FAULTSpever oprrs

= EXECUTIONPARADIGM
evs REPLICATION

CRITICAL
>ERROR5HETEROGENEOUS

“PROGRAMMING MODEL

HECK] UST PROGRESS
HI( H ’bRPORM/\N( 'E COMPUTING

RE \l /\ RCH M AN TIME TOF \Hul\”‘

RESILIENCE

EFFICIENT GONSIS TEN

EXASCALE

\LLEN( ALGORITHM

EAULT TOLERANCE

l-AlLURL o
}
TECHNOLOGY

or'lddv

NOILVOINNWINOO\

RUN TIME

DISTRIBUTED§

DETECTION:
H]\[/\I\THI OU( Ilm
REDU

NDANCY

Sandia
National
Laboratories

Exceptional

service

in the

national

interest

SAND2013- 2091P

Fault tolerant
programming models

Work by Janine Bennett, John Floren, Nicole
Slattengren, Yevgeniy Vorobeychik

January 25, 2013

4 -. U.S. DEPARTMENT OF ﬂm ' " D(;::j

©;ENERGY WVA 3
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Leadership-class HPC compute capabilities are ) e,
required for DOE policy and decision making

Laboratories

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and
adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

Exascale computing and beyond is required to simulate complex
phenomena that characterize the DOE mission space

2




Resilience is one of the many research challenges ;) s,
posed by the shift to exascale computing

Laboratories

Exascale systems will experience errors/faults much more
frequently than petascale systems”

Cause: There is a significant increase in
the number of components with
insufficient improvements in mean time
to failure for each one.

Solution: True exascale resilience requires advancements in
= Fault detection, understanding, and propagation
= Fault recovery
= Fault-oblivious algorithms
= Stress testing of proposed fault-tolerance solutions

“Towards Exascale Resilience, Cappello et al., Intl. Journal of High Performance Computing Applications Nov 2009 vol. 23 no. 4 374-388

3
-~ ...



Our goal: Discover the right approach for ) e,
extreme-scale, fault-resilient programming

Laboratories

The community needs to understand:

= Can MPI+X offer high scalability at exascale even in
the face of faults?

= |f not, which programming models can reach which
scales?

= |f no programming model can reach scales of
interest for a given application without algorithmic
changes, how might algorithms be adapted?

= What are co-design implications for tradeoffs
between memory, I/O, power, resilience,
application performance, and development effort?

Existing programming models are Asynchronous many-task (AMT)
inherently not fault-resilient programming models can be fault-resilient
Single Program Multiple Data (SPMD), implicitly Asynchronous execution and redundancy
synchronous algorithms cannot recover from minimize the impact of node degradation/failure
failure nor adapt well to node degradation and benefit scalability even without failure
Global check-points no longer feasible Synergistic with local check-pointing

4
I



To achieve our goal, we must explore challenges ) s,
impeding the use of AMT programming models

Laboratories

= How does one intuitively express tasks to
achieve asynchronous execution?

= Task-Directed Acyclic Graphs (task-DAGs) can
depict data dependencies and flow; however
may not be enumerable until run-time

= What is the best approach for resilient, decentralized
scheduling of tasks?

= How can missing task subgraphs be regenerated after failure using
asynchronous local check-points?

= Can our approach to resilience be leveraged to improve scalability
and avoid additive cascading delays?

Challenges will be explored via tests on hardware simulators
as well as tests on current system architectures

5



Sandia
Deliverables for FY13 i) datoat

= Creation of initial metrics for development effort and
performance profile analysis for non-MPI programming models

= Validation of simulator performance predictions with realistic
application workloads using Cielo and/or other current ASC
platforms

= Exploration of the programming model design space to include
1. Applications that are difficult to load-balance
2. New failure response strategies
3. Models of failure histories
4. Task-DAG scheduling frameworks




FY 13 RESULTS




Specific FY13 efforts ) e

= Understand past and current PM and resilience efforts

= Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

= Validation of simulator performance predictions of the cellular
automaton on Cielo

= Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

= Port a simple conjugate gradient mini-app to our model

= Start extending the task-DAG API/runtime to work in a
distributed-memory environment

= Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

8




Some alternative programming models efforts

A Netona
that involve Task-DAGs

Laboratories

= DAGUE (Bosilca et al. 2012)

Task-DAG scheduling framework for distributed, many-core arch

Custom build tools pre-compile a compact, problem-size independent
representation of the DAG

Uses dynamic, fully-distributed asynchronous scheduler based on
cache awareness, data locality, and task priority

= |ntel Threading Building Blocks
= C++ template library for dynamic, task-based thread parallelism

= Chunks and Tasks (Rubensson & Rudberg, preprint 2012)
= Task-DAG library for distributed, many-core architechtures
= Scheduling based on relationships between data and work
= Able to handle hierarchical, recursive algorithms

= Resilience by redundant storage and replaying of failed tasks

9




Some alternative programming models efforts ) e,
that do not involve Task-DAGs

Laboratories

= Chapel/Fortress/X10: new programming languages; no direct
path forward from legacy codes

= UPC: SPMD, PGAS language extension of C; number of
threads fixed at execution time

= Global Arrays: library-based PGAS model that supports
incremental checkpointing and a pool of spare nodes

= Global Futures: library-based APGAS model built on top of GA

= Charm++: object-oriented, message-driven; supports adaptive
load balancing and automatic checkpointing based on
migratable objects

= ParalleX/HPX: object-oriented, message-driven, AGAS;
scheduler and AGAS server are single points of failure

10




Specific FY13 efforts ) e

= Understand past and current PM and resilience efforts

= Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

= Validation of simulator performance predictions of the cellular
automaton on Cielo

= Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

= Port a simple conjugate gradient mini-app to our model

= Start extending the task-DAG API/runtime to work in a
distributed-memory environment

= Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

11




Performance metrics for comparisons between & o,
MPI and non-MPI programming models

Laboratories

= Perform comparisons both in the absence of failures and
under different rates of failure

= Use failure models where failed nodes either leave the
computation permanently (fail-stop) or rejoin after some
delay (fail-restart)

= For different classes of applications (e.g., CPU-bound,
memory-bound, I/0O-bound), measure scalability and
performance in terms of:
= Time to completion (including checkpoint/restart)
= Progress made (e.g. iterations completed) in a period of time
= Processor utilization

= Communication cost




Specific FY13 efforts ) e

= Understand past and current PM and resilience efforts

= Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

= Validation of simulator performance predictions of the cellular
automaton on Cielo

= Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

= Port a simple conjugate gradient mini-app to our model

= Start extending the task-DAG API/runtime to work in a
distributed-memory environment

= Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

13




We track the propagation of delays due to
failures through the 1D cellular automaton

Sandia
rh National

Laboratories

State of a cell at step k depends on the state of that cell and its
two neighbors at step k-1

Inject fault-induced delays using a Poisson fault model

Measure the time until all tasks have completed (“maximum
completion time”)

/ \\l\ ¢
A

PON
X




Validation of simulator performance predictions ) s,
for the 1D cellular automaton on Cielo

Laboratories

Maximum completion time per run for N = [50, 50000] cores Average maximum completion time across 1000 runs
13.9
13.7
138
13.65
13.7 /—_I:I_
136 = 13.6 =50,000
: —N=50 cores
,135 — —N=100 § 13.35 //
2 =N=500 S 135
§ 14 =N=1000 § e /
133 =N=5000 '
13.2 —N=10000 13.4 -
—N=50000 =
13.1 13.35
13 133
12.9 1 10 100 1000 10000 100000
1 (Fastest) (Slowest) 1000 number of faults

Run number (sorted by Average over runs Poisson fault model: # of faults
maximum completion time) 9 increases with number of cores

= Task-driven automaton code scales up to 50,000 cores on Cielo

= We will use Cielo results to validate the SST/macro simulator
performance predictions that we are in the process of collecting

15



http://dx.doi.org/10.1145/1964218.1964220

Specific FY13 efforts ) e

= Understand past and current PM and resilience efforts

= Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

= Validation of simulator performance predictions of the cellular
automaton on Cielo

= Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

= Port a simple conjugate gradient mini-app to our model

= Start extending the task-DAG API/runtime to work in a
distributed-memory environment

= Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

16




Our approach: tasks depend only on data; )
dependencies among tasks are implicit

“taskd "
| Our approach:
Typical approach: Bipartite DAG of
DAG of only tasks tasks and data

= Explicit dependencies of tasks on data allows automation of
data replication, check-pointing, and other FT mechanisms

= Differs from approaches in DAGUE and TBB; also differs from Tasks and
Chunks in that we do not allow tasks to depend on other tasks

= Leverage resilience work on local check-pointing (ASC)

17
-~ ...



Our approach: tasks depend only on data; ) e,
dependencies among tasks are implicit

Laboratories

= Transaction-like semantics of tasks allow them to safely be
replayed even when we don’t know the exact point of failure
= Tasks can modify state only by producing defined, write-once results
= |f data exists in more than one location, guaranteed to be coherent

= Similar to the read-only chunk approach of Tasks and Chunks; differs
from ParalleX/HPX

= Leveraging the resilience API from Bob Lucas's group would allow us to

respond to failures instead of abort
Task *

= The task-DAG API/runtime can be provided as a library,
potentially allowing it to integrate with legacy codes
= Not an entirely new language like Chapel, X10, Fortress




When we move to a distributed-memory ) e,
environment...

Laboratories

= Dynamic scheduling may allow us to make more intelligent
scheduling decisions based on the time needed to retrieve a
dependency from a remote node
= Don’tignore the cost of data movement
= Leverage data stores from FOX (DOE ASCR X-Stack) and/or Nessie

= Fully dynamic scheduling may allow us to make most efficient
use of resources
= Resources not fixed at execution time like in MPIl and UPC

= Adapt when nodes drop out due to failure
= |ncrease allocation when more resources become available

= We can evaluate our approach at exascale both with and
without faults using SST/macro simulation

19




Specific FY13 efforts ) e

= Understand past and current PM and resilience efforts

= Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

= Validation of simulator performance predictions of the cellular
automaton on Cielo

= Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

" Port a simple conjugate gradient mini-app to our model

= Start extending the task-DAG APIl/runtime to work in a
distributed-memory environment

= Concurrently, starting porting more realistic mini-apps, starting
with mini-FE

20




National

Sandia
Summary ) et

= Exascale systems will experience errors/faults much more
frequently than petascale systems

= Qur goalis to understand how task-DAG programming models
can address both scalability and fault-resilience at exascale

= We believe that the use of a bipartite DAG, with explicit
dependencies between tasks and data, opens up opportunities
to automate fault-recovery

= We are creating an APl/runtime that can be used to experiment
with various approaches and demonstrate their effectiveness
on problems of interest to ASC

Questions?

22




