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Leadership-class HPC compute capabilities are 
required for DOE policy and decision making 

Energy: Reduce U.S. reliance on foreign 
energy, reduce carbon footprint 

 

Climate change: Understand, mitigate, and 
adapt to the effects of global warming 

 

National Nuclear Security: Maintain a safe, 
secure, and reliable nuclear stockpile 
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Exascale computing and beyond is required to simulate complex 
phenomena that characterize the DOE mission space 



Resilience is one of the many research challenges 
posed by the shift to exascale computing 

Cause: There is a significant increase in 
the number of components with 
insufficient improvements in mean time 
to failure for each one. 
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*Towards Exascale Resilience, Cappello et al., Intl. Journal of High Performance Computing Applications Nov 2009 vol. 23 no. 4 374-388 

Exascale systems will experience errors/faults much more 
frequently than petascale systems* 

Solution: True exascale resilience requires advancements in 

 Fault detection, understanding, and propagation 

 Fault recovery 

 Fault-oblivious algorithms 

 Stress testing of proposed fault-tolerance solutions 



Our goal: Discover the right approach for 
extreme-scale, fault-resilient programming 
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Existing programming models are 
inherently not fault-resilient 

Asynchronous many-task (AMT) 
programming models can be fault-resilient 

Single Program Multiple Data (SPMD), implicitly 
synchronous algorithms cannot recover from 

failure nor adapt well to node degradation 

Asynchronous execution and redundancy 
minimize the impact of node degradation/failure 

and benefit scalability even without failure 

Global check-points no longer feasible Synergistic with local check-pointing 

The community needs to understand: 
 Can MPI+X offer high scalability at exascale even in 

the face of faults? 

 If not, which programming models can reach which 
scales? 

 If no programming model can reach scales of 
interest for a given application without algorithmic 
changes, how might algorithms be adapted? 

 What are co-design implications for tradeoffs 
between memory, I/O, power, resilience, 
application performance, and development effort? 



To achieve our goal, we must explore challenges 
impeding the use of AMT programming models 

 How does one intuitively express tasks to 
achieve asynchronous execution?  
 Task-Directed Acyclic Graphs (task-DAGs) can 

depict data dependencies and flow; however 
may not be enumerable until run-time 
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task a 
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task c 
task g 

task f 

task e 

task h 

task d 

 What is the best approach for resilient, decentralized 
scheduling of tasks? 
 How can missing task subgraphs be regenerated after failure using 

asynchronous local check-points?  

 Can our approach to resilience be leveraged to improve scalability 
and avoid additive cascading delays? 

Challenges will be explored via tests on hardware simulators 
as well as tests on current system architectures 



Deliverables for FY13 

 Creation of initial metrics for development effort and 
performance profile analysis for non-MPI programming models 

 Validation of simulator performance predictions with realistic 
application workloads using Cielo and/or other current ASC 
platforms 

 Exploration of the programming model design space to include 

1. Applications that are difficult to load-balance 

2. New failure response strategies 

3. Models of failure histories 

4. Task-DAG scheduling frameworks 
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FY 13 RESULTS  
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Specific FY13 efforts 

 Understand past and current PM and resilience efforts 

 Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults 

 Validation of simulator performance predictions of the cellular 
automaton on Cielo 

 Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities 

 Port a simple conjugate gradient mini-app to our model 

 Start extending the task-DAG API/runtime to work in a 
distributed-memory environment 

 Concurrently, starting porting more realistic mini-apps, starting 
with mini-FE 
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Some alternative programming models efforts 
that involve Task-DAGs 

 DAGuE (Bosilca et al. 2012) 
 Task-DAG scheduling framework for distributed, many-core arch 

 Custom build tools pre-compile a compact, problem-size independent 
representation of the DAG 

 Uses dynamic, fully-distributed asynchronous scheduler based on 
cache awareness, data locality, and task priority 

 Intel Threading Building Blocks 
 C++ template library for dynamic, task-based thread parallelism 

 Chunks and Tasks (Rubensson & Rudberg, preprint 2012) 
 Task-DAG library for distributed, many-core architechtures 

 Scheduling based on relationships between data and work 

 Able to handle hierarchical, recursive algorithms 

 Resilience by redundant storage and replaying of failed tasks 
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Some alternative programming models efforts 
that do not involve Task-DAGs 

 Chapel/Fortress/X10: new programming languages; no direct 
path forward from legacy codes 

 UPC: SPMD, PGAS language extension of C; number of 
threads fixed at execution time 

 Global Arrays: library-based PGAS model that supports 
incremental checkpointing and a pool of spare nodes 

 Global Futures: library-based APGAS model built on top of GA 

 Charm++: object-oriented, message-driven; supports adaptive 
load balancing and automatic checkpointing based on 
migratable objects 

 ParalleX/HPX: object-oriented, message-driven, AGAS; 
scheduler and AGAS server are single points of failure 
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Performance metrics for comparisons between 
MPI and non-MPI programming models 

 Perform comparisons both in the absence of failures and 
under different rates of failure 

 Use failure models where failed nodes either leave the 
computation permanently (fail-stop) or rejoin after some 
delay (fail-restart) 

 For different classes of applications (e.g., CPU-bound, 
memory-bound, I/O-bound), measure scalability and 
performance in terms of: 
 Time to completion (including checkpoint/restart) 

 Progress made (e.g. iterations completed) in a period of time 

 Processor utilization 

 Communication cost 
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We track the propagation of delays due to 
failures through the 1D cellular automaton 

 State of a cell at step k depends on the state of that cell and its 
two neighbors at step k-1 

 Inject fault-induced delays using a Poisson fault model 

 Measure the time until all tasks have completed (“maximum 
completion time”) 
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Validation of simulator performance predictions 
for the 1D cellular automaton on Cielo 

 Task-driven automaton code scales up to 50,000 cores on Cielo 

 We will use Cielo results to validate the SST/macro simulator 
performance predictions that we are in the process of collecting 
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http://dx.doi.org/10.1145/1964218.1964220
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 Explicit dependencies of tasks on data allows automation of 
data replication, check-pointing, and other FT mechanisms 
 Differs from approaches in DAGuE and TBB; also differs from Tasks and 

Chunks in that we do not allow tasks to depend on other tasks 

 Leverage resilience work on local check-pointing (ASC) 
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Our approach: tasks depend only on data; 
dependencies among tasks are implicit 

Typical approach: 

DAG of only tasks 

Our approach: 

Bipartite DAG of 

tasks and data 



 Transaction-like semantics of tasks allow them to safely be 
replayed even when we don’t know the exact point of failure 
 Tasks can modify state only by producing defined, write-once results 

 If data exists in more than one location, guaranteed to be coherent 

 Similar to the read-only chunk approach of Tasks and Chunks; differs 
from ParalleX/HPX 

 Leveraging the resilience API from Bob Lucas's group would allow us to 
respond to failures instead of abort 

 

 

 The task-DAG API/runtime can be provided as a library, 
potentially allowing it to integrate with legacy codes 
 Not an entirely new language like Chapel, X10, Fortress 
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Our approach: tasks depend only on data; 
dependencies among tasks are implicit 

Task 



 Dynamic scheduling may allow us to make more intelligent 
scheduling decisions based on the time needed to retrieve a 
dependency from a remote node 
 Don’t ignore the cost of data movement 

 Leverage data stores from FOX (DOE ASCR X-Stack) and/or Nessie 

 Fully dynamic scheduling may allow us to make most efficient 
use of resources 
 Resources not fixed at execution time like in MPI and UPC 

 Adapt when nodes drop out due to failure 

 Increase allocation when more resources become available 

 We can evaluate our approach at exascale both with and 
without faults using SST/macro simulation 
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When we move to a distributed-memory 
environment… 
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Summary 

 Exascale systems will experience errors/faults much more 
frequently than petascale systems 

 Our goal is to understand how task-DAG programming models 
can address both scalability and fault-resilience at exascale 

 We believe that the use of a bipartite DAG, with explicit 
dependencies between tasks and data, opens up opportunities 
to automate fault-recovery 

 We are creating an API/runtime that can be used to experiment 
with various approaches and demonstrate their effectiveness 
on problems of interest to ASC 
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Questions? 


