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Outline

General introduction
— Extracting strength from unloading profiles

— Problems associated with analyzing high impedance materials such
as tantalum

Methodology for removing window effects

— Allow a dynamics code to the handle the complicated wave
interactions

— Map the experimental window profiles into in situ waveforms

Results from a 120 GPa Z experiment

Design of future experiments
— Preliminary results (60 GPa)
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Analysis of unloading profiles for strength
Is based on the elastic-plastic model
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°* Measurement of the quasi-elastic unloading response
provides information on yield strength at peak stress
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Measured unloading wave velocities may
be used to estimate the strength
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Window effects on ramp loading
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°* Poor impedance match is difficult to account for

— Release waves are constantly generated at the window interface
which interact incoming ramp

— Produces non-uniform stress state in the sample

— Incremental impedance matching can be a poor approximation,
particularly at higher stresses
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Strategy for removing window effects

* Use simulations to account for the wave interactions

— LASLO: A lightweight 1-D Lagrangian wave dynamics code with MHD
Standard EOS ( tabular, Mie-Gruneisen, etc.)

Strength using a rate-independent Steinberg-Guinan formulation, modified
to include quasi-elasticity

* Use an optimization package to generate a best fit of the
experimental window profiles and estimate the correction
— Perform forward simulations of both waveforms to determine the
optimal B-Field, EOS, and strength parameters

— Run the forward in situ simulations to determine the response when
the LiF is replaced by Ta

— Use the simulated window and in situ velocities to determine the
transfer function between the two

— Apply the transfer function to the experimental data to determine its
in situ response
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* Analysis of 21904

z Accelerator * 20 mm stripline to 110 GPa

— Commercial Ta samples, LiF windows
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Quasi-elastic strength model

* Rate-independent Steinberg-Guinan quasi-elastic strength
model

Iy

Y =Y,[1+ (e +gi)]”[1+ALj+B(T—3OO)}
* Determine shear modulus from EOS and Poisson’s ratio CL IV
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Window Velocity (km/s)
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----- Optimized Simulations /

1) Optimized simulations

* 50 control points to define the
1-D current

— Interpolation scheme coupled
with low pass filter

* Independent time shifts of up
to 0.5 ns

* Mie-Gruneisen EOS
— Small changes to ¢, and s

° Quasi-elastic strength model

— Optimize v and strength
parameters
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Velocity (km/s)
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2) Run in situ simulation and 3) determine
the transfer function

Uin site it (uin situ)

—Simulated window velocity

—Simulated insitu velocity
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4) Use the transfer function to determine
the in situ experimental profiles

* Features not captured in the optimized simulations are transferred through
to the in situ profiles

— Can now perform standard Lagrangian analysis
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o (GPa)

Z1904 Results

* Results are in good agreement with the tabular isentrope (and previous

experimental data)
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Analysis appears to be model independent

* As long as the optimized simulations are “close”, the experimental data
seems to dictate the response
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Current (MA)

Design of new experiments

Flat top pulse with a 20 ns attenuation

—1-DCurrent “buffer” for a 1.5 mm thick Ta sample

——Al/ Ta Interface Pressure

——Ta / LiF Interface Pressure

Ideal LiF
profile for a
1mm shock
up
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* 50 GPa peak stress in 1.5 mm
thick Ta

* Used optimized simulations
to generate a drive current
such that:

— Flattop pulse such that there is
0 attenuation in the in-situ case

— 1 mm shock up distance in the
window

— Tried to pick a realistic tail
current fall off
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Reverberation is taken into account

* Sample thicknesses can then be chosen to avoid corruption of the
unloading wave (reverberation)

— 1.2 mm is the minimum thickness to maintain consistency through the quasi-
elastic unload
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Preliminary 22296 shot results

* Current was higher than predicted
— Steeper waveforms
— Attenuation is negligible
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. Oﬂbtimization and Lagrangian analysis
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Measured strength

* Lower pressure point (60 GPa) is in reasonable agreement with
shock data

* Higher pressure point (120 GPa) suggests tantalum is
significantly stronger under ramp compression
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Future work and challenges

* Go to higher pressures

— Becomes extremely difficult to avoid reverberation issues at pressures above 2 Mbar

* In theory the transfer function methodology should still provide accurate results, but it is not
clear if this will prove to be true in practice

* Explore the possibility of using an input/output configuration
— Make a drive measurement on one panel and perform a forward calculation to
estimate the input to the sample

» The increased thickness difference compared to the uncertainty in the forward calculation
could result in smaller overall errors

« Simulations will require a different MHD boundary condition which allows the conservation of
current while allowing the magnetic fields to vary

— For sample materials with high wavespeeds (eg. Diamond), the current configuration
will result in very large uncertainties.

* Quantify uncertainties
— Monte Carlo simulations
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Additional Slides




Pulse shaping

° Problem simultaneously maintaining the steep rise along with the
“flat top” portion of the pulse.
— Loose ~ 30 ns off of the flat top
— An attempted correction is made by extending time at which peak current

occurs
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Stress (GPa)
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