
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Fault tolerant
programming models
Work by Janine Bennett, John Floren, Nicole
Slattengren, Yevgeniy Vorobeychik

January 25, 2013

SAND2013-2091P

Leadership-class HPC compute capabilities are
required for DOE policy and decision making

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and
adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

2

Exascale computing and beyond is required to simulate complex
phenomena that characterize the DOE mission space

Resilience is one of the many research challenges
posed by the shift to exascale computing

Cause: There is a significant increase in
the number of components with
insufficient improvements in mean time
to failure for each one.

3
*Towards Exascale Resilience, Cappello et al., Intl. Journal of High Performance Computing Applications Nov 2009 vol. 23 no. 4 374-388

Exascale systems will experience errors/faults much more
frequently than petascale systems*

Solution: True exascale resilience requires advancements in

 Fault detection, understanding, and propagation

 Fault recovery

 Fault-oblivious algorithms

 Stress testing of proposed fault-tolerance solutions

Our goal: Discover the right approach for
extreme-scale, fault-resilient programming

4

Existing programming models are
inherently not fault-resilient

Asynchronous many-task (AMT)
programming models can be fault-resilient

Single Program Multiple Data (SPMD), implicitly
synchronous algorithms cannot recover from

failure nor adapt well to node degradation

Asynchronous execution and redundancy
minimize the impact of node degradation/failure

and benefit scalability even without failure

Global check-points no longer feasible Synergistic with local check-pointing

The community needs to understand:
 Can MPI+X offer high scalability at exascale even in

the face of faults?

 If not, which programming models can reach which
scales?

 If no programming model can reach scales of
interest for a given application without algorithmic
changes, how might algorithms be adapted?

 What are co-design implications for tradeoffs
between memory, I/O, power, resilience,
application performance, and development effort?

To achieve our goal, we must explore challenges
impeding the use of AMT programming models

 How does one intuitively express tasks to
achieve asynchronous execution?
 Task-Directed Acyclic Graphs (task-DAGs) can

depict data dependencies and flow; however
may not be enumerable until run-time

5

task a

task b

task c
task g

task f

task e

task h

task d

 What is the best approach for resilient, decentralized
scheduling of tasks?
 How can missing task subgraphs be regenerated after failure using

asynchronous local check-points?

 Can our approach to resilience be leveraged to improve scalability
and avoid additive cascading delays?

Challenges will be explored via tests on hardware simulators
as well as tests on current system architectures

Deliverables for FY13

 Creation of initial metrics for development effort and
performance profile analysis for non-MPI programming models

 Validation of simulator performance predictions with realistic
application workloads using Cielo and/or other current ASC
platforms

 Exploration of the programming model design space to include

1. Applications that are difficult to load-balance

2. New failure response strategies

3. Models of failure histories

4. Task-DAG scheduling frameworks

6

FY 13 RESULTS

7

Specific FY13 efforts

 Understand past and current PM and resilience efforts

 Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

 Validation of simulator performance predictions of the cellular
automaton on Cielo

 Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

 Port a simple conjugate gradient mini-app to our model

 Start extending the task-DAG API/runtime to work in a
distributed-memory environment

 Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

8

Some alternative programming models efforts
that involve Task-DAGs

 DAGuE (Bosilca et al. 2012)
 Task-DAG scheduling framework for distributed, many-core arch

 Custom build tools pre-compile a compact, problem-size independent
representation of the DAG

 Uses dynamic, fully-distributed asynchronous scheduler based on
cache awareness, data locality, and task priority

 Intel Threading Building Blocks
 C++ template library for dynamic, task-based thread parallelism

 Chunks and Tasks (Rubensson & Rudberg, preprint 2012)
 Task-DAG library for distributed, many-core architechtures

 Scheduling based on relationships between data and work

 Able to handle hierarchical, recursive algorithms

 Resilience by redundant storage and replaying of failed tasks

 9

Some alternative programming models efforts
that do not involve Task-DAGs

 Chapel/Fortress/X10: new programming languages; no direct
path forward from legacy codes

 UPC: SPMD, PGAS language extension of C; number of
threads fixed at execution time

 Global Arrays: library-based PGAS model that supports
incremental checkpointing and a pool of spare nodes

 Global Futures: library-based APGAS model built on top of GA

 Charm++: object-oriented, message-driven; supports adaptive
load balancing and automatic checkpointing based on
migratable objects

 ParalleX/HPX: object-oriented, message-driven, AGAS;
scheduler and AGAS server are single points of failure

10

Specific FY13 efforts

 Understand past and current PM and resilience efforts

 Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

 Validation of simulator performance predictions of the cellular
automaton on Cielo

 Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

 Port a simple conjugate gradient mini-app to our model

 Start extending the task-DAG API/runtime to work in a
distributed-memory environment

 Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

11

Performance metrics for comparisons between
MPI and non-MPI programming models

 Perform comparisons both in the absence of failures and
under different rates of failure

 Use failure models where failed nodes either leave the
computation permanently (fail-stop) or rejoin after some
delay (fail-restart)

 For different classes of applications (e.g., CPU-bound,
memory-bound, I/O-bound), measure scalability and
performance in terms of:
 Time to completion (including checkpoint/restart)

 Progress made (e.g. iterations completed) in a period of time

 Processor utilization

 Communication cost

12

Specific FY13 efforts

 Understand past and current PM and resilience efforts

 Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

 Validation of simulator performance predictions of the cellular
automaton on Cielo

 Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

 Port a simple conjugate gradient mini-app to our model

 Start extending the task-DAG API/runtime to work in a
distributed-memory environment

 Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

13

We track the propagation of delays due to
failures through the 1D cellular automaton

 State of a cell at step k depends on the state of that cell and its
two neighbors at step k-1

 Inject fault-induced delays using a Poisson fault model

 Measure the time until all tasks have completed (“maximum
completion time”)

14

Validation of simulator performance predictions
for the 1D cellular automaton on Cielo

 Task-driven automaton code scales up to 50,000 cores on Cielo

 We will use Cielo results to validate the SST/macro simulator
performance predictions that we are in the process of collecting

15

Run number (sorted by

maximum completion time)

Poisson fault model: # of faults
increases with number of cores

(Fastest) (Slowest)

cores

Average over runs

N=50

N=50,000

http://dx.doi.org/10.1145/1964218.1964220

Specific FY13 efforts

 Understand past and current PM and resilience efforts

 Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

 Validation of simulator performance predictions of the cellular
automaton on Cielo

 Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

 Port a simple conjugate gradient mini-app to our model

 Start extending the task-DAG API/runtime to work in a
distributed-memory environment

 Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

16

 Explicit dependencies of tasks on data allows automation of
data replication, check-pointing, and other FT mechanisms
 Differs from approaches in DAGuE and TBB; also differs from Tasks and

Chunks in that we do not allow tasks to depend on other tasks

 Leverage resilience work on local check-pointing (ASC)

17

Our approach: tasks depend only on data;
dependencies among tasks are implicit

Typical approach:

DAG of only tasks

Our approach:

Bipartite DAG of

tasks and data

 Transaction-like semantics of tasks allow them to safely be
replayed even when we don’t know the exact point of failure
 Tasks can modify state only by producing defined, write-once results

 If data exists in more than one location, guaranteed to be coherent

 Similar to the read-only chunk approach of Tasks and Chunks; differs
from ParalleX/HPX

 Leveraging the resilience API from Bob Lucas's group would allow us to
respond to failures instead of abort

 The task-DAG API/runtime can be provided as a library,
potentially allowing it to integrate with legacy codes
 Not an entirely new language like Chapel, X10, Fortress

18

Our approach: tasks depend only on data;
dependencies among tasks are implicit

Task

 Dynamic scheduling may allow us to make more intelligent
scheduling decisions based on the time needed to retrieve a
dependency from a remote node
 Don’t ignore the cost of data movement

 Leverage data stores from FOX (DOE ASCR X-Stack) and/or Nessie

 Fully dynamic scheduling may allow us to make most efficient
use of resources
 Resources not fixed at execution time like in MPI and UPC

 Adapt when nodes drop out due to failure

 Increase allocation when more resources become available

 We can evaluate our approach at exascale both with and
without faults using SST/macro simulation

19

When we move to a distributed-memory
environment…

Specific FY13 efforts

 Understand past and current PM and resilience efforts

 Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

 Validation of simulator performance predictions of the cellular
automaton on Cielo

 Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

 Port a simple conjugate gradient mini-app to our model

 Start extending the task-DAG API/runtime to work in a
distributed-memory environment

 Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

20

Summary

 Exascale systems will experience errors/faults much more
frequently than petascale systems

 Our goal is to understand how task-DAG programming models
can address both scalability and fault-resilience at exascale

 We believe that the use of a bipartite DAG, with explicit
dependencies between tasks and data, opens up opportunities
to automate fault-recovery

 We are creating an API/runtime that can be used to experiment
with various approaches and demonstrate their effectiveness
on problems of interest to ASC

22

Questions?

