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— lon transport in composite electrodes (microstructure scale)
— Durability of composite electrodes, etc.

 Heterogeneous materials

— Inhomogeneous, “discontinuous”

« material properties and microstructure
— multi-phase, multi-material - interfaces

» “dynamics” (i.e., kinematics of a particle or flux)
— Discrete particles in polymer matrix or suspending fluid
— Effective thermal (electrical, etc.) conductivity of composites

 Generalized, nonequil.

continuum Transport

— Generalized Diffusion
° (13 bL)
— Anomalous
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70 Project Goals

 Develop models that accurately capture events/processes on broad
range of scales
— What are the component/process scale governing equations in complex, far-
from-equilibrium systems?
* Models must be amenable to math analysis
» Constitutive relations for closure of model equations should be directly accessible
experimentally
— To be predictive

* Need access to FULL range of length and time scales to close gaps between
— Discrete constituent and component/process scale
— Simulation/experimental run-time and product/component life span and performance

* Need workflow path for parameterizing constitutive relations across relevant scales

Novel models push the boundary of V&V to become Discovery tools

— Advance experimental and math analysis capabilities to elucidate underlying
physical phenomena and path to innovation




» Brownian Motion and Diffusion Equation:

L _I_:.-“icro-Macro” Connection

. Translatlon of isolated small sphere in Newtonian fluid
— Time dependent Stokes drag force on sphere
* Nonlocal: space -2 time

jv-oH(t)dV: ch(¢)-de-> jF(t—t')-vi(t')dt'; F—1)=y@—-1"I

dv(t)
dt
« Assume: Gaussian random force, long-time limit (i.e.,

ignore fluid and particle inertia)
dr.(t) 1

j y(t—t)v(E")de+(2)

y(t—t)=y5(t—1") . ;FB(t)
f(t)=F"(t) (F?(0)) = 0; (FP (OF? () = 2k, Ty (¢~ 1)

— Interactionless, Markovian, SDE > PDE P51 _ hy2yix0)
B ot e




processes

— Linear, phenomenological Onsager coefficients
» Fick’'s (Second) Law (mass transport)
» Fourier's Law (thermal conduction)
* Newton’s Law (momentum transport)

— Applicable in the long-time limit (beyond correlation length/time
scale)

« Many systems present multiple, competing length
and time scales

— Which ones are relevant to the microscopic dynamical processes
that underlie macro-transport — what is the “ruler” (i.e., measure)
that allows for actual characterization of the system/process

,,..@B— How to handle "meso-scale” regimes where correlations are still
SDRD significant? () s Netione Laboratois
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. “Mlcroscoplc” dynamics
dr. g
r,_ . :
dt Ngo.m— - t
. 1 1 ST
M =——V,(t)+— F,-B (1) 1074 Red: Markovian
dt Tpg m Blue: non-Markovian
<Fl-B (t)> — O, <Fl-B (t)FlB (t')> 2k T)/g (t t ) 0001 0.1 t 10 1000
— Solve (formally) and obtain
T
(Jarf? by = kT (=2, —e™))
m
» Defines/justifies long-time, t >> 1,
« MSD =f(t) # Dt* 0 <a <2
__ — Temptation: D = D(t) - MSD = D(¥)t
B"}E}’ » What does this mean physically? 0 S e




~ MSD = /i1 |
o MSD = Dt*¥; oyt) = 2H(t) 0.6/

| Red: Markovian
Blue: non-Markovian

« MSD = Dry(); “0E0®) _ oy

d ln(z‘ ) O-b01 o1 1 10 100 1000  10°
t/Tp
2 6kT i kT
<‘Al" >(t) = 7‘53 (t —‘L'B(l —e oz ))Z 6(;‘53}51)(1‘)

« A density which gives above as the second moment is

— Gaussian assumption = distribution is stationary and symmetric; no higher
moments matter

1 X
PO e, exp{_ 4Dz, OJ

— Which is a solution to
_ S?ﬁ:}: p(X,7p) — szp(x,rD), gven p(x,0) ~

0
o (%) (1) sandia National Laboratories




Generalized Diffusion-Relaxation Equation

— - —
° Reca" p(af D( )) :szp(xﬂfl)(t))
D

dzp (1)
dt

— Note o7, = ot

. s 0P(7,(1) _dr,(t) oo
So, LRILIE - LTl DY p(x.7, (1)

ot (¢ _
%():(l—e t/TB), SO %: DVZ?p(x,t)—e "DV ’p(x,t)

— Here

— Integrating gives,

dt ,(t—1t")

p(x,7,(1) = p(x,7,(0)+D| Vip(x,7,(t))dl

oy




| “Fractional” Diffusion?

« Start with “diffusion-relaxation” equation

p(x,7,(1)) = p(x,7,(0)) + Dj(l —e TV p(x, T, (¢))dt!

— Take time derivative

op(x,7, () _ 0p(x,7,(0)) 01,00 0’ TD(t_t ) NP
~ - = D=2 p(x t)+Dj V2p(x,7,(t")dt
. set P (X’aftD(O)) -0 to get a “diffusion equation with memory”
0 t kT | .
p(X,TD( )) — Ie—(z—t)/rBVZP(X,TD(tv))dtv
ot m

0
« Which is equivalent to

0°p(x,7,(1)) ) 0p(X,7 (1))
ot* ot

= szp(xafD(t))

oAb




interacting random walkers

— Classical Damped Harmonic Oscillator . —
- Under, over, critically damped >

— Classical GLE so7
* |Incompressible Newtonian Liquid mﬂﬁ
— zero Re 057
« Compressible Newtonian Fluid | S | | | |
— Zero Re e w go e
— High Re, Zero and moderate Ma ‘
* Incompressible/compressible Non-Newtonian -
— Zero Re .
— Nearly Classical Ideal Liquid
« Can obtain from simulation o S
gg},lnteractmg particles (non-zero concentration) [E}Sa;hmmmmtm




“Generalized Langevin Equation”

 Transient Brownian Dynamics (Interactionless)
 NonMarkovian Langevin Equation

mr VO _ —muaf[(;; 82) +5(1 —r')]vi (1)de'+ B (1)
NG

(E@) =0 cato)
(FfOF (1) = 2k, TE(t ~1')

« If noise is modeled by Gaussian, stationary, self-similar
processes, we have fBm

 Note Basset-Boussinesq

o dvait(t) _ 67T‘uaj'((t—t')l/2 j dvc}l(.ﬂ) R

Jr
LDRD 77 =|m, o m, (7] sandia National Laboratoies
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ple

* Note, impulsive response of sphere in incompressible,
Newtonian fluid
— sphere initially at rest, fluid at rest at infinity — i.e., dilute suspension

1
v(t) = [%El/z,l(_t/fl)_Q2E1/2,1(_t/72)]
2(9,—q,)
1 2m _ + m
q,, = (1i«/1—4Z), — . Lo, =0(q,,)%V
27a 9mf

MS

Bap(¥)= r(ak+/3)

e We can use this to derive MSD and

T, (1) = = {q1E1/23[—(t/T1)2]—q2E1/23[—(t/‘L'2)2]}

— 2(q, , ,
)B = ) (1) sandia National Laboratories




The Semi-Classical Limit and Defining
Mesoscales

* Nearly classical fluid (QM — Langevin equation)
— following De Bar 1963 (see also Vineyard 1958, van Hove 1954)

Tp

r§’<t)=r{i—(1—

)} 0, () =750 =i

2kT

dt

drgl(t)j: P A % (1= o)

« Consider the “average trajectory” of a particle, p,x,?)

1.1

—MD lives.here

/~ Classical Mech,

t/Tg

i / Langevin Eqn.,
0.3;— OU process
| GLE\fBm, I
= 07 Nearly/Classical / Interakting RW Gontinuum
=] . 6:_ uantum echanics
5 U lives here
0.5 . . ]
“Pure” Quantu m/ I?:riz\ll(vig':%mc’ttn’
f—-@B Cheon;lstlry | | | Anomolous/Fractional Diff.
mn “Ho0-° 104 0.01 1 100 @sma National Laboratories




Space/Time structure of Probability

Densities for Particle Trajectories

. Slngle partlcle density (klnematlcs) of hard-sphere colloid

p.(r,t) = <m5(r R.(1)); fY(RY,P";¢ )> = jms(r R.(t))dt' = —Zm5(r R.(t, + kA?))

t—>oo =
t

“Light scattering” of single partlcle trajectory, R.(z,)

» Self-affine record - self-similar fractal “trail”
— Multiple length and time scales
— Multifractal: d, (1)~ 1/H(1) Fggfmﬁg-l‘taj‘::;)?c
— Change “ruler”: d,p(7p) = 2 T

1.001

0.701

ln[suajectory [qﬂ)]

H(t)

0.501

0.30" - - — =
0.01 1 100 10 10




| Schematic of Scale Dependent Processes

« Complex heterogeneity implies Multi-fractal functions

— Generalized Trajectories (mass, momentum, energy), r(t)
* Non-differentiable
» Hierarchy of scaling exponents

« Fundamentally, no derivatives (e.g., particle velocity) can be defined in
the classical delta-epsilon, limit sense

N / ‘\\ \/\//\y

Quantum(micro)-scale =

Classical(meso)-scale = QM-Langevin trajectory

Ballistic trajectories

Continuum(macro)-scale =
Random walk

s




Eqn. (OU process)
Tgl(t)=TB|:L_(1_et/rB):| TD(t):T[C,Z(l‘)—i h (dfgl(t)j=l‘—‘[3(l—€t/TB)—i h (l_e_t/TB)

2kT

B

ap(X’TD (t)) = DV2P(X7TD (t))
0T,

op(x,7,() dt,(t)
ot dt

("T rg)vzp(x,rl)(r»
m

0p(X,7, (1)) _
ot

— Take limit of ¢ = 0; keeping leading order term

op(x,7,(¢) _ . h HmoTD(t)zzt2 i (tj

Tp

(k—TrBj(l — e N2 p(x,7 (1)) - i p (x,7, (1))
m 2m

e ~ —7 V 2 ;
S SRAT Y CERCTE -:-_....; T t 2

(1) sandia National Laboratories
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Op (X, 7, (1) _ kT

* Recall

TBVZp(Xafp(t))
ot m
1 x>
X,Tp(l)) = EXp| —
e J27D, (1) p{ 4D’L‘D(t)}
R v
TD(t)z —1 X—]—| —
tr—>0 2TB 2kT i 2m\ D
lim 1 52
p(x,7,(2)) = exp| —
t—>0 B 2.h
—mi—t —21—1
m L m |
lim

N p(x,7,() =y (x,~t) =y (x,t) >Gaussan wave functon
_>

.EL}, A7 ol _,-val/, "(x,1)

Ot 2m () sandia Nationat Laboratories




Routes to the scale-consistent or scale-
invariant diffusion equation

oAb




— Velocity not defined for these dynamics

dr, = N F’dt

Y
(" (0)) =0 (F* (OF} (1) = 2k,Ty8(t ~1)3,

— Conservation of phase space volume implies Ito’'s Formula

df{af T & fN}:O

di | o Sy or?

« Now, p,(x.0)=(8(x—r,(t): f"(x";1))

e and Op,(x,t) kT (azpk)

(1) sandia National Laboratories




. ConS|der Liouville phase-space density 7" (r",p"

— Conservation of phase space volume implies

ifN(rN,pN;fd(t)) zﬂi —0 From Ito’s Lemma
dt dr,
N N N N 2
df :d‘L'D of " ot Zi N@xl ot +Zj/kTasz 0
dt dt | ot Or, 5Oy, ot Ot, P op;
r;(?)
 Where, X,-(f)z{ }
p;(?)

»and  pi(X,V,7,(0) = <m5(X—l‘i(f))5(V—p"7(t));fN(l‘N,pN;TD(l‘))>

0p; (X, V,7 (1)) _ _i (P )_|_i (7/ o, Vj ykT dt,, azpi
,a-@}’ Ot 9).¢ ov m’> dt | ov’




Jxwed Non-dimensionalized Kramer’s Equation

 Choose the following non-dimensionalization

== Y
— Where,l:rBW

— Now, write

o0p;(X,v,7,(1)) 0 0 .(p.‘A’)_i_ 0 (pir)+ dTD(T)[@ZPi]

ot R N dv | &%

LDRD 3 e it e




Iiwae Now reduce

* Note, from microscopic equations of motion

o, (1), _ o(p,(t)/ m)
or Ot

- <ri(t)>’_l:i(0) — l=tan0; 0 =—"

(D;(2)/m), —p,(0)/ m 4

0p,(X,V,7, (1)) _ _2£.(p,€7)+ dz (1) [@2/31']

L= 0X=-0V

ot OX

» Now, Integrate over v ((v) =0 at equilibrium) to get

Op,(X,7,(1)) _ dr, (1) [azpi]

A2
OX




 Path Integral — Preliminaries

e Choose the non-dimensionalization

f(:%; Q:YW;T:%B
— Where A =1 ,,/kT/m

« Consider Transition Probability for Markov Process

p(@) = () \/E)’ eXp{ } / L /

— Gives recursion relation
0 3 3 A — 0 ,A ,...,An
Ra(q) ( )3 J‘d qld qn e S(4o-9z5---9,)
g%l}] S(qo q2 ””” Z(ql qz 1)

q,=0.q,=q

(1) sandia National Laboratories




: 2 Path Integral (1) a la Standard Approach

* Introduce macroscopic time variables
Tp
n

€= T, =le. T, =ne=1,

* Define piecewise continuous path
&(f;)) — \/; (il—l

TD 711

_7 (QI (ill):| fl—1<f1’)<fl
I-1

— Note scaling/conversion pre-factor on RHS?

* Now df(f . 1 (qz qll) XX )2(0)20, ﬁ(fD)Z\/E(i:A
dTD \/E &

- 2
e I(BEDY
S(q09q29"°9qn)NS(X(TD))_2_(‘)-( d” JdT

_ Which leads to ) i d’X(7))

= P& i

exp|- S(X)]

(1) sandia National Laboratories




@ Ccontinuum Limit (1)

. Nw let n—>0o=¢—->0 forfixed
P(&) = TI(%,%,) = [ [ ) Jexp[- S(R(Z )]

5/ kT

(x,7,)=N()e | """ =p(x,,)

— Notice this limit is perfectly justified even for finite correlation

TpT

time
— Also, recall
lt 1 M,
p,(r.t)=(mS(r—R, (1) f ' (RY,PV:1)) = p ! mé(r—R,(t")dt' ~ E;M (r-R,(%))

—T1(r, ) = [[dr()]exp[- S(r(1))]

t ¢t ' 2 M, _ 2
) 2kTt, o\ dt 2kTt, 1= At

=
2kTt,

oAb




o Diffusion in Inhomogeneous Fluids:
- %¥H Dynamic, Classical DFT

iP(rN,t) = oP(
dt

N
gt ’t)+ivi-[viP(rN,t)]:O
i=1

t

— Recall for steady drag v.(t)=v, e +i .[ e “VBE (¢)dt
0
» Assume force independent of time and initial velocity is zero

F,=—V (V)= —k1v, In|[P(" )-V 7 =(c")

| T _
Vl.(t)=—’J.e (1 t)/TBdtl:_B(l_e t/TB)Fi
m

0 m

« Which gives . N
aP(l' 9t) :l(l—e_t/TB )Zvl -[P(rN,t)ViV(rN)]

ot /4 i=1

* Integrating over N-1 particles yields
oF |p*
o0 1 o ule)=v] 2t )
—& o = (1= W -[p(r.)Viu(r)] 5p“(r)

V()= KTV o))+ Ve () ) o




Diffusion in moderately concentrated
colloidal suspensions in thermal
equilibrium

oAb




2 Langevin Equation with Interations

 Brownian Dynamics Simulations
— Markov assumption

v, |
m dVl =—R-v, + > F (g, —r )+ F (1)
[ J#I

(E2(6)) = 0;(F (OF (1)) = 2R 1k, T5,5(¢ 1)

— F? assumed Gaussian distributed and self similar
— Colloid inertia is often neglected (we don't)

« Can we transform spatial interactions into time
(convolution) integral with memory kernel?
— This is a constitutive relation we can measure




» Integrated Lennard-Jones
OQO~H potential
SO0 — Repulsive soft-sphere

2(},1(1,2 2(1’.10&2 ]’.'J_Q — ('(1]_ -+ '(12)2
3 5 +1n 3
rip — (a1 +aa)”  ris — (a1 — a2) i, — (a1 — ag) 003
A O_G
Up = 12 0 {
37800 712 0.02
iy — Triz (a1 + az) + 6 (of + Tayoz + a3)
(r12 — a1 — ap)’ 0.01
+7‘%2 + Trip(ay +as) +6 (uﬁ + Tajas + ag) é
(T‘LQ +a; + (12)' }"’N 0
2 Trs _ 6(a2 -7 . z) S
Tt Trie (e —ag) + (af — Taras + a} g
(112 + a1 — az)’ ~ ool
P — Ty o 2 2
_r12 12 ((I,J_ (.!2) + 6 ((1‘,1 Tajas + (12)
(ri2 — a1 + az)’ —0.02
U - UA + URa T < Te 003
0

/—ﬁ}’ IR. Everaers and M.R. Ejtehadi, Phys. Rev. E 67, 41710 (2003)
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Simulation Details: Hydrodynamic

Interactions

 Markovian assumption

— Steady state (quasistatic) incompressible Newtonian flow
» Stokesian Dynamics

— PME R = (I — R)_lRlB + Riub

» O(NlogN)

« Fast Lubrication Dynamics

— O(N)
R = I/?,(] + Rs
|sotropic Constant \
(mean-field mobility) OjO
R, = 3nud(1+2.16¢)1 51 0r &1 +og(3)

—5 Kumar and Higdon, Phys Rev E, 82, 051401 (2010)
LDRD  Balland Melrose, Physica A, 247, 444-472 (1997)

(1) sandia National Laboratories




Simulation Results: MSD and Validation

_Lat_e T?mzs | _-
Cage/Potential I
= Inertial
hé 107 QaotE (= ¢ = 0.1, inertial “D(0 7
V10E - [— inertialess
107k | | — 03
of ik : ot =8
10 ¢ -t 2 T R TH RPRETITS MPRT R S
10-5:.‘1‘”””‘c‘)”“mI 12 ~3[ 45 _.]...H.d(‘).‘.ml 2~t3 45 30-5 m-l mﬁ ml lﬂ? 10° m-t mﬁ mh
10710 10" 10° 10" 10" 10”10 110" 10" 107 107 107 107 10 t(7)
o MSD=f()#Dt% azl L
— “Early” and “Late” time ¢ o ool ]
D compare well with o T ]
experiments i 12 |
— Engineer’s temptation or ime D ] o |
0.1+ iIm 3 0.1~ 7
- D=D (O 2> MSD = D(t)t T eo‘z 03 04 05 %4%




- Simulation Resutls: VACF, Memory Kernel

ey and “Microscopic Dynamics”

0.10
0.08r 0.08¢
0.067 0.06¢
% 0.04; % 0.04¢
s SEE
0.027 0.02¢
0.00 0.00
=002 —0.02¢
0 10 20 30 40 50 0
time
* Fit VACF with - )
S DT y)TTTG (k)] k
t/t,;t. ,,0)c C" t/t
J T3 Ten:0) Z; n! kzz(;k!r(1+2n+k—9n)( )
 Which is a fundamental solution of fBm-type equation

ch;.IEt):_Tl V(t)——J.(l‘ t)_GV(t )dt_l_mi(FB(t)_i_Fﬂ?m(t)) 0<0 <1

coll 0 i

—& : e Tyt
@B (") =G (B R ™©)) = T V(ff ZJ () sancia National Laboratores
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“Microscopic Dynamics”: Alternate

Form for VACF and Memory Kernel

0-1 !

0.08} TS i 13
- 0.01} &
~ 0.06} \\ T
¥ .04 _ ] ~ 0.001;
@ (I) - 040 ] ‘g » 1 N, )
2 0.02; : - - : 1] 1077 N_Ze—(k/Np) Uewn 4
time -5 p k=l
0-00 s oA S PSR EES x forz . <t<7,.
-0.02[ I 10-6L : : , : , 1
0 30 40 50 001 01 1 10 100 1000 10
t t
+ Or, fit VACF with I
. Ay =7
f(t)——ANZcM ‘ N /4,
- i=0
. Which leads to
N
dV(t) R 1 P
l- c;’t = —jK(t—t')vi (£")dt'+E"(¢) K(t) ~8(t) + ﬁz e~ (k/N)P t/Tcou
b, 0 k=1

@}’ 0.00574 e®-9435t , 0. 00446 e°-9195¢ , 0. 00165 e 099811, o 664 5 (t)

AFUTRY DERCTRD SEFEARDN & DR ELCFWEAT




= OI', — DTD(D; chll)t(t) = 2H(?) 0.50¢
<‘Ar‘2>(t) = 6(k_TTB jTD (1) 0.30 1 1(:0 = 2
m

t T~ N Z (kN Peoll 1z, ~tiTy .
Tp(t) > —+ Nt Z P l-e —2(l-e" )1y <7y
B k=1

op(X,7,(t) _ 2
5t () =DV p(x,7,(1)) )

dr, (t—1")

P(X,1) = p(x,0)+ D[ =2 —=Vp(x,1')dr
0

%3
() sandia National Laboratories




e Summary: Langevin Equations to
X5 Generalized Diffusion Equations

— Markovian: Langevin with interactions

dv . .
m i _R’Vl- +ZF;OZZOld (
dt J#i

(F2(6)) = 0; (F” ()F " (")) = 2R, k,T5,5 (¢~ 1')

r -, )+ F (1)

— Non-Markovian: Generalized Langevin

N __[ K-ty it + R0

m, 1 <
dt K(t) ~ 8(t) + NZ e~ (K/N)P t/Tcon
k=1

(B (1)) = 0; (E" (OF (¢')) =2k, T5,K(t 1)
« Can transform spatial interactions into convolution

_ integral + “noise”
Bﬁ;},— Then can obtain relaxation-diffusion equation

(1) sandia National Laboratories




_ Micro-rheology to Macro-rheology

. Mason and Weitz

— microscopic memory function proportional to macroscopic bulk
frequency-dependent viscosity (mean-field approximation)

| : _ K _ =
£ f K(@—t)v,(")dt'+F (t) H(s)= ) u(s)=G.(s)
dt ; 61a
« Relaxation Modulus for Transient BD
K N 2N L -tNP t/1e,
Gr (S) - (S) - 1 Tcoll . K(t) Z 4
67Ta 67TNCZ k=1 STcoll + (k/N) 0.0030"

* Viscoelastic (complex) modulus =

G(S) :SGF(S); S —)la) 20.0015—

1 N T 0.0010;

G * (CO) ~ 6 N Z COl(Zk N)p 0.0005}

—5 7oiNa ;_ 1T + o.0000Y L
| m'}:}, k=1 coll / 0 1 2 3 4 5




g

. Diffusivity of turbid Sample
suspensions

« Connect stochastic colloidal
dynamics to rheology

/‘\

Measure: Autocorrelation : Mean square Rheology

intensity fluctuations Transmission-> f(g, I*) displacement
vs. time Backscatter-> f(1)

correlator

<Ar’ > (nm?)

(s)



Analysis of Macro models:
CTRW




: _ Generallzed (“Anomolous”) Diffusion

. Some possible models — nonlinear FPE, FFPE, etc.
 Consider CTRW with multlple time scales of the form

op(x,1) op(x,t') 0’ p(x,t") .,
- j(t—) thj(t) 2t
— Assume jump pdf can be decoupled into jump length pdf and waiting
time pdf

Ww(k,s)=p(k)g(s)

— Assume jump length pdf is Gaussian
 true for long times in any finite variance jump length distribution

o(k) ~1-Dk* +O(k*)
— Waiting time distribution, g()
1-g(s) Py (k)

k,s)= TF d Mendes (2010), J. Stat. Mech.
S PO oo TR Mendes @10 ot Moo
i HIEs




= Macroscopic, Deterministic Equation for
S5 NonMarkovian Stochastic Dynamics

— Solution

zl—g(S) po(k) AX2 —{Ax2(0 :2Dg(S)
A — $S< O)-(AO)=1Z

— Choose g(1) 0.010—
0.005

i Data (purpie points)
= N=5(blue)
NN, =3 + const. (red)

N
= it
g(t) = ANZ;) c;€ 0.002}

d (AX®) (1)

1 < 0.001} =
Ay == 5% 10~}
> ¢, /4,
-4
i=0 2107
1x1071— r ]
— Note: 0 10 10

~(k/N,)P /T yin “1/p
= fort >t .

1 &
,—-@}’ — Y e
m“R° i Np k=l @ Sandia National Laboratories




2Dg(s)

- Note: S<A5c’2(s)>—<Ax2(o)>:

............ ——gE—
0.0020 T
0.0015¢}
S |
=0 0.0010; ool 1 Ay =
I 10°¢ 107* 0.01 1 100 10*
: : Zci/li
0.0005¢} 1 pe
| T,=2105.26
o.oo00t. . . . . .

0 200 400 600 800 1000

~0.00249419 ¢ 5841821 4 000725312 7008211 4
/—SE 0.00074885 e~ *"17"1688 1 4 0.000801025 ¢~ 072807881 4 0000219001 £~0:000330834¢




v (k,s)=g(s)p(k)
d(k) =1-c°k’
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Green’s Function for CTRW

* Note: p(k,s)= l_f(S) FT;E?S)
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Conclusions

* Developing Meso-to-Macroscale Modeling framework
— Nonequilibrium Statistical Physics/Thermodynamics

« Solution of Langevin Equation with interactions leads
to GLE
— Can obtain Memory Kernel of “reasonable” form via VACF
— Leads to rheology
« Comparison to Experiments forthcoming
« Can determine waiting time distribution for CTRW

— Assuming Gaussian Jumps

— Leads to Generalized diffusion equation
« However, CTRW framework not consistent in dilute limit!?
« Sum of exponentials may be “degenerate”
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