mixtures</i>	17
8	<i>3.3.4 Degradation Studies</i>	19
9	<i>3.4 Miscellaneous Sulfur Containing Extractants</i>	21
10	4. Conclusions	22
11	5. Acknowledgements	23
12	6. References	23
13		

14 1. Introduction

15 The significant and scalable approach for actinide/lanthanide group separations centers on
16 the principle that actinides may be able to interact more strongly with soft donors, such as
17 chloride, nitrogen and sulfur, relative to lanthanides of comparable charge density. This is most
18 broadly explained on the basis of Pearson's Hard Soft Acid Base chemistry, where softer, more
19 polarizable metals interact preferentially with softer, more polarizable ligand donors [1]. This
20 stronger interaction with soft donors was first discovered by Street and Seaborg by examining
21 the preferential interaction of chloride and americium relative to lanthanides, such as
22 promethium [2]. The stronger interaction between actinides and soft donors relative to the
23 lanthanides is generally thought to be caused by the actinides increased ability to interact more
24 covalently with soft donors [3]. Although heavy actinides were long thought to lack any
25 covalency due relativistic effects encouraging the contraction of the 5f orbitals within the core
26 electronic structure, [4] recent work with berkelium, californium and einsteinium show their
27 ability to bond with some degree of covalency with dipicolinic acid [5–8] and borates [7,9–11].

28 The origins of the actinide covalency in the literature are frequently debated, as is the extent
29 to which covalency is responsible for controlling trivalent actinide/lanthanide group separations.
30 An emerging idea is that, due to the multiplicity of available orbitals and varying orbital energies
31 across the actinide series, the specifics of actinide-ligand covalency are likely dependent on the
32 given actinide and ligand involved [5-9,11]. This idea more closely mirrors transition metal
33 chemistry, where a given metal-ligand pairing can show unique chemistry across a series of 5f
34 elements. A general class of separations that has limited review in the literature are those based
35 on sulfur-actinide interactions.

36 While separations centering on selective sulfur-actinide interactions are demonstrated to be
37 the most efficient single-stage trivalent lanthanide-actinide separations, sulfur has generally

1 received little attention relative to nitrogen donating ligands [5,12–20]. Some of this lack of
2 attention is due to complications arising from sulfur contamination in high-level waste streams,
3 [21] the poor radiation resistance of sulfur ligands, [22,23] and the difficulty of extractant
4 synthesis and purification [24–26]. Despite these potential issues, sulfur containing ligands
5 provide remarkably high separation factors that could be utilized in more efficient separation
6 processes than nitrogen based separations [25–28]. Bis(2,4,4-trimethylpentyl)dithiophosphinic
7 acid, Cyanex 301 (HC301) in Figure 1, has reported separation factors between Am and Eu,
8 $SF_{Eu}^{Am} = D_{Am}/D_{org}$ where $D_M = [M]_{org}/[M]_{aq}$, of greater than 5,000 [28]. See Section 3 for a
9 more complete description. Trifluoromethyl substituted aryl dithiophosphinates have the highest
10 SF_{Eu}^{Am} ever reported using any approach at greater than 100,000 [25]. More explanation regarding
11 separation factors and distribution ratios, D, is provided in Section 3 (*vide infra*). The purpose of
12 this review is to summarize the work done with various sulfur containing ligands for the
13 separation of actinides from lanthanides.

14 2. Origin of Selectivity

15 The preference that soft donors have for actinides over lanthanides is thought to stem from
16 greater covalency encouraging shorter and stronger actinide-soft donor bonds, though reports
17 exist that suggest some covalent actinide-ligand interactions have longer, weaker bonds [29]. It
18 has been shown that U(III) and Pu(III) both form shorter bonds with sulfur than with lanthanides
19 of nearly the same ionic radii, La(III) and Ce(III) when using thiophosphorylphosphinothioic
20 amides, $N(SPR_2)_2$, ($R = Ph$, iPh , and H) [13] and arylthiolate ligands [30]. In computational
21 modelling of the same complexes, the shorter bond lengths were also observed and interpreted to
22 indicate increased covalency [13,30]. Although complexes of thiophosphorylphosphinothioic
23 amides with both U(III) and Pu(III) showed shorter bond lengths than with similar lanthanides,
24 the Pu-S bond length, although shorter than the U-S bond, was not as short as expected based on
25 the different crystallographic radii of U and Pu. Therefore, it was concluded that the Pu-S
26 interactions had a degree of covalence intermediate between that of the U-S bonds and the
27 lanthanide-S bonds [13]. This lead Gaunt et al. to conclude that the light actinides bond more
28 covalently with sulfur, but this effect decreases along the series, possibly terminating at Am or
29 Cm [13].

30 This hypothesis has been difficult to test as only small amounts of the actinides heavier than
31 Pu are available and their high specific activities make them challenging to handle. Another
32 consequence of the high specific activity of transuranic actinides is the damage to crystal
33 structures by self-irradiation. Despite the associated challenges, single crystals of
34 $(NBu_4)Am[S_2P(tBu_2C_{12}H_6)]_4$ have been synthesized and analyzed along with the analogous Nd
35 and Eu crystals [31]. Single crystal XRD has shown that the Am-S bond (2.921(9) Å) is shorter
36 than with Nd (2.941(8) Å), a lanthanide with a similar ionic radius [31]. Although the uncertainty
37 at the 68% confidence interval associated with these measurements makes it difficult to say with
38 confidence that Am and Nd have different metal-sulfur bond lengths, UV-vis spectroscopy and
39 luminescence spectra of the same crystals show that for Am, the ligand field has a far greater
40 influence on the metal's electronic structure, as reflected in the f-f electronic transitions, than for
41 either Nd or Eu [31]. In crystals of Am, Cm, and Cf dithiocarbamates, the heavier actinides

1 showed shorter metal-sulfur bonds than the similarly sized lanthanides when accounting for
2 changes in the metal's ionic radii [32]. This suggests Am and heavier actinides have greater
3 interactions with soft, sulfur donating ligands than lanthanides. The greater interactions of sulfur
4 donating ligands with the actinides may manifest as stronger bonds and different speciation that
5 may enable an effective method of separating lanthanides and actinides.

6 The selectivity that the above sulfur donors display towards actinides is thought to be due to
7 the ability of actinides to bond more covalently than lanthanides. The source of this greater
8 covalency is thought to arise from energy degeneracy or orbital overlap between the metal and
9 ligand or some combination of both [33]. Density functional theory (DFT) experiments have
10 shown that the 5f orbitals of Am overlap with orbitals in dithiophosphinic acids in a bonding
11 manner while the same ligand orbitals are antibonding to the 4f orbitals of Eu [34,35]. Across the
12 heavy actinides, covalency was found to increase as due to greater energy degeneracy between
13 the actinides and dithiophosphinic acid [36]. Additional DFT studies have shown that the
14 bonding of a dithiophosphinic acid to Am is energetically more favorable than bonding with Eu
15 [37,38].

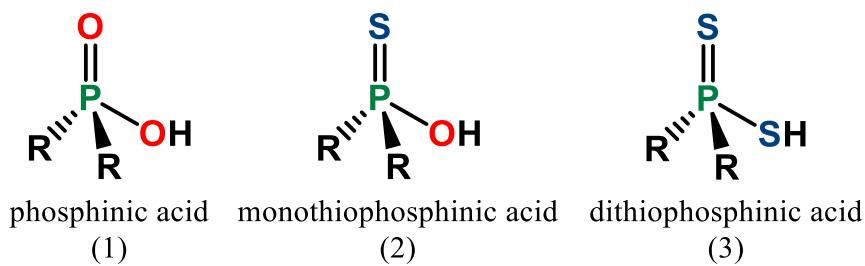
16 The more favorable bonding of dithiophosphinic acid to Am than Eu has not only suggests
17 the formation of stronger bonds, but also brings the possibility of different speciation for
18 lanthanides and actinides. Bhattacharyya et al. found that with HC301, Am would form
19 complexes of the form $\text{Am}(\text{C301})_3$ whereas Eu could form two complexes $\text{Eu}(\text{C301})_3$ and
20 $\text{Eu}(\text{C301})_2(\text{NO}_3)$ [38]. These differences between lanthanides and actinides can cause selectivity
21 in an extraction system due to the greater extractability of the actinide [36,37] or differences in
22 the speciation of the metals that have different extractabilities in the organic phase [38].

23 3. Sulfur Donating Extractants

24 Many different types of sulfur containing extractants have been studied for their application
25 in the organic phase of a liquid-liquid extraction system. Sulfur containing extractants would
26 preferentially extract actinides to the organic phase while the lanthanides primarily remain in the
27 aqueous phase. Systems that use sulfur containing extractants are already used industrially for
28 the separation of cobalt and nickel from magnesium and manganese [39]. These extractants have
29 yet to be developed into a technologically feasible means for the separation of lanthanides and
30 actinides. Lab scale experiments have shown great promise regarding the selectivity of sulfur
31 donor extractants in actinide/lanthanide separation, but barriers to their implementation due to
32 the limited chemical and radiolytic stability of the extractants and the impact of sulfate, a
33 decomposition product, on waste processing remain [21].

34 Two main mechanisms exist by which these extractants function, solvation and cation
35 exchange. Solvating extractants are neutral, polar molecules that solvate metal ions in the
36 organic phase when the metal is bound by the appropriate anions to maintain a neutral charge
37 [40]. Solvating extractants usually extract most efficiently at higher acid concentrations and
38 metals can be stripped from them at low acid concentrations [40]. Cation exchange extractants
39 have acidic functional groups capable of exchanging a hydrogen ion initially bound to the
40 extractant in the organic phase with a metal ion from the aqueous phase [40]. Unlike solvating

1 extractants, cation exchange extractants extract most strongly at low acid conditions and can be
2 stripped at high acid concentrations [40].


3 Synergism can occur when a mixture of extractants is used and the resulting extraction of the
4 metal is greater than the summed metal recovery by each individual extractant, at the same
5 concentration. Although synergism is a complex process, several mechanisms exist through
6 which synergistic extraction can occur [41,42]. Synergism can be caused by the opening of a
7 chelate ring and the addition of a lipophilic adduct on the newly vacant site, the replacement of
8 coordinated waters with a more lipophilic group, or an increase in the coordination number of the
9 metal ion allowing additional lipophilic molecules to bond to the complex [41,42]. Additionally,
10 the addition of a synergic agent can alter other aspects of the extraction system by causing
11 changes in interfacial properties, or effecting aggregation and micelle formation [41].

12 In liquid-liquid extractions, the amount of metal extracted is quantified by the distribution
 13 ratio (D). The distribution ratio is defined as the concentration of analyte in the organic phase
 14 divided by the concentration of analyte in the aqueous phase, as shown in Equation 1. When
 15 extracting radioactive materials, the radioactivity of each phase is often substituted for the
 16 concentration as radioactivity is proportional to the concentration and is typically easier to
 17 measure than the concentration. To quantify the efficacy of a separation using liquid-liquid
 18 extraction, the separation factor (SF) is evaluated. The separation factor is the ratio of the
 19 distribution ratios of the species being separated as shown in Equation 2. In this paper, the
 20 distribution ratio of the actinide is the numerator while the ratio for the lanthanide is the
 21 denominator. Therefore, a SF greater than unity indicates that actinides are extracted more
 22 readily than lanthanides and a separation factor of one indicates no separation.

$$D = \frac{[M]_{org}}{[M]_{aq}} = \frac{A_{org}}{A_{aq}} \quad (1)$$

$$SF_{An/Ln} = \frac{D_{An}}{D_{Ln}} \quad (2)$$

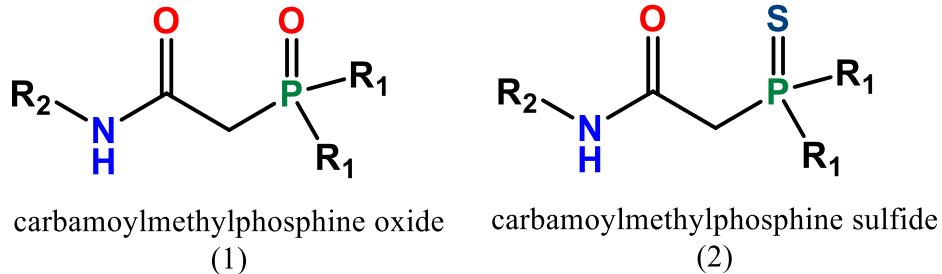
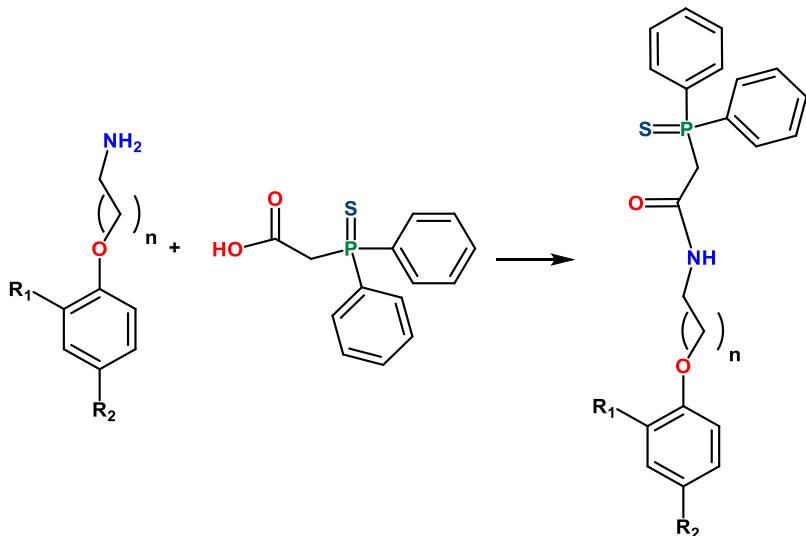

23 Among the many types of sulfur bearing extractants, a general trend is found. When
24 comparing phosphinic, monothiophosphinic, and dithiophosphinic acids, the extraction strength
25 decreases with increasing sulfur in the extractant, but the separation factor increases in the same
26 order. This is true for phosphoric and phosphonic acids as well [43–45].

Figure 1: Phosphinic (1), monothiophosphinic (2), and dithiophosphinic acid (3) functional groups [45].

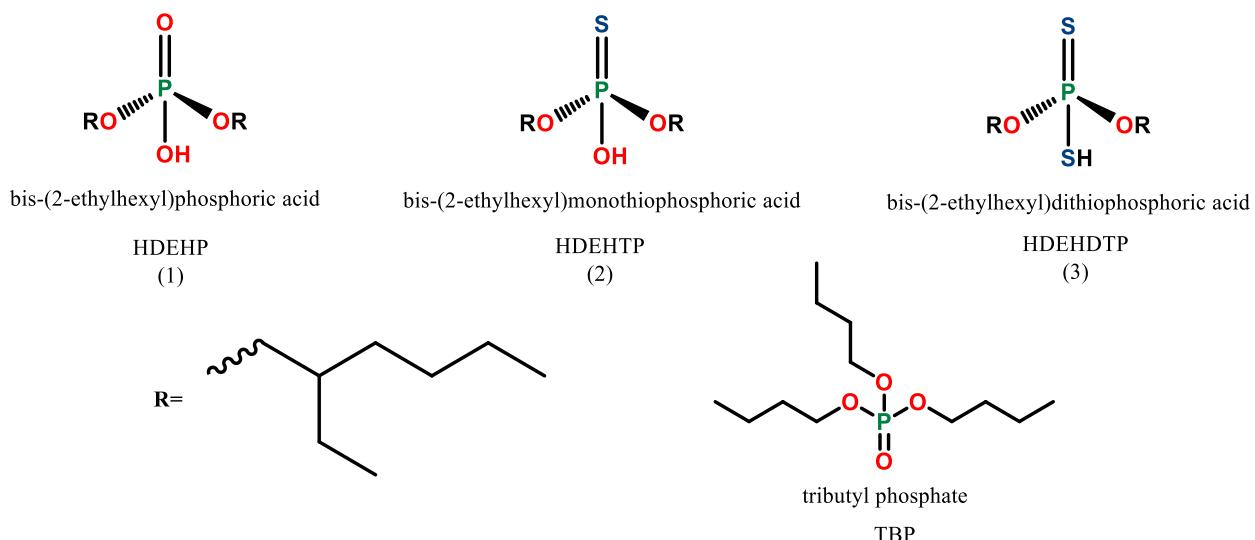

3.1 Carbamoylmethylphosphine sulfide

Carbamoylmethylphosphine oxides (CMPO) have been widely studied for their ability to non-selectively extract the trivalent lanthanides and actinides from highly acidic media as in the transuranic extraction (TRUEX) process. Since the actinides show a preference for soft donors, Matloka et al. studied softer, sulfide versions of CMPO, carbamoylmethylphosphine sulfide (CMPS) for the separation of lanthanides and actinides [46].

Figure 2: Structures of a generic carbamoylmethylphosphine oxide (1) and carbamoylmethylphosphine sulfide (2). R_1 = methyl, t-butyl, t-pentyl. R_2 = t-butyl, t-pentyl [46].

Matloka et al. prepared the various types of CMPS they used by the condensation of 2-(diphenylphosphorothioyl)acetic acid with the appropriate amine containing substituent as shown in Scheme 1 [46].

Scheme 1: Synthetic procedure for the preparation of CMPS [46]. As tested, R₁ and R₂ were combinations of methyl, *t*-butyl, and *t*-pentyl groups and n=1,2 [46].


16 All CMPS varieties are solvating extractants. They were found to extract lanthanides and
 17 americium poorly from 1 M nitric acid with no measurable separation in distribution experiments
 18 with ^{241}Am and ^{152}Eu when CMPS was dissolved in methylene chloride - the only solvent tested
 19 [46]. Unlike typical experiments with CMPO, these systems did not include phase modifiers to
 20 improve the solubility of the extracted metal-ligand complex [41,47–50]. With CMPO, phase
 21 modifiers are used to prevent the formation of a third phase [41]. A third phase occurs when the
 22 single organic phase splits into two distinct organic phases, commonly due to a high

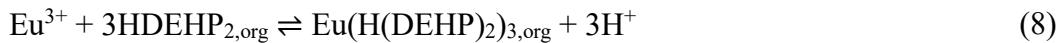
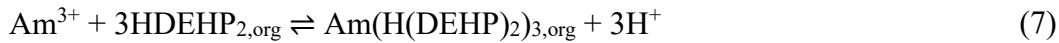
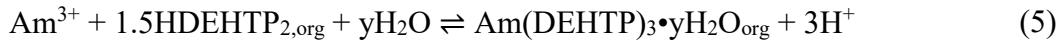
1 concentration of metal ions or acid in the organic phase. It remains to be seen if third phases
2 form as readily with CMPS as with CMPO. Additionally, when single crystals of the terbium
3 CMPS complex were studied by XRD, no Tb-S bonding was seen [46]. Assessment of this
4 system with phase modifiers might be appropriate, since these are crucial for metal extraction in
5 the CMPO system.

6 Although the CMPS sulfide does not seem to interact with the lanthanides or actinides,
7 CMPS has been shown to form metal-sulfur bonds with softer metals. Alekseenko et al.
8 synthesized and studied several different CMPS and CMPO derivatives with Pd(II) and Re(I)
9 [51]. Pd and Re both formed metal-sulfur and metal-oxygen bonds with the CMPS and the
10 expected metal-oxygen bonds with CMPO [51].

11 **3.2 Di- and mono- thiophosphoric acids**

12 Di- and mono- thiophosphoric acids are the sulfur analogs of the widely used cation
13 exchange extractant bis-(2-ethylhexyl)phosphoric acid (HDEHP). For this reason, the extractants
14 bis-(2-ethylhexyl)monothiophosphoric acid (HDEHTP) and bis-(2-ethylhexyl)dithiophosphoric
15 acid (HDEHDTP) have been the most studied extractants in this class.

16
17 **Figure 3:** Structure of HDEHP (1), HDEHTP (2), HDEHDTP (3), and TBP (4) [52].




18 Dithiophosphoric acids are typically synthesized by the reaction of phosphorus pentasulfide
19 with the appropriate anhydrous alcohol [53,54]. Unfortunately, hydrogen sulfide evolves during
20 the course of the reaction. This reaction is sensitive to moisture, as water will cause the
21 formation of the triprotic inorganic acid instead of the desired monoprotic diester [53]. This
22 sensitivity to water does complicate the synthesis, but reasonable yields can be achieved with the
23 proper attention to reaction conditions.

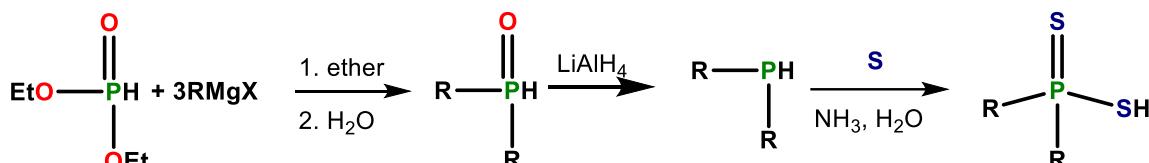
24 Pattee et al. was one of the first groups to extract lanthanides and trivalent actinides with a
25 thiophosphoric acid. They found that although HDEHDTP extracts Am and Eu far more weakly
26 than HDEHTP, HDEHDTP gives larger separation factors ($SF=2.55$) than HDEHTP ($SF=0.89$)
27 in nitric acid [52]. These separation factors were found to be consistent over a range of

1 approximately pH 1.7 to 3.6 for HDEHDTP and 0.8 to 1.9 for HDEHTP [52]. HDEHP gives a
2 separation factor of approximately 0.06 [55]. Xu et al. have confirmed these results in perchloric
3 acid media, by observing the same trend in extractant efficiency and selectivity with HDEHDTP
4 and HDEHTP [44]. They measured similar separation factors of 2.43 (pH 3.13) and 0.68 (pH
5 2.87) for HDEHDTP and HDEHTP respectively [44]. These separation factors are considerably
6 lower than those for the dithiophosphinic acids discussed in Section 3.3. Small amounts of
7 strongly extracting and non-selective impurities may be present, as was observed with some
8 dithiophosphinic acids [56]. Pattee et al. also considered both fully protonated HDEHDTP in
9 cyclohexane and fully saponified HDEHDTP (i.e. NaDEHDTP) in benzene and observed
10 conventional extraction of Am and Eu in discrete HDEHDTP complexes whereas reverse
11 micelles containing up to 25 water molecules per metal ion were observed for the saponified
12 system [57]. It remains unclear as to whether metal is extracted as discrete complexes, reverse
13 micelles; or some combination of both at intermediate degrees of saponification.

14 Extracted complex stoichiometry has been found through slope analysis experiments, where
15 the distribution of the metal of interest is measured as a function of extractant concentration and
16 pH. In these studies, one metal atom was found to be extracted by 3 HDEHDTP or HDEHTP
17 molecules according to Equations 3 through 6 [52] and by 6 HDEHP according to Equations 7
18 and 8 [55]. The authors also suggest that some quantity of water is present in the extracted
19 complex, [52] but do not report an attempt to quantify the number of water molecules in the
20 complex. As HDEHTP is ambidentate, it is possible that it may coordinate metal ions with either
21 the oxygen or sulfur site, or both. Although coordination of lanthanides by HDEHTP is
22 unknown, it is plausible that the oxygen coordinates more strongly due to its greater
23 electronegativity. It is likely that the sulfur site is weaker for the coordination of these hard acid
24 cations as demonstrated by the weaker extraction of lanthanides by HDEHDTP than HDEHTP or
25 HDEHP [52]. Co(III) complexes with monothiophosphoric acid been observed with both the
26 sulfur and oxygen coordinating the metal [58]. Although not a monothiophosphoric acid, the
27 monothiophosphinic acid Cyanex 302 (HC302), prefers to coordinate An and Ln ions through
28 the oxygen atoms. EXAFS studies of the Cm, Sm, and Nd complexes of Cyanex 302 indicated
29 each metal was coordinated with 4 oxygen atoms and 1 sulfur atom with a proposed composition
30 of $M(C302)_3(H_2O)$ where the metal was coordinated by all three oxygens from the HC302 and
31 one sulfur out of the three available [18]. The differences between the formulas for HDEHDTP
32 and HDEHTP arise from the tendency for HDEHTP to dimerize much like HDEHP while
33 HDEHDTP is less likely to aggregate due to weaker hydrogen bonding ability brought on by
34 sulfur being less prone to hydrogen bonding than oxygen and more acidic [16,52]. The authors
35 also suggest that some quantity of water is present in the extracted complex, [52] but do not
36 report an attempt to quantify the number of water molecules in the complex. The weakness of the
37 S-H-S hydrogen bond in HDEHDTP is reflected in its aggregation constant, which is reported to
38 be $K_3 = 0.145$ for formation of $(HDEHDTP)_3$ in benzene [57]. This is also consistent with the
39 work of Zucal et al., who found no evidence for dimerization of short chain (ethyl, propyl, and
40 butyl) dithiophosphoric acids in carbon tetrachloride [59].

1 In addition to the research done with thiophosphoric acids as the sole extracting species,
2 work has been done with synergistic mixtures of thiophosphoric acids with a neutral
3 organophosphorus species. When tributyl phosphate (TBP) is added to the organic phase, less
4 water is extracted than by HDEHDTP alone and the Am/Eu separation factor significantly
5 increases to 25 [52]. Pattee et al. proposed this is caused by TBP coordinating to the metal in
6 place of water which causes a decrease in the metal-sulfur bond length and this decrease
7 enhances the covalency of the bond between actinides and sulfur [52].

8 *3.3 Dithiophosphinic Acids*

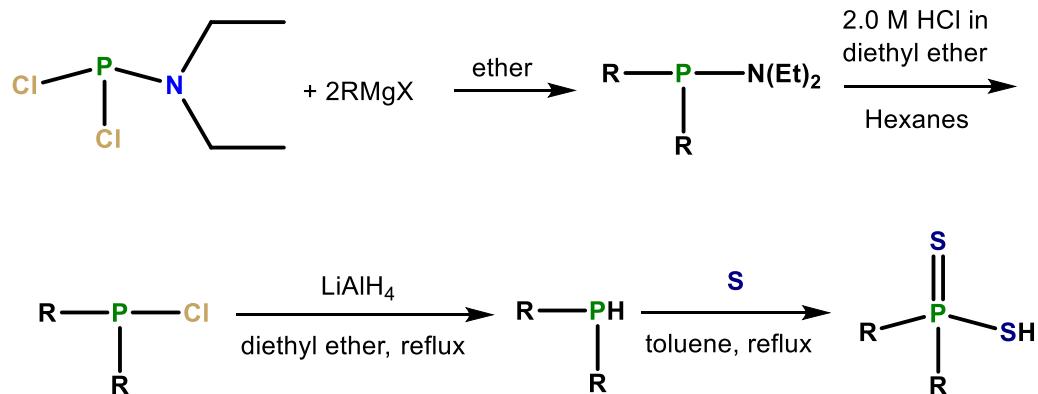

9 Dithiophosphinic acids, Figure 1, have been the most widely studied sulfur bearing class of
10 ligands for the separation of lanthanides and actinides with bis(2,4,4-
11 trimethylpentyl)dithiophosphinic acid (HC301), commercially available as Cyanex 301, being of
12 particular interest. This class of extractants have given some of the highest separation factors
13 observed at this time - up to 100,000 [25-28]. As stronger Lewis Bases, the dithiophosphinic
14 acids also have a greater affinity for metals than their thiophosphoric acid counterparts if the
15 pH is high enough to enable binding [60]. The selectivity that dithiophosphinic acids display
16 towards actinides due to the ability of actinides to bond more covalently than lanthanides due to
17 energy degeneracy, orbital overlap, or some combination of both. This covalency could cause
18 selectivity by enabling stronger bond with the actinides [18,33] or by forming complexes with
19 different structures and extractabilities [61]. For some cases, the extracted complexes of
20 lanthanides and actinides are the same except for the metal which suggests that stronger
21 interactions between the extractant and actinide drives the observed selectivity [18]. However, in
22 other cases the complexes are different which points to different speciation as the driver of
23 selectivity [61,62]. It may also be possible that both causes can occur simultaneously.

24 *3.3.1 Synthesis*

25 Most dithiophosphinic acids are not commercially available necessitating their synthesis at
26 the laboratory scale. Many synthetic schemes have been developed to produce different types of
27 thiophosphinic acids. Due to the number of different synthesis, only the more widely used
28 procedures that require few unusual or difficult steps will be given here.

29 For symmetric dithiophosphoric acids, diethylphosphite can be reacted with the Grignard
30 reagent of the desired alkyl chain [24]. The resulting dialkylphosphine oxide is then reduced to a
31 dialkylphosphine by a strong reducing agent such as lithium aluminum hydride [24]. The
32 dialkylphosphine is reacted with sulfur in aqueous ammonia to yield the crude

1 dialkyldithiophosphinic acid, Scheme 2 [24]. Due to the simplicity of the procedure, this is the
 2 most commonly used method. This is the method used by Tian et al. and Xu et al [24,43,44]. A
 3 similar procedure for this synthesis uses phosphorus trichloride as an alternative to
 4 diethylphosphite as a starting material and forms a chlorodialkylphosphane as an intermediate
 5 instead of a dialkylphosphine as shown in Scheme 3 [25,26]. Although normally used for the
 6 synthesis of symmetric dialkyldithiophosphinic acids, with careful control of the stoichiometry
 7 this method has been used to create asymmetric dithiophosphinic acids [26].



9 **Scheme 2:** Synthetic procedure for dithiophosphinic acids as done by Tian et al. [24].

10 **Scheme 3:** Synthetic procedure for dithiophosphinic acids as done by Klaehn et al. and Peterman et al. [25,26].

11 Another procedure for this synthesis uses 1,1-dichloro-N,N-diethylphosphanamine and a
 12 Grignard reagent to prepare N,N-diethyldialkylphosphanamine, which is converted into a
 13 chlorodialkylphosphane [26]. The chlorodialkylphosphane is reduced to a dialkylphosphine and
 14 reacted with elemental sulfur in toluene to prepare the dithiophosphinic acid, Scheme 4 [26].

17 **Scheme 4:** Synthesis procedure of dithiophosphinic acids from 1,1-dichloro-N,N-diethylphosphanamine as done by
 18 Klaehn et al. [25].

19 Preparing monothiophosphinic acids is somewhat more difficult than dithiophosphinic acids,
 20 but can be done by several means. The dialkylphosphinothioic chloride can be reacted with
 21 sodium hydroxide, or the more common treatment of dialkylphosphinic chloride with sodium
 22 sulfide, to prepare a monothiophosphinic acid [63].

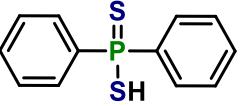
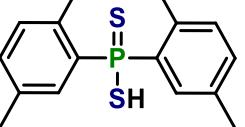
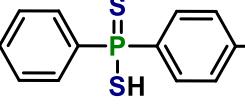
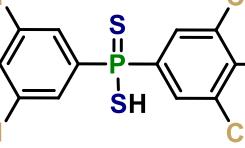
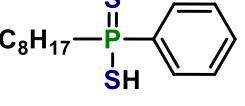
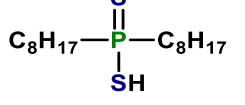
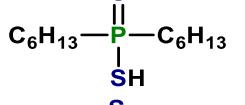
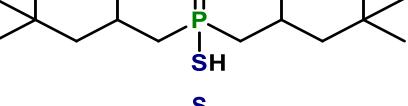
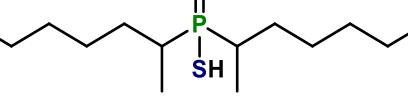
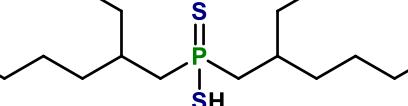
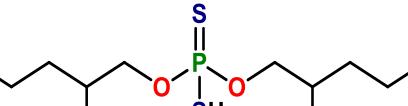
Throughout the synthesis, storage, and use of these thiophosphinic acids, it is important to be mindful of the formation of impurities. In particular, more oxygenated impurities can have a large impact on the extraction strengths and selectivity of the extractants as these impurities are often stronger extractants and lack selectivity. The effects of these impurities are particularly pronounced when using tracer or small quantities of metals.

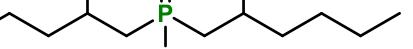
3.3.2 Effect of varying alkyl and aryl groups

Many mono- and di-thiophosphinic acids have been tested for their ability to separate f-elements and to determine the impact of the alkyl or aryl group on the separation. Despite the number of different extractants tested, providing a definitive assignment to the role of the alkyl or aryl group on selectivity remains difficult. The thiophosphinic acids evaluated to date and their separation factors for tracer amounts of Am and Eu are shown in Table 1. If the pH at which the separation factor was measured has been published, the pH has been included in Table 1.

Xu et al. have synthesized and evaluated thiophosphinic acids substituted with many different straight chain and branched alkyl groups and several aryl groups. To evaluate the extraction behavior of these thiophosphinic acids, tracer amounts of Am and Eu in 0.1 M NaClO₄ were contacted with a solution of the extractant in xylene [43,44]. Alkyl group substituted extractants were found to provide a lower selectivity for Am over Eu than with branched chain substituted extractants [43,44]. Aryl group substituted extractants typically gave better separations than alkyl group substituted extractants [43] and, by being more acidic, they will likely have stronger extraction from more acidic media [24,43,64].

Tian et al. also synthesized several dialkyldithiophosphinic acids and came to a different conclusion regarding the impact of the alkyl chain on selectivity. They found the separation factors for Am and Eu were nearly unaffected by varying the alkyl group between octyl, 1-methylheptyl, 2-ethylhexyl, and 2,4,4-trimethylpentyl [24]. The separation factors found by Xu et al. and Tian et al. have a difference of several orders of magnitude, with those found by Tian et al. being much closer to other reported separation factors for dithiophosphinic acids [24,28,43,44,65]. This could be due to difference in pH, which were not reported by Quichu et al., or traces of impurities in the organic phase. However, these discrepancies cast some doubt on the findings of Xu et al. as the separation factors they found are substantially different.












The effect of electron donating and withdrawing groups on aryl dithiophosphinic acids was also tested. With electron withdrawing groups, separation factors were increased and with electron donating groups, the separation factors decrease, but extractant strength is increased [43]. Klaehn et al. and Peterman et al., in addition to developing novel synthetic pathways for dithiophosphinic acids, have tested several aromatic dithiophosphinic acids with trifluoromethyl group on different sites on the benzene rings using phenyltrifluoromethylsulfone (FS-13) as a solvent and a 1 M sodium nitrate aqueous phase. They found that location of the trifluoromethyl group has a profound impact on the selectivity [25,26]. With bis(*o*-trifluoromethylphenyl)dithiophosphinic acid, the remarkably high separation factor of 100,000 [25] was observed. For the isomeric bis(*m*-trifluoromethylphenyl)dithiophosphinic acid, the separation factor was two orders of magnitude less [26].


Daly et al. examined this system with sulfur K-edge x-ray absorption spectroscopy and time-dependent DFT. They found that when substituents were present in the *ortho* position, the symmetry of the ligands was reduced to C_2 from C_{2v} due to steric effects and the electron delocalization increased on the aromatic rings [33]. These changes cause the energy of the highest occupied molecular orbital (HOMO) to increase, thus decreasing the HOMO-LUMO gap and creating a softer ligand which promotes greater selectivity for actinides [33]. Pu et al. also found that the steric effects of the trifluoromethyl group greatly impact the extractant's properties [66]. The decreased symmetry may also be responsible for the greater selectivity possessed by branched alkyldithiophosphinic acids as observed by Xu et al. Another possible explanation for the high selectivity of bis(*o*-trifluoro-methylphenyl)dithiophosphinic acid is that the trifluoromethyl groups are effective at displacing water molecules from the metal center thus raising the entropic contribution to complex formation and increasing selectivity [67].

Overall, the effect of the alkyl or aryl group on selectivity remains unclear. In many cases, little more than the separation factor is known. If more information were available, a more comprehensive explanation for the effect may be determined. Of particular interest would be the structure and coordination of the extracted complexes for extractants other than HC301. This will likely require extended x-ray absorption fine structure (XAFS) as the long alkyl groups of many extractants likely prevent the formation of crystals necessary for single crystal XRD.

Table 1: Various mono- and di-thiophosphinic acids and their separation factors for tracer amounts of Am and Eu from nitric acid media. None of the extractants have been saponified prior to extraction.

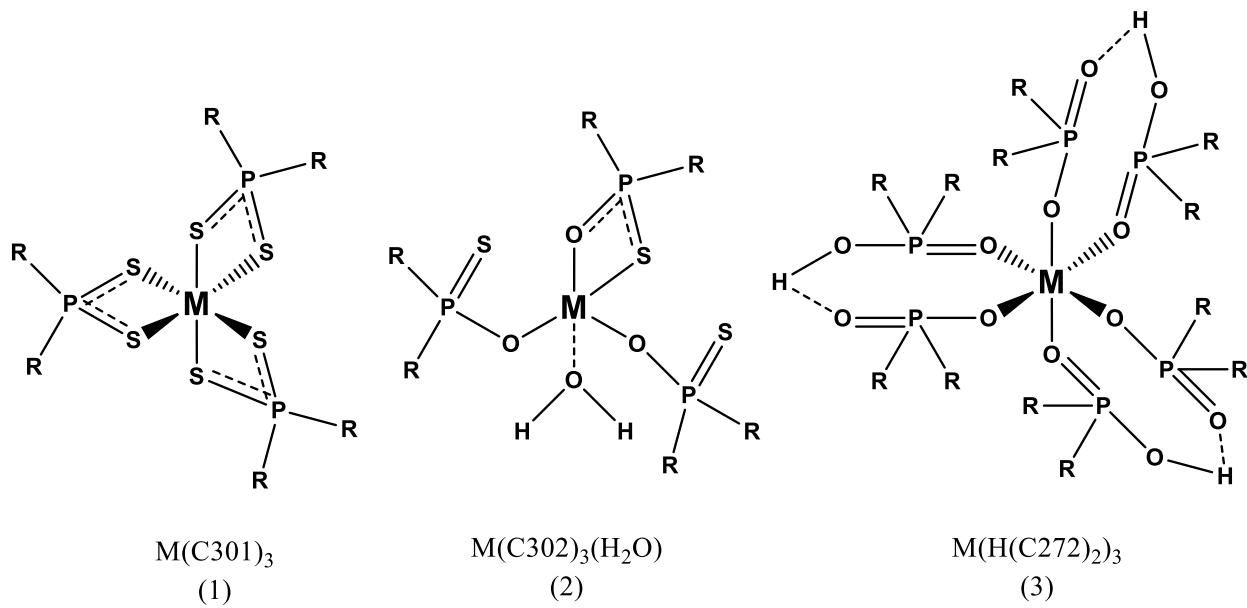
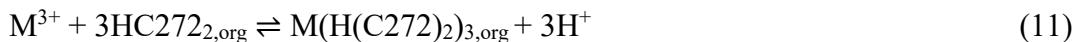
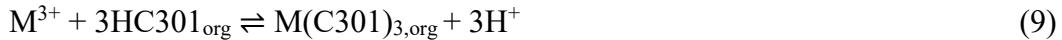
Phosphinic Acid	SF _{Am/Eu}	Solvent	Aqueous pH	Reference
	100,000	FS-13	2.5	[25]
	10,000	FS-13	~2.3	[26]
	40,000	FS-13	~2.3	[26]
	1,000	FS-13	~2.1	[26]
	20	FS-13	2.5	[25]
	21	Xylene	Not Reported	[43]

	4.4	Xylene	Not Reported	[43]
	1.8	Xylene	Not Reported	[43]
	1.3	Xylene	Not Reported	[43]
	1.0	Xylene	Not Reported	[43]
	3.0[43]	Xylene	Not Reported	[43]
	2.1	Xylene	2.82	[43,44]
	1.4	Xylene	3.51	[43,44]
	9,700	Toluene	Not Reported	[24]
	0.71	Xylene	4.90	[43,44]
	5,900	Kerosene	~2.8-4.4	[28]
	6,000	Dodecane	3.4	[65]
	9,800	Toluene	Not Reported	[24]
	8.3	Xylene	4.12	[44]
	10,000	Toluene	Not Reported	[24]
	4.2	Xylene	2.36	[43,44]
	10,000	Toluene	Not Reported	[24]
	1.3	Xylene	Not Reported	[43]

	2.43	Xylene	3.13	[44]
	0.8	Xylene	Not Reported	[43]
	0.96	Xylene	0.86	[44]
	0.3	Xylene	Not Reported	[43]
	0.68	Xylene	2.87	[44]

In addition to the above thiophosphinic acids being considered as the sole extractant, dithiophosphinic acids have been studied in combination with neutral, organophosphorus extractants in a synergistic extraction system. Modolo and Odoj have characterized bis(phenyl)-, bis(fluorophenyl)-, and bis(chlorophenyl)-dithiophosphinic acids with many synergic, solvating extractants. They found the extractant strength increases in the order of phenyl < fluorophenyl < chlorophenyl, but as the extractant strength increases, the separation factor decreases [68,69]. Xu et al. also observed that an increase in extractant strength corresponds to a decrease in selectivity, even though no synergists were used in Xu's work [43].

3.3.3 Mechanisms




3.3.3.1 Cyanex 301

The precise mechanism by which dithiophosphinic acids extract lanthanide and actinide ions is not universally agreed upon, but it is generally accepted that dithiophosphinic acids are cation exchange extractants that exchange protons for metal ions in the extraction process. A more complete understanding of the mechanism by which these acids extract could lead an improvement of the separation of lanthanides and actinides. However, uncertainty remains about the effect of extractant aggregation, stoichiometry of the extracted complexes, impact of saponification, and effect of solvents.

In solution, purified HC301 has been found to weakly dimerize in deuterated *n*-heptane ($K_2=0.67$) [45] and toluene ($K_2=0.78$) [70]. Therefore, under typical extraction conditions, both HC301 monomers and dimers are present and able to impact the extraction of metal. In contrast, the monothiophosphinic acid analog, bis(2,4,4-trimethylpentyl)monothiophosphinic acid (HC302), ($K_2=20$) [71] and its phosphinic acid analog, bis(2,4,4-trimethylpentyl)phosphinic acid (HC272), ($K_2=1.0 \times 10^3$) [72] are substantially dimerized.

When Jensen and Bond conducted distribution experiments in dodecane and accounted for changes in the concentration of extractant dimers, slope analysis showed three molecules of purified HC301 or HC302 are necessary for the extraction of one trivalent lanthanide or actinide as per Equations 9-10, but the more strongly dimerized HC272 extracts trivalent metals using three dimers of $\text{H}(\text{C272})_2^-$, Equation 11 [18,45]. The complexes that are proposed to be formed from these reactions are shown in Figure 4. This behavior was further confirmed by SANS studies of the Cyanex 301 solutions [73,74]. Later XAFS studies of the coordination

environments of Cm, Sm, and Nd extracted by HC301 were best fit with 6 sulfur atoms which corresponds to three molecules of HC301 [18]. XAFS also showed similar bond lengths for lanthanides and actinides with HC301, and metal-sulfur distances consistent with hexacoordination [18]. Since XAFS shows the same number of sulfur atoms coordinating to both the lanthanides and actinides with HC301, yet selectivity is observed, they proposed that the selectivity must be due to greater covalency with actinides under their extraction conditions [18].

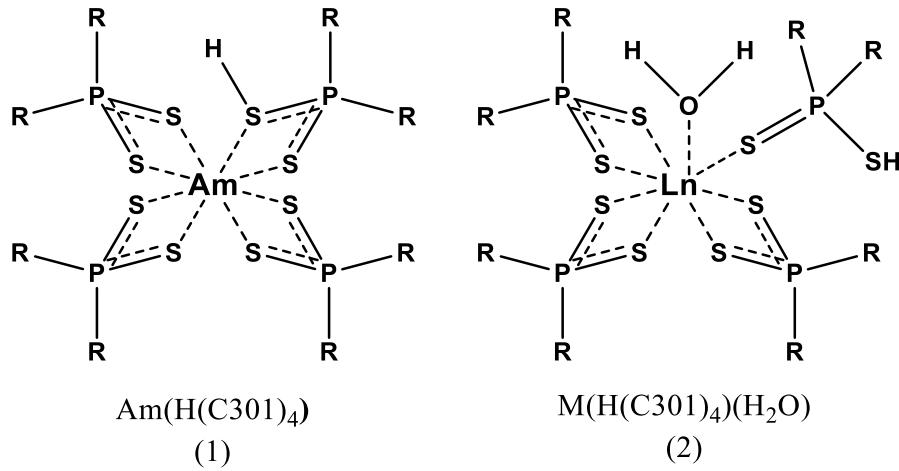
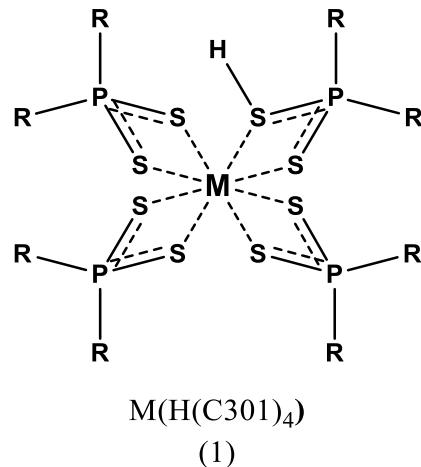


Figure 4: Proposed structures of the complexes extracted in Equations 9 to 11 [18,45]. R=2,4,4-trimethylpentyl.

Xu et al. and Pu et al. studied the reaction of lanthanides with the ammonium salts of HC301 [75] and aromatic dithiophosphinic acids [67] in ethanol. UV-vis and calorimetric titrations showed the step-wise addition of dithiophosphinates to the metal center ultimately leading to complexes of one metal coordinated by three dithiophosphinates [67,75]. Formation constants and thermodynamic parameters were determined this data and enable the calculation of speciation for most of the lanthanides with HC301 in ethanol [75]. Although this system is not directly comparable to the solvent extraction system used by Jensen and Bond [18], it is worth noting that the same complex was observed at the endpoint of the titrations and from solvent extraction.


The extraction mechanisms shown in Equations 9-11 are not the only proposed mechanisms. Tian et al. used XAFS to characterize the complexes formed when purified HC301 extracts Am in hydrogenated kerosene [62] and La, Nd, and Eu in toluene [61]. They found seven sulfur

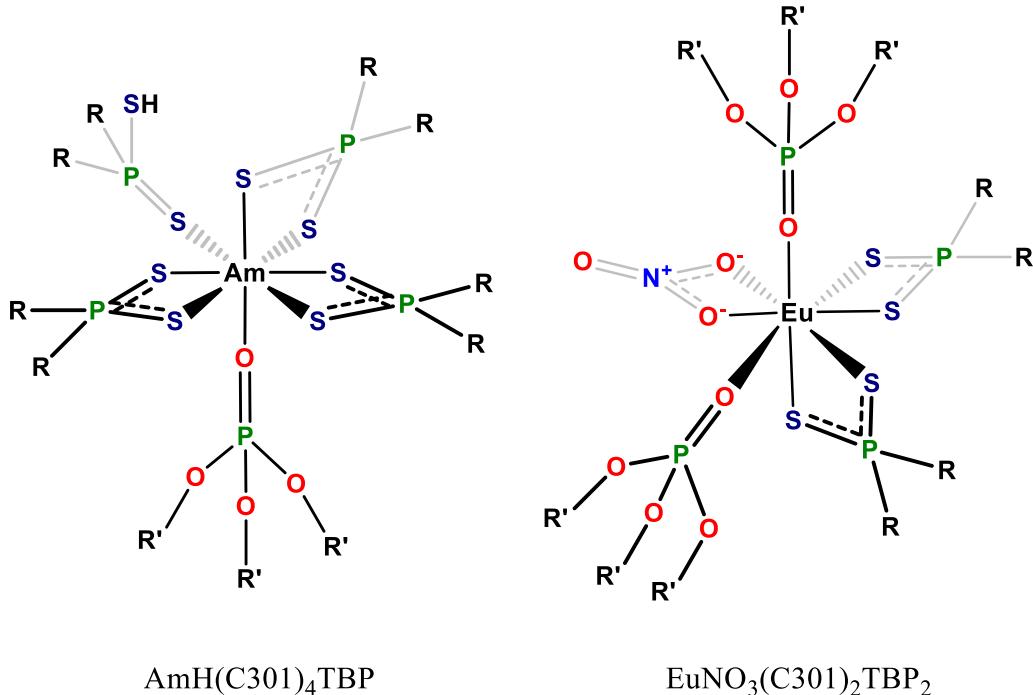
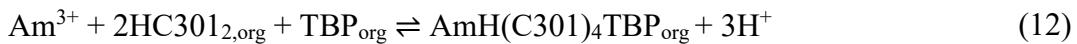
1 atoms and the oxygen from a water molecule are coordinated to the lanthanides and eight sulfur
 2 atoms and no oxygens are coordinated to Am, suggesting that 4 molecules of HC301 participate
 3 in the extraction as shown in Figure 5 [61,62]. These results were also obtained by a mass
 4 spectrometry experiment [61]. Due to the difference in the coordination environments of
 5 lanthanides and actinides in these results, they propose that differences in the hydration of the
 6 metal are responsible for the selectivity observed with HC301.

7
 8 **Figure 5:** Speculative structures of the complexes postulated by Tian et al. [61,62]. R=2,4,4-trimethylpentyl.

9 Zhu et al. have also studied the extraction of lanthanides and actinides with purified HC301
 10 in kerosene using slope analysis distribution studies. They found four HC301 molecules are
 11 required for the extraction of one trivalent actinide or lanthanide when they assumed that all
 12 HC301 is dimerized in the slope analysis[28]. This group has also reported the widely cited Am
 13 and Eu separation factor of 5900 for purified HC301 with no additional synergistic reagents [28].
 14 This group's studies that show four HC301 moieties used in the extraction of lanthanides also
 15 show consistent coordination environments with single crystal XRD studies of dithiophosphinic
 16 acids with smaller alkyl groups [31,76,77]. Single crystals of metal complexes with
 17 dithiophosphinic acids with more sterically demanding alkyl groups, such as cyclohexyl groups,
 18 show three dithiophosphinic acids [74].

1 **Figure 6:** Speculative structures of the complexes postulated by Zhu et al. [28]. R=2,4,4-trimethylpentyl

2 A third mechanism for lanthanide extraction by HC301 has also been identified for the heavy
3 lanthanides. While light lanthanides form inner sphere complexes with the Cyanex 301 anion in
4 organic phases, lanthanides heavier than Eu are extracted as fully hydrated cations with the
5 extractant in the outer coordination sphere when extracted from a 0.1 M solution of the
6 lanthanide nitrate adjusted to pH 3.5 with NaOH or HNO₃ [78]. XAFS, UV-vis, and fluorescence
7 measurements of the extracted complexes of heavy lanthanides with 30% saponified HC301 in
8 toluene show only water in the coordination sphere and are similar to the aqua ions whereas the
9 light lanthanides show sulfur and phosphorus from HC301 in the coordination sphere and are
10 quite different than for the aqua ions [78]. Computational studies have also suggested that heavy
11 actinides more prone to be extracted as outer sphere complexes [79]. At higher degrees of
12 saponification, further extraction of water with both light and heavy lanthanides due to the
13 formation of water-in-oil micelles is observed [80,81].



14 Under the narrow pH ranges tested without saponification of the extractant, slope analysis
15 suggests a consistent metal-to-ligand ratio [28,45]. However, at a higher pH or with a saponified
16 extractant, it is possible that different extracted complexes or micelles may form. Therefore, it is
17 possible that the different mechanisms observed by Tian et al. and Zhu et al., as compared to the
18 mechanism found by Jensen and Bond, arise from saponification of the extractant. Jensen and
19 Bond did not saponify their organic phases for their studies [18,45] whereas Tian et al. and Zhu
20 et al. added a base to partially neutralize the HC301 and promote greater metal uptake
21 [28,61,62]. Therefore, the differences in the observed mechanisms may both be correct for the
22 different conditions used, but further research is needed to verify this.

23 In addition to the previous studies, where purified HC301 is considered, the commercially
24 supplied form of HC301 has been studied. HC301 as supplied has been found to contain HC301
25 is 75-83% of the desired dithiophosphinic acid, 5-8% is neutral phosphine sulfides, 3-6% is the
26 monothiophosphinic acid, and the remainder is unknown [82]. Zhu et al. have tested HC301 as
27 supplied by the manufacturer and found that the separation depends on the concentration of
28 lanthanide in the aqueous phase. With higher lanthanide concentrations and tracer amounts of
29 Am, the separation factor increased [56]. They propose that at low concentrations of lanthanides,
30 the impurities which are not selective extract metals, particularly lanthanides, more strongly than
31 bis(2,4,4-trimethylpentyl)dithiophosphinic acid. The lack of selectivity provided by the
32 impurities are responsible for the low separation factors [56]. As the concentration of lanthanides
33 increases, the impurities become saturated with metal leaving bis(2,4,4-
34 trimethylpentyl)dithiophosphinic acid as the only ligand still capable of extraction, which it does
35 selectively [56].

36 **3.3.3.2 Dithiophosphinic Acids in Synergistic Mixtures**

37 Dithiophosphinic acids have been considered in conjunction with other neutral, oxygen donor
38 extractants in synergistic mixtures. Hill et al. have studied lanthanide and actinide separations
39 with synergistic mixtures of purified HC301 and TBP. Using slope analysis of distribution
40 experiment results, they found Am and Eu are extracted through the formation of different
41 complexes as shown in Equations 12 and 13 [65]. Structures of the complexes extracted in

1 Equations 10 and 11 are shown in Figure 7. A maximum separation factor of this HC301 and
 2 TBP synergistic mixture was observed at 10% TBP (SF≈6,000), where the separation factor was
 3 greater than that of only HC301 (SF≈3,500) [65]. In addition to testing synergistic mixtures of
 4 HC301 and TBP, Hill et al. tested mixtures of HC301 with either triphenylphosphosphate (TPP) or
 5 diphenylsulfoxide (DPSO) and were able to modulate the distribution values and separation
 6 factors with the use of other synergic agents [65]. Ionova et al. have continued studying
 7 synergistic effects of neutral, oxygen donating extractants. They found that for both HC301 and
 8 bis(chlorophenyl)dithiophosphinic acid with TBP, tri-*tert*-butylphosphate (TtBP), TPP,
 9 trioctylphosphine (TOPO), and CMPO, the distribution ratio of Am and Eu is linearly related to
 10 both the effective charge on the oxygen of the neutral extractant and the chemical shift of the
 11 molecule with ^{31}P NMR [60,83].

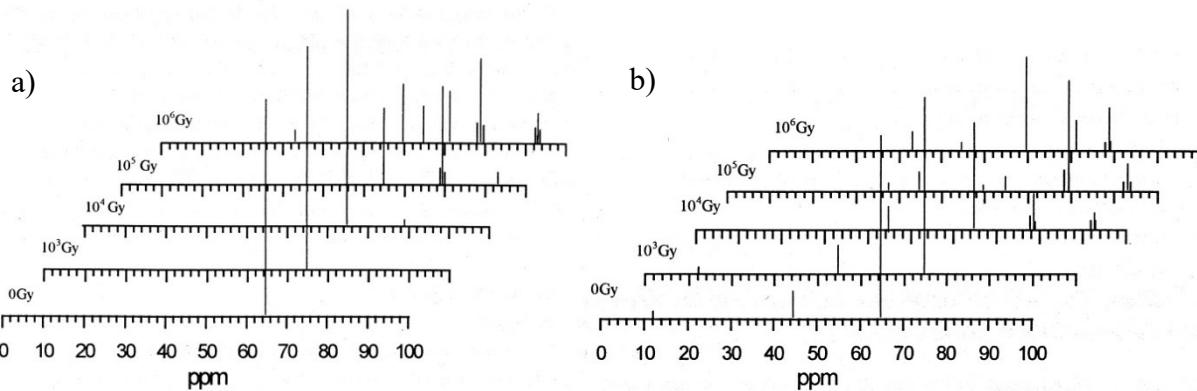
12

13 **Figure 7:** Speculative structures of the Am and Eu complexes extracted in Equations 12 and 13. R=2,4,4-
 14 trimethylpentyl and R'=n-butyl.

15 The synergistic effect of TBP or other synergic agents likely arises from the increased
 16 coordination of the metal ion by lipophilic moieties [41,42]. In the mechanisms for the extraction
 17 of metal solely by HC301 as proposed by Jensen and Bond, three HC301 molecules are
 18 coordinated to a metal ion [45]. With all of the sulfur from the HC301 and no water molecules
 19 coordinating the metal, as supported by XAFS, [18] the metal would be under coordinated with a
 20 coordination number of six. Being incompletely coordinated allows the coordination of a TBP
 21 molecule or similar moiety causing the entire complex to become more lipophilic and thus more

1 readily extracted. This effect would increase the distribution ratio, but it does not fully explain
2 the increase of the separation factor from 3,500 to 6,000 or the different complexes extracted in
3 Equations 12 and 13 observed by Hill et al. [65].

4 The greater separation factor with TBP or similar synergic agents may be explained by
5 competition between HC301 and the neutral, solvating extractant. Since the lanthanides are
6 bound less strongly than actinides by HC301, the HC301 bound to a lanthanide can be replaced
7 by TBP more easily as evidenced by the Eu complex from Equation 11 having two TBP
8 molecules and only two C301⁻ species versus the three C301⁻ from Jensen and Bond's findings.
9 The substitution of an anionic C301⁻ with a neutral TBP species requires the coordination of
10 another anion to maintain the charge neutrality required for organic phase solubility.


11 In the work done by Hill et al., this anion was nitrate which is not lipophilic and therefore
12 poorly extracted. The extraction of nitrate roughly balances the increased lipophilicity resulting
13 from the coordination of TBP to the complex. This crude balance causes the distribution ratio of
14 Eu to change only slightly with the addition of TBP [65]. For Am, the lipophilicity would
15 increase by the addition of a TBP and the retention of HC301. In this case, Am extraction
16 increases with the addition of TBP [65]. This increase in the Am distribution ratio, while the Eu
17 distribution ratio remains relatively unchanged, has been argued to generate the separation factor
18 to increase shown by Hill et al. [65].

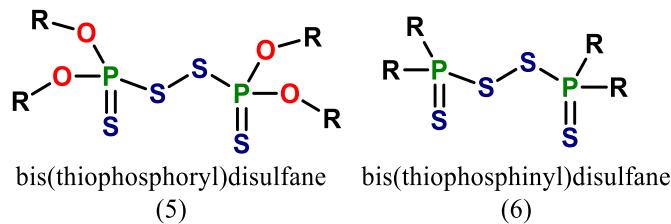
19 The solvent effects on the synergistic extraction by a mixture of
20 bis(chlorophenyl)dithiophosphinic acid and TOPO has been briefly studied. Ionova et al. tested
21 the effect of using toluene, xylene, *t*-butylbenzene, or tri-*i*-propylbenzene as the diluent for this
22 extraction and found that the distribution ratio of Am greatly increases as the polarizability of the
23 diluent increases. The degree of increase in the Eu distribution ratio reduces as the bulkiness of a
24 solvent molecule increases.[83] As a result, the separation factor increases from 23.5 for toluene
25 to 45.6 for tri-*i*-propylbenzene [83].

26 **3.3.4 Degradation Studies**

27 One concern about the use of dithiophosphinic acids for separating the components of used
28 nuclear fuel is their radiolytic stability. Chen et al. have studied the effects of irradiating both
29 commercial and purified HC301 in an open glass tube with a ⁶⁰Co γ -source in the absence of an
30 aqueous phase [22]. From NMR spectra of the irradiated extractants, they found both decompose
31 to the monothiophosphinic acid and phosphinic acid, sulfuric acid, and an unidentified, neutral
32 phosphorus containing molecule as shown in Figure 8 [22]. Initially, both the purified and
33 commercial HC301 are primarily the dithiophosphinic acid with a ³¹P NMR peak at 65 ppm [22].
34 As the radiation dose increases, an ingrowth of peaks occurs corresponding to the
35 monothiophosphinic acid (93.5 ppm), phosphinic acid (59.8 ppm), and other phosphorus
36 compounds. Photodegradation of HC301 also produces the monothiophosphinic and phosphinic
37 acids plus an unknown compound [84]. Accompanying the decomposition of the HC301, the
38 separation factors also markedly decrease [22]. Although both the commercial and purified
39 HC301 decompose, the purified HC301 is more robust, being able to effectively separate tracer
40 amounts of Am and Eu after 1x10⁵ Gy whereas the commercial HC301 only retains that ability
41 up to 1x10⁴ Gy [22].

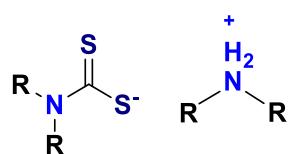
1 Despite the radiolysis, Chen et al. propose that under typical process conditions, purified
 2 HC301 would be capable of the industrial separation of lanthanides and actinides for
 3 approximately 10 hours [22]. Modolo and Odoj have also studied the radiolytic stability of
 4 purified HC301 and confirmed the findings of Chen et al. Modelo and Odoj have also found that
 5 after irradiation, the separation factor between Am and Eu more sensitive to pH [23]. In addition
 6 to HC301, Modelo and Odoj found the irradiation characteristics of bisphenyldithiophosphinic
 7 acid and bis(chlorophenyl)dithiophosphinic acid to be much more resistant than HC301 [68]. At
 8 a dose of 1×10^6 Gy, 82% of the HC301 had decomposed, [23] but under the same conditions,
 9 <2% decomposition was observed for the aromatic dithiophosphinic acids [68]. Although not
 10 discussed by Modolo and Odoj, these dithiophosphinic acids likely decompose into their
 11 monothiophosphinic and phosphinic acid analogues similarly to how HC301 decomposes [22].
 12 Modolo and Seekamp further examined the radiolysis and hydrolysis of
 13 bis(chlorophenyl)dithiophosphinic acid. They found that both radiolysis and hydrolysis produce
 14 the monothiophosphinic acid and phosphinic acid and that the nitrous acid scavengers
 15 amidosulfuric acid, hydrazine, and urea prevent hydrolysis [85]. Although untested, further
 16 decreases in radiolysis may be possible by adding a radical scavenger to the organic solution.
 17 The greater stability of the aromatic dithiophosphinic acids, in combination with the higher
 18 separation factors they provide, is promising for the use of such extractants for the industrial
 19 separation of actinides and lanthanides.

20
 21 **Figure 8:** a) ^{31}P NMR spectra of purified HC301 at various doses of radiation and b) ^{31}P NMR spectra of
 22 commercial HC301 at various doses of radiation [22].


23 HC301 was also found to be susceptible to degradation by nitric acid [86–88], but not
 24 sulfuric acid [86]. As seen with radiolysis and photolysis of HC301, this degradation results in
 25 the formation of the monothiophosphinic and phosphinic acids [86]. An intermediate that
 26 consists of two HC301 molecules linked by a disulfide bridge has been observed [87,88]. This
 27 disulfide intermediate is produced more quickly at higher nitric acid concentrations [87] and
 28 therefore should be less of a problem at the low nitric acid concentrations typically used for
 29 separations.

30 The stability of bis(*o*-trifluoromethylphenyl)dithiophosphinic acid has also been tested when
 31 in contact with aqueous nitric acid during irradiation. Klaehn et al. found that after 140 days of
 32 being in contact with 0.01 M nitric acid, 68% of the dithiophosphinic acid remained and when no

acid was present, 81% remained [25]. When the high radiolytic stability of similar bisphenyldithiophosphinic acids is also considered, bis(*o*-trifluoromethylphenyl)dithiophosphinic acid is likely to be quite stable under typical reprocessing conditions.


4 *3.4 Miscellaneous Sulfur Containing Extractants*

In addition to the sulfur containing extractants detailed above, other reagents have been considered. Zalupski et al. have tested the cation exchange extractant P,P'-di(2-ethylhexyl)-methylenebisthiophosphonic acid and its oxygen analog, P,P'-di(2-ethylhexyl)methylenebisphosphonic acid. They found the bisthiophosphonic acid has lower extractant strength for both Am and Eu than for the phosphonic acid, but has higher selectivity for Am [89]. This increase in selectivity does not enable an effective separation, as Am and Eu are extracted with nearly the same strength, whereas the phosphonic acid extracts Eu more strongly [89]. This behavior is similar to that of monothiophosphinic acids such as HC302, where lanthanides and actinides are extracted to approximately the same degree [45]. Bisdithiophosphonic acids have not been tested for the separation of trivalent actinides and lanthanides although they may be expected to display more selectivity due to additional sulfur sites. They have been observed to extract Gd³⁺ poorly though they hydrolyze below pH 2 and above 11 to 12 [90].

Figure 9: Structure of a bis(thiophosphoryl)disulfane (5) and bis(thiophosphinyl)disulfane (6).

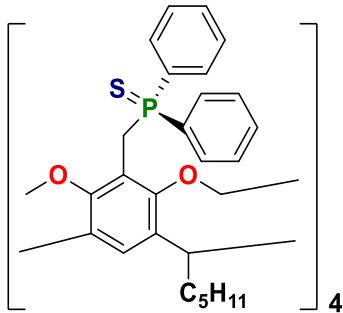
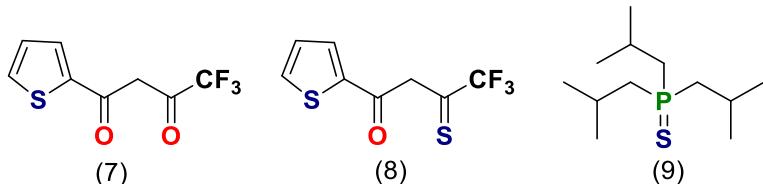

Another class of extractants that may merit more study are the bis(thiophosphoryl)disulfanes and bis(thiophosphinyl)disulfanes. They have been used as extractants for soft, transition metal cations and their complexes with several lanthanides have been characterized [91–94]. Although they have yet to be studied in the context of lanthanide/actinide separations, they may have implications on the use of dithiophosphinic or dithiophosphoric acids as they can form bis(thiophosphinyl)disulfanes or bis(thiophosphoryl)disulfanes by the formation of a disulfide bond in oxidizing conditions [91].

Figure 10: Generic structure of a dialkylammonium dithiocarbamate. R= butyl, octyl, phenyl, or benzyl.


Dithiocarbamates have shown high separation factors of up to 32,000. Miyashita et al. have prepared dialkylammonium dialkyldithiocarbamates *in situ* where the alkyl groups were butyl, octyl, phenyl, or benzyl and tested their ability to separate Am and Eu in different organic solvents [95–97]. They act as cation exchange extractants that extract metal as complexes with one trivalent metal ion and three dithiocarbamates to form a neutral complex [95–97]. To avoid

1 the rapid hydrolysis of these extractants when contacted with an acidic aqueous phase, they were
2 synthesized *in situ* by combining carbon disulfide and the appropriate disubstituted amine [96].

3
4 **Figure 11:** Tetrakis(phosphane sulfide) cavitand.

5 Tetrakis(phosphane sulfide) cavitands have been synthesized and their efficacy for
6 separations has been tested [98]. They were found to extract both Am^{3+} and Eu^{3+} very weakly if
7 at all and with a SF of 1.7 [98]. These cavitands were also tested in the presence of the synergists
8 TBP and TOPO. Although the distribution ratios of both Am^{3+} and Eu^{3+} were increased, almost
9 no selectivity was observed with SFs ranging from 1.1 to 1.2 [98].

10
11 **Figure 12:** Structure of thenoyltrifluoroacetone (7), thiothenoyltrifluoroacetone (8), and tri-iso-butylphosphine
12 sulfide (9).

13 Thenoyltrifluoroacetone (HTTA) is often used as an extractant for f-block metals that has
14 been tested in conjunction with the sulfur donating synergist tri-iso-butylphosphine sulfide
15 (TBPS) for the separation of Am^{3+} and Eu^{3+} [99]. In extractions from perchlorate media, metal
16 was weakly extracted as complexes of the form $\text{M}(\text{TTA})_2(\text{ClO}_4)(\text{TBPS})$ in cyclohexane [99].
17 The SF for this separation is approximately 0.59 [99]. A sulfur donating version of HTTA was
18 also prepared, thiothenoyltrifluoroacetone (HSTTA) [99]. It was found to extract trivalent metals
19 as complexes of the form $\text{M}(\text{STTA})_2(\text{ClO}_4)(\text{HSTTA})$ [99]. The addition of TBP caused the
20 formation of $\text{M}(\text{STTA})_3(\text{TBP})$ and $\text{M}(\text{STTA})_3(\text{TBP})_2$ complexes while increasing the
21 distribution ratio and selectivity for Am^{3+} [99].

22 **4. Conclusions**

23 Soft, sulfur donating ligands have shown remarkable success for the difficult, laboratory
24 scale separation of lanthanides and trivalent actinides. Although many of the sulfur containing
25 ligands have not yielded usable separations, several molecules show promise for an efficient
26 industrial scale separation. Generally, extractants that contain anionic sulfur donors and can form
27 chelate rings, such as the dithiophosphinic acids, dithiophosphoric acids, and dithiocarbamates
28 display the best selectivity for actinides. Of these three extractants, dithiophosphinic acids have

1 shown the most promise as the dithiophosphoric acids give lower separation factor and are
2 weaker extractants while the dithiocarbamates rapidly hydrolyze at low pH. Extractants that have
3 neutral sulfur donor sites are much weaker extractants and require the ability to form chelate
4 rings to extract lanthanides or actinides as the sole extractant as seen with the phosphane sulfide
5 cavitands and STTA. Yet extractants with neutral sulfur sites that cannot form chelates can
6 increase selectivity as a synergist, such as TBPS. Perhaps the best example of a successful sulfur
7 based extractant is bis(*o*-trifluoromethylphenyl)dithiophosphinic acid as this extractant has a
8 high Am/Eu separation factor [25,26] and usable stability [25]. Other sulfur containing
9 extractants, even those that do not show great separations, indicate what drives trivalent
10 actinide/lanthanide selectivity and can help guide the design of better molecules for this
11 challenging separation.

12 There are several benefits and drawbacks that would be associated with the implementation
13 of one of these extractants on a scale suitable for processing large quantities of used nuclear fuel.
14 There are several extractants with high separation factors [25,26,28] that would enable a more
15 compact and efficient process flowsheet for the separation of actinides and lanthanides.
16 However, these sulfur based extractants will introduce sulfur to the waste stream which adds an
17 additional waste treatment challenge [21] and the synthesis and purification of these extractants
18 is not trivial [24–26]. More research is needed to develop this class of extractants into a useful,
19 scalable separation process.

20 While many unknown facets of this type of chemistry still exist, the most pressing question
21 relevant to this and other soft donor work is the precise cause of the selectivity that sulfur and
22 other soft donors have for the actinides over the lanthanides. It has been shown that sulfur
23 sometimes forms shorter bonds with the actinides than the lanthanides, [13,30,31] but the cause
24 of this bond shortening remains unknown and may contribute to the observed selectivity of some
25 sulfur donating ligands. Work on structure-function relationships for this class of extractants is
26 needed and would assist in assessing the source of sulfur’s selectivity towards the actinides,
27 ultimately leading to improvements in the challenging separation of trivalent actinides and
28 lanthanides.

29 **5. Acknowledgements**

30 This work was supported by the U.S. Department of Energy Office of Science, Office of
31 Basic Energy Sciences, Heavy Elements Chemistry Program at Colorado School of Mines under
32 Award Number DE-SC0020189.

33 **6. References**

- 34 [1] R.G. Pearson, Hard and Soft Acids and Bases, *J. Am. Chem. Soc.* 85 (1963) 3533–3539.
35 <https://doi.org/10.1021/ja00905a001>.
- 36 [2] K.J. Street, G.T. Seaborg, The Separation of Americium and Curium from the Rare Earth
37 Elements, *J. Am. Chem. Soc.* 72 (1950) 2790–2792. <https://doi.org/10.1021/ja01162a530>.
- 38 [3] J.A. Drader, M. Luckey, J.C. Braley, Thermodynamic Considerations of Covalency in
39 Trivalent Actinide- (poly)aminopolycarboxylate Interactions Thermodynamic
40 Considerations of Covalency in Trivalent, Solvent Extr. Ion Exch. 34 (2016) 114–125.

1 https://doi.org/10.1080/07366299.2016.1140436.

2 [4] G.T. Seaborg, Place in periodic system and electronic structure of the heaviest elements,
3 Nucleonics. 5 (1949) 16–36.

4 [5] M.P. Kelley, J. Su, M. Urban, M. Luckey, E.R. Batista, P. Yang, J.C. Shafer, On the
5 Origin of Covalent Bonding in Heavy Actinides, *J. Am. Chem. Soc.* 139 (2017) 9901–
6 9908. <https://doi.org/10.1021/jacs.7b03251>.

7 [6] S.K. Cary, M. Vasiliu, R.E. Baumbach, J.T. Stritzinger, T.D. Green, K. Diefenbach, J.N.
8 Cross, K.L. Knappenberger, G. Liu, M.A. Silver, A.E. DePrince, M.J. Polinski, S.M. Van
9 Cleve, J.H. House, N. Kikugawa, A. Gallagher, A.A. Arico, D.A. Dixon, T.E. Albrecht-
10 Schmitt, Emergence of californium as the second transitional element in the actinide
11 series, *Nat. Commun.* 6 (2015) 6827. <https://doi.org/10.1038/ncomms7827>.

12 [7] M.A. Silver, S.K. Cary, J.A. Johnson, R.E. Baumbach, A.A. Arico, M. Luckey, M. Urban,
13 J.C. Wang, M.J. Polinski, A. Chemey, G. Liu, K.-W. Chen, S.M. Van Cleve, M.L. Marsh,
14 T.M. Eaton, L.J. van de Burgt, A.L. Gray, D.E. Hobart, K. Hanson, L. Maron, F. Gendron,
15 J. Autschbach, M. Speldrich, P. Kogerler, P. Yang, J. Braley, T.E. Albrecht-Schmitt,
16 Characterization of berkelium(III) dipicolinate and borate compounds in solution and the
17 solid state, *Science* (80-.). 353 (2016) aaf3762–aaf3762.
18 <https://doi.org/10.1126/science.aaf3762>.

19 [8] M.P. Kelley, N.P. Bessen, J. Su, M. Urban, S.I. Sinkov, G.J. Lumetta, E.R. Batista, P.
20 Yang, J.C. Shafer, Revisiting complexation thermodynamics of transplutonium elements
21 up to einsteinium, *Chem. Commun.* 54 (2018) 10578–10581.
22 <https://doi.org/10.1039/c8cc05230a>.

23 [9] M.J. Polinski, S. Wang, E. V Alekseev, W. Depmeier, T.E. Albrecht-Schmitt, Bonding
24 Changes in Plutonium(III) and Americium(III) Borates, *Angew. Chemie Int. Ed.* 50
25 (2011) 8891–8894. <https://doi.org/10.1002/anie.201103502>.

26 [10] M.J. Polinski, E.B. Garner, R. Maurice, N. Planas, J.T. Stritzinger, T.G. Parker, J.N.
27 Cross, T.D. Green, E. V Alekseev, S.M. Van Cleve, W. Depmeier, L. Gagliardi, M.
28 Shatruk, K.L. Knappenberger, G. Liu, S. Skanthakumar, L. Soderholm, D.A. Dixon, T.E.
29 Albrecht-Schmitt, Unusual structure, bonding and properties in a californium borate, *Nat.
30 Chem.* 6 (2014) 387–392. <https://doi.org/10.1038/nchem.1896>.

31 [11] M.J. Polinski, S. Wang, E. V Alekseev, W. Depmeier, G. Liu, R.G. Haire, T.E. Albrecht-
32 Schmitt, Curium(III) Borate Shows Coordination Environments of Both Plutonium(III)
33 and Americium(III) Borates, *Angew. Chemie Int. Ed.* 51 (2012) 1869–1872.
34 <https://doi.org/10.1002/anie.201107956>.

35 [12] B.B. Iversen, F.K. Larsen, A.A. Pinkerton, A. Martin, A. Darovsky, P.A. Reynolds,
36 Characterization of Actinide Bonding in $\text{Th}(\text{S}_2\text{PMe}_2)_4$ by Synchrotron X-ray Diffraction,
37 *Inorg. Chem.* 37 (1998) 4559–4566. <https://doi.org/10.1021/ic9715613>.

38 [13] A.J. Gaunt, S.D. Reilly, A.E. Enriquez, B.L. Scott, J.A. Ibers, P. Sekar, K.I.M. Ingram, N.
39 Kaltsoyannis, M.P. Neu, Experimental and Theoretical Comparison of Actinide and
40 Lanthanide Bonding in $\text{M}[\text{N}(\text{EPR}_2)_2]_3$ Complexes ($\text{M} = \text{U, Pu, La, Ce}$; $\text{E} = \text{S, Se, Te}$;
41 $\text{R} = \text{Ph, iPr, H}$), *Inorg. Chem.* 47 (2008) 29–41. <https://doi.org/10.1021/ic701618a>.

42 [14] X. Wang, L. Andrews, K.S. Thanthiriwatte, D.A. Dixon, Infrared Spectra of H_2ThS and

1 H₂US in Noble Gas Matrixes : Enhanced, Inorg. Chem. 52 (2013) 10275–10285.
2 <https://doi.org/10.1021/ic400560k>.

3 [15] U. Casellato, M. Vidali, P.A. Vigato, Actinide complexes with chelating ligands
4 containing sulfur and amidic nitrogen donor atoms, Coord. Chem. Rev. 28 (1979) 231–
5 277. [https://doi.org/10.1016/S0010-8545\(00\)82015-9](https://doi.org/10.1016/S0010-8545(00)82015-9).

6 [16] C. Musikas, G. Le Marois, R. Fitoussi, C. Cuillerdier, Properties and Uses of Nitrogen and
7 Sulfur Donors Ligands in Actinide Separations, in: Actin. Sep., 1980: pp. 131–145.
8 <https://doi.org/10.1021/bk-1980-0117.ch010>.

9 [17] G.R. Choppin, P. Thakur, J.N. Mathur, Complexation thermodynamics and structural
10 aspects of actinide – aminopolycarboxylates, Coord. Chem. Rev. 250 (2006) 936–947.
11 <https://doi.org/10.1016/j.ccr.2006.02.003>.

12 [18] M.P. Jensen, A.H. Bond, Comparison of Covalency in the Complexes of Trivalent
13 Actinide and Lanthanide Cations, J. Am. Chem. Soc. 124 (2002) 9870–9877.
14 <https://doi.org/10.1021/ja0178620>.

15 [19] M.L. Neidig, D.L. Clark, R.L. Martin, Covalency in f-element complexes, Coord. Chem.
16 Rev. 257 (2013) 394–406. <https://doi.org/10.1016/j.ccr.2012.04.029>.

17 [20] N. Kaltsoyannis, Does Covalency Increase or Decrease across the Actinide Series?
18 Implications for Minor Actinide Partitioning, Inorg. Chem. 52 (2013) 3407–3413.
19 <https://doi.org/10.1021/ic3006025>.

20 [21] M.I. Ojovan, W.E. Lee, Glassy wasteforms for nuclear waste immobilization, Metall.
21 Mater. Trans. A. 42A (2011) 837–851. <https://doi.org/10.1007/s11661-010-0525-7>.

22 [22] J. Chen, R. Jiao, Y. Zhu, A Study on the Radiolytic Stability of Commercial and Purified
23 Cyanex 301, Solvent Extr. Ion Exch. 14 (1996) 555–565.
24 <https://doi.org/10.1080/07366299608918356>.

25 [23] G. Modolo, R. Odoj, Influence of the purity and irradiation stability of Cyanex 301 on the
26 separation of trivalent actinides from lanthanides by solvent extraction, J. Radioanal.
27 Nucl. Chem. 228 (1998) 83–89. <https://doi.org/10.1007/BF02387304>.

28 [24] T. Guoxin, Z. Yongjun, X. Jingming, Extraction of Am(III) and Ln(III) by
29 Dialkyldithiophosphinic Acid with Different Alkyl Groups, Solvent Extr. Ion Exch. 19
30 (2001) 993–1005. <https://doi.org/10.1081/SEI-100107615>.

31 [25] J.R. Klaehn, D.R. Peterman, M.K. Harrup, R.D. Tillotson, T.A. Luther, J.D. Law, L.M.
32 Daniels, Synthesis of symmetric dithiophosphinic acids for “minor actinide” extraction,
33 Inorganica Chim. Acta. 361 (2008) 2522–2532. <https://doi.org/10.1016/j.ica.2008.01.007>.

34 [26] D.R. Peterman, M.R. Greenhalgh, R.D. Tillotson, J.R. Klaehn, M.K. Harrup, T.A. Luther,
35 J.D. Law, Selective Extraction of Minor Actinides from Acidic Media Using Symmetric
36 and Asymmetric Dithiophosphinic Acids, Sep. Sci. Technol. 45 (2010) 1711–1717.
37 <https://doi.org/10.1080/01496395.2010.493787>.

38 [27] A. Bhattacharyya, P.K. Mohapatra, V.K. Manchanda, Separation of Americium(III) and
39 Europium(III) from Nitrate Medium Using a Binary Mixture of Cyanex-301 with N-donor
40 Ligands, Solvent Extr. Ion Exch. 24 (2006) 1–17.
41 <https://doi.org/10.1080/07366290500388459>.

1 [28] Y. Zhu, J. Chen, R. Jiao, Extraction of Am(III) and Eu(III) from Nitrate Solution with
2 Purified Cyanex 301, Solvent Extr. Ion Exch. 14 (1996) 61–68.
3 <https://doi.org/10.1080/07366299608918326>.

4 [29] N. Barros, D. Maynau, L. Maron, O. Eisenstein, G. Zi, R.A. Andersen, Single but stronger
5 UO, double but weaker UNMe bonds: The tale told by Cp₂UO and Cp₂UNR,
6 Organometallics. 26 (2007) 5059–5065. <https://doi.org/10.1021/om700628e>.

7 [30] M. Roger, N. Barros, T. Arliguie, P. Thuery, L. Maron, M. Ephritikhine, Lanthanide (III)/
8 Actinide (III) Differentiation in Agostic Interactions and an Unprecedented η^3 Ligation
9 Mode of the Arylthiolate Ligand, from X-ray Diffraction and DFT Analysis, J. Am.
10 Chem. Soc. 128 (2006) 8790–8802. <https://doi.org/10.1021/ja0584830>.

11 [31] J.N. Cross, J.A. Macor, J.A. Bertke, M.G. Ferrier, G.S. Girolami, S.A. Kozimor, J.R.
12 Maassen, B.L. Scott, D.K. Shuh, B.W. Stein, S.C.E. Stieber, Comparing the 2,2' -
13 Biphenylenedithiophosphinate Binding of Americium with Neodymium and Europium
14 Angewandte, Angew. Chemie Int. Ed. 55 (2016) 12755–12759.
15 <https://doi.org/10.1002/anie.201606367>.

16 [32] S.K. Cary, J. Su, S.S. Galley, T.E. Albrecht-Schmitt, E.R. Batista, M.G. Ferrier, S.A.
17 Kozimor, V. Mocko, B.L. Scott, C.E. Van Alstine, F.D. White, P. Yang, A series of
18 dithiocarbamates for americium, curium, and californium, Dalt. Trans. 47 (2018) 14452–
19 14461. <https://doi.org/10.1039/c8dt02658k>.

20 [33] S.R. Daly, J.M. Keith, E.R. Batista, K.S. Boland, D.L. Clark, S.A. Kozimor, R.L. Martin,
21 Sulfur K - edge X - ray Absorption Spectroscopy and Time-Dependent Density Functional
22 Theory of Dithiophosphinate Extractants: Minor Actinide Selectivity and Electronic
23 Structure Correlations, J. Am. Chem. Soc. 134 (2012) 14408–14422.
24 <https://doi.org/10.1021/ja303999q>.

25 [34] M. Kaneko, S. Miyashita, S. Nakashima, Bonding Study on the Chemical Separation of
26 Am(III) from Eu(III) by S-, N-, and O-Donor Ligands by Means of All-Electron ZORA-
27 DFT Calculation, Inorg. Chem. 54 (2015) 7103–7109.
28 <https://doi.org/10.1021/acs.inorgchem.5b01204>.

29 [35] M. Kaneko, M. Watanabe, S. Miyashita, S. Nakashima, Roles of d- and f-orbital electrons
30 in the complexation of Eu(III) and Am(III) ions with alkyldithiophosphinic acid and
31 alkylphosphinic acid using scalar-relativistic DFT calculations, J. Nucl. Radiochem. Sci.
32 17 (2017) 9–15. <https://doi.org/10.14494/jnrs.17.9>.

33 [36] A. Chandrasekar, T.K. Ghanty, Uncovering Heavy Actinide Covalency: Implications for
34 Minor Actinide Partitioning, Inorg. Chem. 58 (2019) 3744–3753.
35 <https://doi.org/10.1021/acs.inorgchem.8b03358>.

36 [37] J.M. Keith, E.R. Batista, Theoretical examination of the thermodynamic factors in the
37 selective extraction of Am³⁺ from Eu³⁺ by dithiophosphinic acids, Inorg. Chem. 51 (2012)
38 13–15. <https://doi.org/10.1021/ic202061b>.

39 [38] A. Bhattacharyya, T.K. Ghanty, P.K. Mohapatra, V.K. Manchanda, Selective
40 americium(III) complexation by dithiophosphinates: A density functional theoretical
41 validation for covalent interactions responsible for unusual separation behavior from
42 trivalent lanthanides, Inorg. Chem. 50 (2011) 3913–3921.
43 <https://doi.org/10.1021/ic102238c>.

1 [39] P.E. Tsakiridis, S.L. Agatzini, Simultaneous solvent extraction of cobalt and nickel in the
2 presence of manganese and magnesium from sulfate solutions by Cyanex 301,
3 Hydrometallurgy. 72 (2004) 269–278. [https://doi.org/10.1016/S0304-386X\(03\)00180-4](https://doi.org/10.1016/S0304-386X(03)00180-4).

4 [40] J. Rydberg, C. Musikas, G.R. Choppin, Principles and Practices of Solvent Extraction,
5 1992.

6 [41] A.E. Clark, P. Yang, J.C. Shafer, Coordination of Actinides and the Chemistry Behind
7 Solvent Extraction, in: *Exp. Theor. Approaches to Actin. Chem.*, 2018: pp. 237–282.

8 [42] G.R. Choppin, Studies of the Synergistic Effect, *Sep. Sci. Technol.* 16 (1981) 1113–1126.
9 <https://doi.org/10.1080/01496398108057602>.

10 [43] Q. Xu, J. Wu, Y. Chang, L. Zhang, Y. Yang, Extraction of Am (III) and lanthanides (III)
11 with organo dithiophosphinic acids, *Radiochim. Acta*. 96 (2008) 771–779.
12 <https://doi.org/10.1524/ract.2008.1565>.

13 [44] Q. Xu, J. Wu, L. Zhang, Y. Yang, Extraction of Am(III) and Eu(III) with dialkyldi (or
14 mono) thiophosphinic (or phosphoric) acids, *J. Radioanal. Nucl. Chem.* 273 (2007) 235–
15 245. <https://doi.org/10.1007/s10967-007-0742-8>.

16 [45] M.P. Jensen, A.H. Bond, Influence of aggregation on the extraction of trivalent lanthanide
17 and actinide cations by purified Cyanex 272, Cyanex 301, and Cyanex 302, *Radiochim. Acta*. 90 (2002) 205–209. https://doi.org/10.1524/ract.2002.90.4_2002.205.

19 [46] K. Matloka, A.K. Sah, P. Srinivasan, M.J. Scott, Design , synthesis and evaluation of
20 carbamoylmethylphosphine sulfide (CMPS) -based chelates for separation of lanthanides
21 and actinides, *Comptes Rendus Chim.* 10 (2007) 1026–1033.
22 <https://doi.org/10.1016/j.crci.2007.02.006>.

23 [47] M. Ozawa, Y. Koma, K. Nomura, Y. Tanaka, Separation of actinides and fission products
24 in high-level liquid wastes by the improved TRUEX process, *J. Alloys Compd.* 271–273
25 (1998) 538–543. [https://doi.org/10.1016/S0925-8388\(98\)00147-9](https://doi.org/10.1016/S0925-8388(98)00147-9).

26 [48] A. V Gelis, G.J. Lumetta, Actinide Lanthanide Separation Process—ALSEP, *Ind. Eng.*
27 *Chem. Res.* 53 (2014) 1624–1631. <https://doi.org/10.1021/ie403569e>.

28 [49] K.L. Nash, G.R. Choppin, Separations Chemistry for Actinide Elements : Recent
29 Developments and Historical Perspective, *Sep. Sci. Technol.* 32 (1997) 255–274.
30 <https://doi.org/10.1080/01496399708003198>.

31 [50] G.J. Lumetta, J.C. Carter, A. V Gelis, G.F. Vandegrift, Combining Octyl(phenyl)-N,N-
32 diisobutyl-carbamoylmethylphosphine Oxide and Bis-(2-ethylhexyl)phosphoric Acid
33 Extractants for Recovering Transuranic Elements from Irradiated Nuclear Fuel, in: *Nucl.*
34 *Energy Environ.*, ACS Publications, 2010: pp. 107–118. <https://doi.org/10.1021/bk-2010-1046.ch009>.

36 [51] V.Y. Alekseenko, E. V Sharova, O.I. Artyushin, D. V Aleksanyan, Z.S. Klemenkova, Y. V
37 Nelyubina, P. V Petrovskii, V.A. Kozlov, I.L. Odintsev, Coordination of P (X) -modified
38 (X = O , S) N -aryl-carbamoylmethylphosphine oxides and sulfides with Pd (II) and Re (I)
39 ions : Facile formation of 6,6-membered pincer complexes featuring atropisomerism,
40 *Polyhedron*. 51 (2013) 168–179. <https://doi.org/10.1016/j.poly.2012.12.025>.

41 [52] D. Pattee, C. Musikas, A. Faure, C. Chachaty, Extraction of Lanthanides and Actinides
42 (III) by Di-2-ethyl dithiophosphoric acid and Di-2-ethyl hexyl monothiophosphoric acid.

1 Structure of the Complexes in the Organic Phase, in: Int. Solvent Extr. Conf., 1986: pp. 1–
2 8.

3 [53] J.L. Lefferts, K.C. Molloy, J.J. Zuckerman, I. Haiduc, C. Guta, D. Ruse, Oxy and Thio
4 Phosphorus Acid Derivatives of Tin. 1. Triorganotin(IV) Dithiophosphate Esters, Inorg.
5 Chem. 19 (1980) 1662–1670. <https://doi.org/10.1021/ic50208a046>.

6 [54] M. Curtui, I. Haiduc, Synergic Extraction of Dioxouranium(VI) with Di(2-
7 ethylhexyl)dithiophosphoric Acid and Triphenylphosphine Oxide in Benzene, J.
8 Radioanal. Nucl. Chem. 176 (1993) 233–242. <https://doi.org/10.1021/BF02163674>.

9 [55] R. Takayama, K. Ooe, W. Yahagi, H. Fujisawa, Y. Komori, H. Kikunaga, T. Yoshimura,
10 N. Takahashi, K. Takahisa, H. Haba, Y. Kudou, Y. Ezaki, A. Toyoshima, M. Asai, Y.
11 Nagame, T. Saito, T. Mitsugashira, A. Shinohara, Solvent extraction of trivalent actinides
12 with di (2-ethylhexyl) phosphoric acid, Proc. Radiochem. 1 (2011) 157–160.
13 <https://doi.org/10.1524/rpr.2011.0029>.

14 [56] Y. Zhu, J. Chen, G.R. Choppin, Extraction of Americium and Fission Product Lanthanides
15 with Cyanex 272 and Cyanex 301, Solvent Extr. Ion Exch. 14 (1996) 543–553.
16 <https://doi.org/10.1080/07366299608918355>.

17 [57] D. Pattee, C. Musikas, A. Faure, C. Chachaty, Extraction des lanthanides et actinides
18 trivalents par l’acide Di-2-ethylhexylthiophosphorique: Structure des complexes
19 organiques, J. Less-Common Met. 122 (1986) 295–302. [https://doi.org/10.1016/0022-5088\(86\)90423-6](https://doi.org/10.1016/0022-5088(86)90423-6).

21 [58] J. Hidaka, J. Fujita, Y. Shimura, R. Tsuchida, Studies on the Cobalt(III) Complexes of
22 Monothiophosphate Ion, Bull. Chem. Soc. Jpn. 32 (1959) 1317–1320.
23 <https://doi.org/10.1246/bcsj.32.1317>.

24 [59] R.H. Zucal, J.A. Dean, T.H. Handley, Behavior of Dialkyl Phosphorodithioic Acids in
25 Liquid Extraction Systems, Anal. Chem. 35 (1963) 988–991.
26 <https://doi.org/10.1021/ac60201a021>.

27 [60] G. Ionova, S. Ionov, C. Rabbe, C. Hill, C. Madic, R. Guillaumont, J.C. Krupa, Mechanism
28 of Trivalent Actinide/Lanthanide Separation Using Bis(2,4,4-
29 trimethylpentyl)dithiophosphinic acid (Cyanex 301) and Neutral O-bearing Co-extractant
30 Synergistic Mixtures, Solvent Extr. Ion Exch. 19 (2001) 391–414.
31 <https://doi.org/10.1081/SEI-100103277>.

32 [61] T. Guoxin, Z. Yongjun, X. Jingming, Z. Ping, H. Tiandou, X. Yaning, Z. Jing,
33 Investigation of the Extraction Complexes of Light Lanthanides(III) with Bis(2,4,4-
34 trimethylpentyl)dithiophosphinic Acid by EXAFS, IR, and MS in Comparison with the
35 Americium(III) Complex, Inorg. Chem. 42 (2003) 735–741.
36 <https://doi.org/10.1021/ic025783z>.

37 [62] G. Tian, Y. Zhu, J. Xu, T. Hu, Y. Xie, Characterization of extraction complexes of
38 Am(III) with dialkyldithiophosphinic acids by extended X-ray absorption fine structure
39 spectroscopy, J. Alloys Compd. 334 (2002) 86–91. [https://doi.org/10.1016/S0925-8388\(01\)01783-2](https://doi.org/10.1016/S0925-8388(01)01783-2).

41 [63] W.M.A. Higgins, P.W. Vogel, W.G. Craig, Aromatic phosphinic acids and derivatives. I.
42 Diphenylphosphinodithioic acid and its derivatives, J. Am. Chem. Soc. 77 (1955) 1864–

1 1866. <https://doi.org/10.1021/ja01612a047>.

2 [64] M.T. Benson, M.L. Moser, D.R. Peterman, A. Dinescu, Determination of p K a for
3 dithiophosphinic acids using density functional theory, *J. Mol. Struct. THEOCHEM.* 867
4 (2008) 71–77. <https://doi.org/10.1016/j.theochem.2008.07.020>.

5 [65] C. Hill, C. Madic, P. Baron, M. Ozawa, Y. Tanaka, Trivalent minor actinides/lanthanides
6 separation, using organophosphinic acids, *J. Alloys Compd.* 271–273 (1998) 159–162.
7 [https://doi.org/10.1016/S0925-8388\(98\)00045-0](https://doi.org/10.1016/S0925-8388(98)00045-0).

8 [66] N. Pu, L. Xu, T. Sun, J. Chen, C. Xu, Tremendous impact of substituent group on the
9 extraction and selectivity to Am(III) over Eu(III) by diaryldithiophosphinic acids:
10 experimental and DFT analysis, *J. Radioanal. Nucl. Chem.* 320 (2019) 219–226.
11 <https://doi.org/10.1007/s10967-019-06445-5>.

12 [67] N. Pu, J. Su, L. Xu, T. Sun, E.R. Batista, J. Chen, P. Yang, J.C. Shafer, C. Xu,
13 “Sweeping” Ortho Substituents Drive Desolvation and Overwhelm Electronic Effects in
14 Nd³⁺ Chelation: A Case of Three Aryldithiophosphinates, *Inorg. Chem.* (2019).
15 <https://doi.org/10.1021/acs.inorgchem.9b01931>.

16 [68] G. Modolo, R. Odoj, The separation of trivalent actinides from lanthanides by
17 dithiophosphinic acids from HNO₃ acid medium, *J. Alloys Compd.* 271–273 (1998) 248–
18 251. [https://doi.org/10.1016/S0925-8388\(98\)00064-4](https://doi.org/10.1016/S0925-8388(98)00064-4).

19 [69] G. Modolo, R. Odoj, Synergistic Selective Extraction of Actinides(III) over Lanthanides
20 from Nitric Acid using new Aromatic Diorganyldithiophosphinic acids and Neutral
21 Organophosphorous Compounds, *Solvent Extr. Ion Exch.* 17 (1999) 33–53.
22 <https://doi.org/10.1080/07360299908934599>.

23 [70] N.A. Grigorieva, N.I. Pavlenko, M.A. Pleshkov, G.L. Pashkov, I.Y. Fleitlikh,
24 Investigation of the State of Bis(2,4,4-Trimethylpentyl)dithiophosphinic Acid in Nonane
25 and Toluene Solutions, *Solvent Extr. Ion Exch.* 27 (2009) 745–760.
26 <https://doi.org/10.1080/07366290903113983>.

27 [71] A. Almela, M.P. Elizalde, Interactions of metal extractant reagents. Part VIII.
28 Comparative aggregation equilibria of Cyanex 302 and Cyanex 301 in heptane, *Anal.*
29 *Proc. Incl. Anal. Commun.* 32 (1995) 145. <https://doi.org/10.1039/ai9953200145>.

30 [72] C. Sella, D. Bauer, Diphasic Acid-Base Properties of Organophosphorus Acids, *Solvent*
31 *Extr. Ion Exch.* 6 (1988) 819–833. <https://doi.org/10.1080/07366298808917967>.

32 [73] M.P. Jensen, R. Chiarizia, V. Urban, Investigation of the aggregation of the neodymium
33 complexes of dialkylphosphoric, -oxothiophosphinic, and -dithiophosphinic acids in
34 toluene, *Solvent Extr. Ion Exch.* 19 (2001) 865–884. <https://doi.org/10.1081/SEI-100107027>.

35 [74] M.P. Jensen, A.H. Bond, P.G. Rickert, K.L. Nash, Solution phase coordination chemistry
36 of trivalent lanthanide and actinide cations with Bis(2,4,4-
37 trimethylpentyl)dithiophosphinic acid, *J. Nucl. Sci. Technol.* 39 (2002) 255–258.
38 <https://doi.org/10.1080/00223131.2002.10875456>.

39 [75] C. Xu, T. Sun, L. Rao, Interactions of Bis(2,4,4-trimethylpentyl)dithiophosphinate with
40 Trivalent Lanthanides in a Homogeneous Medium: Thermodynamics and Coordination
41 Modes, *Inorg. Chem.* 56 (2017) 2556–2565.

42

1 https://doi.org/10.1021/acs.inorgchem.6b02744.

2 [76] A.A. Pinkerton, D. Schwarzenbach, S. Spiliadis, The preparation and crystal structures of
3 [Ln(S₂PEt₂)₄] [Ph₄As] (Ln = La, Er), *Inorganica Chim. Acta*. 128 (1987) 283–287.
4 https://doi.org/10.1016/S0020-1693(00)86559-7.

5 [77] K.S. Boland, D.E. Hobart, S.A. Kozimor, M.M. Macinnes, B.L. Scott, The coordination
6 chemistry of trivalent lanthanides (Ce, Nd, Sm, Eu, Gd, Dy, Yb) with
7 diphenyldithiophosphinate anions, *Polyhedron*. 67 (2014) 540–548.
8 https://doi.org/10.1016/j.poly.2013.09.019.

9 [78] X. He, G. Tian, J. Chen, L. Rao, Characterization of the extracted complexes of trivalent
10 lanthanides with purified cyanex 301 in comparison with trivalent actinide complexes,
11 *Dalt. Trans.* 43 (2014) 17352–17357. https://doi.org/10.1039/c4dt02553a.

12 [79] T. Sun, C. Xu, X. Xie, J. Chen, X. Liu, Quantum Chemistry Study on the Extraction of
13 Trivalent Lanthanide Series by Cyanex 301: Insights from Formation of Inner- and Outer-
14 Sphere Complexes, *ACS Omega*. 3 (2018). https://doi.org/10.1021/acsomega.8b00359.

15 [80] T. Sun, C. Xu, J. Chen, Formation of W/O microemulsions in the extraction of Nd(III) by
16 bis(2,4,4-trimethylpentyl)dithiophosphinic acid and its effects on Nd(III) coordination,
17 *Dalt. Trans.* 45 (2016) 1078–1084. https://doi.org/10.1039/c5dt03964a.

18 [81] T. Sun, C. Xu, J. Chen, W. Duan, Formation of W/O Microemulsions in the Extraction of
19 the Lanthanide Series by Purified Cyanex 301, *Solvent Extr. Ion Exch.* 35 (2017) 199–
20 209. https://doi.org/10.1080/07366299.2017.1326729.

21 [82] K.C. Sole, J.B. Hiskey, Solvent extraction characteristics of thiosubstituted
22 organophosphinic acid extractants, *Hydrometallurgy*. 30 (1992) 345–365.
23 https://doi.org/10.1016/0304-386X(92)90093-F.

24 [83] G. Ionova, S. Ionov, C. Rabbe, C. Hill, C. Madic, R. Guillaumont, G. Modolo, J. Claude
25 Krupa, Mechanism of trivalent actinide/lanthanide separation using synergistic mixtures
26 of di(chlorophenyl)dithiophosphinic acid and neutral O-bearing co-extractants, *New J. Chem.* 25 (2001) 491–501. https://doi.org/10.1039/b006745h.

27 [84] K. Wieszczycka, W. Tomczyk, Degradation of organothiophosphorous extractant Cyanex
28 301, *J. Hazard. Mater.* 192 (2011) 530–537.
29 https://doi.org/10.1016/j.jhazmat.2011.05.045.

30 [85] G. Modolo, S. Seekamp, Hydrolysis and Radiation Stability of the ALINA Solvent for
31 Actinide(III)/Lanthanide(III) Separation During the Partitioning of Minor Actinides,
32 *Solvent Extr. Ion Exch.* 20 (2002) 195–210. https://doi.org/10.1081/SEI-120003021.

33 [86] K.C. Sole, J. Brent Hiskey, T.L. Ferguson, An Assessment of the Long-term Stabilities of
34 Cyanex302 and Cyanex301 in Sulfuric and Nitric Acids, *Solvent Extr. Ion Exch.* 11
35 (1993) 783–796. https://doi.org/10.1080/07366299308918186.

36 [87] G.S. Groenewold, D.R. Peterman, J.R. Klaehn, L.H. Delmau, P. Marc, R. Custelcean,
37 Oxidative degradation of bis(2,4,4-trimethylpentyl)dithiophosphinic acid in nitric acid
38 studied by electrospray ionization mass spectrometry, *Rapid Commun. Mass Spectrom.* 26
39 (2012) 2195–2203. https://doi.org/10.1002/rcm.6339.

40 [88] P. Marc, R. Custelcean, G.S. Groenewold, J.R. Klaehn, D.R. Peterman, L.H. Delmau,
41 Degradation of cyanex 301 in contact with nitric acid media, *Ind. Eng. Chem. Res.* 51
42

1 (2012) 13238–13244. <https://doi.org/10.1021/ie300757r>.

2 [89] P.R. Zalupski, R. Chiarizia, M.P. Jensen, A.W. Herlinger, Metal Extraction by
3 Sulfur-Containing Symmetrically-Substituted Bisphosphonic Acids. Part I.
4 P,P'-di(2-ethylhexyl) Methylenebisthio-Phosphonic Acid, Solvent Extr. Ion Exch. 24
5 (2006) 331–346. <https://doi.org/10.1080/07366290600646988>.

6 [90] M.A. Devore, A.E.V. Gorden, Copper and uranyl extraction from aqueous solutions using
7 bis-dithiophosphinate ligands have been characterized, Polyhedron. 42 (2012) 271–275.
8 <https://doi.org/10.1016/j.poly.2012.05.026>.

9 [91] I. Haiduc, Reactions of bis(thiophosphoryl)disulfanes and bis(thiophosphinyl)disulfanes
10 with metal species: an alternative, convenient route to metal complex and organometallic
11 dithiophosphates and dithiophosphinates, Coord. Chem. Rev. 224 (2002) 151–170.
12 [https://doi.org/10.1016/S0010-8545\(01\)00402-7](https://doi.org/10.1016/S0010-8545(01)00402-7).

13 [92] A. Shishkov, Disulphides of dithiophosphinic acids as analytical reagents—I Extractive
14 spectrophotometric determination of palladium with some bis(dialkylthiophosphoryl)- and
15 bis(diarylthiophosphoryl)disulphides, Talanta. 25 (1978) 533–535.
16 [https://doi.org/10.1016/0039-9140\(78\)80092-7](https://doi.org/10.1016/0039-9140(78)80092-7).

17 [93] F.T. Edelmann, M. Rieckhoff, I. Haiduc, I. Silaghi-Dumitrescu, ansa-Metallocenderivate
18 des Samariums und Ytterbiums mit ‘weichen’ Donorliganden, J. Organomet. Chem. 447
19 (1993) 203–208. [https://doi.org/10.1016/0022-328X\(93\)80239-8](https://doi.org/10.1016/0022-328X(93)80239-8).

20 [94] M. Rieckhoff, M. Noltemeyer, F.T. Edelmann, I. Haiduc, I. Silaghi-Dumitrescu, Ein alter
21 Ligand in neuer Umgebung: Dreifach verbrückendes O,O- Dimethyldithiophosphat im
22 Organosamarium-Komplex $[(C_5Me_5)Sm\{S_2P(OMe)_2\}_2]_2$, J. Organomet. Chem. 469
23 (1994) C19–C21. [https://doi.org/10.1016/0022-328X\(94\)80092-8](https://doi.org/10.1016/0022-328X(94)80092-8).

24 [95] S. Miyasita, M. Yanaga, I. Satoh, H. Suganuma, Separation of Americium(III) from
25 Europium(III) by dioctylammonium dioctyldithiocarbamate/nitrobenzene extraction,
26 Chem. Lett. 35 (2006) 236–237. <https://doi.org/10.1246/cl.2006.236>.

27 [96] S. Miyashita, I. Satoh, M. Yanaga, K. Okuno, H. Suganuma, Separation of Am(III) from
28 Eu(III) by extraction based on in situ extractant formation of dithiocarbamate derivatives,
29 Prog. Nucl. Energy. 50 (2008) 499–503. <https://doi.org/10.1016/j.pnucene.2007.11.035>.

30 [97] S. Miyashita, M. Yanaga, I. Satoh, H. Suganuma, Separation of Americium(III) from
31 Europium(III) by Extraction Based on in situ Formation of Dioctylammonium
32 Dioctyldithiocarbamate Extractant, J. Nucl. Sci. Technol. 44 (2007) 233–237.
33 <https://doi.org/10.1080/18811248.2007.9711277>.

34 [98] H. Boerrigter, T. Tomasberger, W. Verboom, D.N. Reinhoudt, Novel ligands for the
35 separation of trivalent lanthanides and actinides - Tetrakis(phosphane sulfide) and -
36 (phosphinic acid) cavitands, European J. Org. Chem. (1999) 665–674.
37 [https://doi.org/10.1002/\(SICI\)1099-0690\(199903\)1999:3<665::AID-EJOC665>3.0.CO;2-F](https://doi.org/10.1002/(SICI)1099-0690(199903)1999:3<665::AID-EJOC665>3.0.CO;2-F).

38 [99] J. Yao, R.M. Wharf, G.R. Choppin, Solvent Extraction of Eu(III) and Am(III) with Thio
39 and Amide Extractants, Springer US, Boston, MA, 1995. [https://doi.org/10.1007/978-1-4899-1406-4](https://doi.org/10.1007/978-1-
40 4899-1406-4).

41

42