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• Need better prediction and control of 

– Ion transport in composite electrodes (microstructure scale)

– Durability of composite electrodes, etc.

• Heterogeneous materials

– Inhomogeneous, “discontinuous” 

• material properties and microstructure 

– multi-phase, multi-material  interfaces

• “dynamics” (i.e., kinematics of a particle or flux)

– Discrete particles in polymer matrix or suspending fluid

– Effective thermal (electrical, etc.) conductivity of composites

• Generalized, nonequil.

continuum Transport

– Generalized Diffusion

• “Anomalous”

• Multi-fractal

dynamic

struct

Background and Introduction

Static     struct



Project Goals

• Develop models that accurately capture events/processes on broad
range of scales

– What are the component/process scale governing equations in complex, far-
from-equilibrium systems?

• Models must be amenable to math analysis

• Constitutive relations for closure of model equations should be directly accessible 
experimentally

– To be predictive

• Need access to FULL range of length and time scales to close gaps between

– Discrete constituent and component/process scale

– Simulation/experimental run-time and product/component life span and performance

• Need workflow path for parameterizing constitutive relations across relevant scales

• Novel models push the boundary of V&V to become Discovery tools

– Advance experimental and math analysis capabilities to elucidate underlying 
physical phenomena and path to innovation



• Translation of isolated small sphere in Newtonian fluid
– Time dependent Stokes drag force on sphere

• Nonlocal: space  time

• Assume: Gaussian random force, long-time limit (i.e., 
ignore fluid and particle inertia)

‒ Interactionless, Markovian, SDE  PDE 

Brownian Motion and Diffusion Equation: 
“Micro-Macro” Connection
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“Whatever it is I think I see…”

• Diffusion underlies all irreversible, non-equilibrium 
processes
– Linear, phenomenological Onsager coefficients

• Fick’s (Second) Law (mass transport)

• Fourier’s Law (thermal conduction)

• Newton’s Law (momentum transport)

– Applicable in the long-time limit (beyond correlation length/time 
scale)

• Many systems present multiple, competing length 
and time scales
– Which ones are relevant to the microscopic dynamical processes 

that underlie macro-transport – what is the “ruler” (i.e., measure) 
that allows for actual characterization of the system/process 

– How to handle “meso-scale” regimes where correlations are still 
significant?



Revisiting the Classical Langevin Equation 
(OU Process)

• “Microscopic” dynamics

– Solve (formally) and obtain

• Defines/justifies long-time, t >> B

• MSD = f(t) ≠ Dt; 0 ≤  ≤ 2
– Temptation: D = D(t)  MSD = D(t)t

» What does this mean physically?
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Scale-Invariant Diffusion Equation

• Microscopic dynamics give
– MSD = f(t)

• MSD = Dt(t); (t) = 2H(t)

• MSD = DD(t); 

• A density which gives above as the second moment is 
– Gaussian assumption  distribution is stationary and symmetric; no higher 

moments matter

– Which is a solution to
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• Recall

– Note

• So,

– Here                          , so

– Integrating gives,
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Generalized Diffusion-Relaxation Equation
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“Fractional” Diffusion?

• Start with “diffusion-relaxation” equation

– Take time derivative 

• set                        to get a “diffusion equation with memory”

• Which is equivalent to 
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Various Examples of D(t)

• Have analytical forms for dilute particles non-
interacting random walkers
– Classical Damped Harmonic Oscillator

• Under, over, critically damped

– Classical GLE

• Incompressible Newtonian Liquid

– zero Re

• Compressible Newtonian Fluid

– Zero Re

– High Re, Zero and moderate Ma

• Incompressible/compressible Non-Newtonian

– Zero Re

– Nearly Classical Ideal Liquid

• Can obtain from simulation
– Interacting particles (non-zero concentration)



• Transient Brownian Dynamics (Interactionless)
• NonMarkovian Langevin Equation

• If noise is modeled by Gaussian, stationary, self-similar 
processes, we have fBm

• Note Basset-Boussinesq

The “Generalized Langevin Equation”
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Non-Markovian Example

• Note, impulsive response of sphere in incompressible, 
Newtonian fluid 
– sphere initially at rest, fluid at rest at infinity – i.e., dilute suspension

• We can use this to derive MSD and 
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The Semi-Classical Limit and Defining 
Mesoscales

• Nearly classical fluid (QM – Langevin equation)
– following De Bar 1963 (see also Vineyard 1958, van Hove 1954)

• Consider the “average trajectory” of a particle, i(x,t)

Brownian Motion,
Fickian Diff., 
Anomolous/Fractional Diff.

Classical Mech, 
Langevin Eqn., 
OU process 

Nearly Classical /
semi-Quantum

“Pure” Quantum/
Chemistry

GLE, fBm,
Interacting RW 
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• Single particle density (kinematics) of hard-sphere colloid 

– “Light scattering” of single particle trajectory, 

• Self-affine record  self-similar fractal “trail”

– Multiple length and time scales

– Multifractal: df,D(t)~ 1/H(t)

– Change “ruler”: df,D(D) = 2

Space/Time structure of Probability 
Densities for Particle Trajectories
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Schematic of Scale Dependent Processes

• Complex heterogeneity implies Multi-fractal functions
– Generalized Trajectories (mass, momentum, energy), r(t)

• Non-differentiable

• Hierarchy of scaling exponents

• Fundamentally, no derivatives (e.g., particle velocity) can be defined in 
the classical delta-epsilon, limit sense

Continuum(macro)-scale 
Random walk

Classical(meso)-scale 
Ballistic trajectories

Quantum(micro)-scale 
QM-Langevin trajectory



Scale Consistent “Diffusion” 
(at Very Small Scale)

• For “Quantum-Mechanical” Markovian Langevin
Eqn. (OU process)

– Take limit of t  0; keeping leading order term
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What is the “density” at small t?
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Routes to the scale-consistent or scale-
invariant diffusion equation



Diffusion Equation for Wiener process 
(i.e., overdamped Langevin dynamics)

• Consider phase-space density
– Velocity not defined for these dynamics

– Conservation of phase space volume implies Ito’s Formula

• Now,

• and
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Kramers-Klein Equation for OU process 
(i.e., Langevin dynamics)

• Consider Liouville phase-space density
– Conservation of phase space volume implies

• Where,

• and ))(;,();
)(

())(())(,,( tf
m

t
tmt D

NNNi
iDi  pr

p
vrxvx 

  



































2

2

2

))(,,(

v
v

v
v

x

vx iD
ii

Di

dt

d

m

kT

mt

t 







0))(;,( 
D

N

d
NNN

D d

dt

dt

df
tf

d

d





pr

))(;,( tf d
NNN pr

0
1

2

2

1












































 



N

i

N

i

N

i D

iN

iD

N
D

N

fkT
t

t
f

t

t

f

dt

d

dt

df

p

χ

χ






From Ito’s Lemma










)(

)(
)(

t

t
t

i

i

i
p

r
χ



Non-dimensionalized Kramer’s Equation

• Choose the following non-dimensionalization

– Where 

– Now, write
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Now reduce

• Note, from microscopic equations of motion

• Now, Integrate over v (           at equilibrium) to get
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Path Integral – Preliminaries

• Choose the non-dimensionalization

– Where 

• Consider Transition Probability for Markov Process

– Gives recursion relation
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Path Integral (1) a la Standard Approach

• Introduce macroscopic time variables

• Define piecewise continuous path

– Note scaling/conversion pre-factor on RHS?

• Now

– Which leads to
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Continuum Limit (1)

• Now let                             for fixed t

– Notice this limit is perfectly justified even for finite correlation 
time

– Also, recall
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Diffusion in Inhomogeneous Fluids: 
Dynamic, Classical DFT

• Consider continuity equation of concentration

– Recall for steady drag

• Assume force independent of time and initial velocity is zero

• Which gives

• Integrating over N-1 particles yields
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Diffusion in moderately concentrated 
colloidal suspensions in thermal 

equilibrium



• Brownian Dynamics Simulations
– Markov assumption

– FB assumed Gaussian distributed and self similar

– Colloid inertia is often neglected (we don’t)

• Can we transform spatial interactions into time 
(convolution) integral with memory kernel?
– This is a constitutive relation we can measure

Langevin Equation with Interations
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Simulation Details:  Colloid interactions

• Integrated Lennard-Jones 
potential1

– Repulsive soft-sphere
• a1 = a2 = 5

• A12 = 1

• rc = rmin = 30-1/6



1R. Everaers and M.R. Ejtehadi, Phys. Rev. E 67, 41710 (2003) 



Simulation Details: Hydrodynamic 
Interactions

• Markovian assumption
– Steady state (quasistatic) incompressible Newtonian flow

• Stokesian Dynamics

– PME 

» O(NlogN)

• Fast Lubrication Dynamics

– O(N)

Isotropic Constant 
(mean-field mobility) δ

δ-1 or δ-1+log(δ-1)

Kumar and Higdon, Phys Rev E, 82, 051401 (2010) 
Ball and Melrose, Physica A, 247, 444-472 (1997)

R0 = 3d(1+2.16)I



Simulation Results:  MSD and Validation

MSD

• MSD = f(t) ≠ Dt;  ≠ 1

– “Early” and “Late” time 
D compare well with 
experiments

– Engineer’s temptation
• D = D(t) MSD = D(t)t

Early
time D

Late
time D

“D(t)”

increasing



(b) implicit(a) explicit



• Fit VACF with 

• Which is a fundamental solution of fBm-type equation

Simulation Resutls:  VACF, Memory Kernel 
and “Microscopic Dynamics”
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• Or, fit VACF with 

• Which leads to

“Microscopic Dynamics”:  Alternate 
Form for VACF and Memory Kernel

 = 0.40
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• MSD = f(t) = Dt(t); (t) = 2H(t)
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• Brownian Dynamics Simulations
– Markovian: Langevin with interactions

– Non-Markovian: Generalized Langevin

• Can transform spatial interactions into convolution 
integral + “noise”
– Then can obtain relaxation-diffusion equation

Summary: Langevin Equations to 
Generalized Diffusion Equations
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Micro-rheology to Macro-rheology

• Mason and Weitz
– microscopic memory function proportional to macroscopic bulk 

frequency-dependent viscosity (mean-field approximation)

• Relaxation Modulus for Transient BD

• Viscoelastic (complex) modulus
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Validation: Diffusing-Wave Spectroscopy

• Diffusivity of turbid 
suspensions

• Connect stochastic colloidal 
dynamics to rheology

Laser
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Measure:
intensity fluctuations 
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Analysis of Macro models:  
CTRW



• Some possible models – nonlinear FPE, FFPE, etc.

• Consider CTRW with multiple time scales of the form
1

– Assume jump pdf can be decoupled into jump length pdf and waiting 
time pdf

– Assume jump length pdf is Gaussian 

• true for long times in any finite variance jump length distribution

– Waiting time distribution, g(t)

Generalized (“Anomolous”) Diffusion
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• CTRW
‒ Solution 

‒ Choose g(t)

‒ Note: 

Macroscopic, Deterministic Equation for 
NonMarkovian Stochastic Dynamics
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Waiting Time Distribution
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Full Jump Distributions

• Recall
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Green’s Function for CTRW

• Note:
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Conclusions

• Developing Meso-to-Macroscale Modeling framework
– Nonequilibrium Statistical Physics/Thermodynamics

• Solution of Langevin Equation with interactions leads 
to GLE
– Can obtain Memory Kernel of “reasonable” form via VACF

– Leads to rheology

• Comparison to Experiments forthcoming

• Can determine waiting time distribution for CTRW
– Assuming Gaussian Jumps

– Leads to Generalized diffusion equation

• However, CTRW framework not consistent in dilute limit!?

• Sum of exponentials may be “degenerate”
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