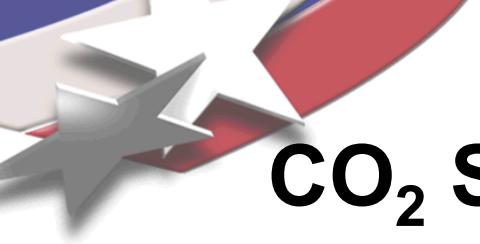


The Water, Energy and Carbon Sequestration Simulation Model (WECSSim)

**Peter H. Kobos, Jesse D. Roach,
Jason E. Heath, Geoff T. Klise, Thomas A. Dewers, Sean A. McKenna,
Len Malczynski, David J. Borns, Karen A. Gutierrez**


Sandia National Laboratories

*and thanks to
Andrea McNemar
National Energy Technology Laboratory*

February 15, 2012

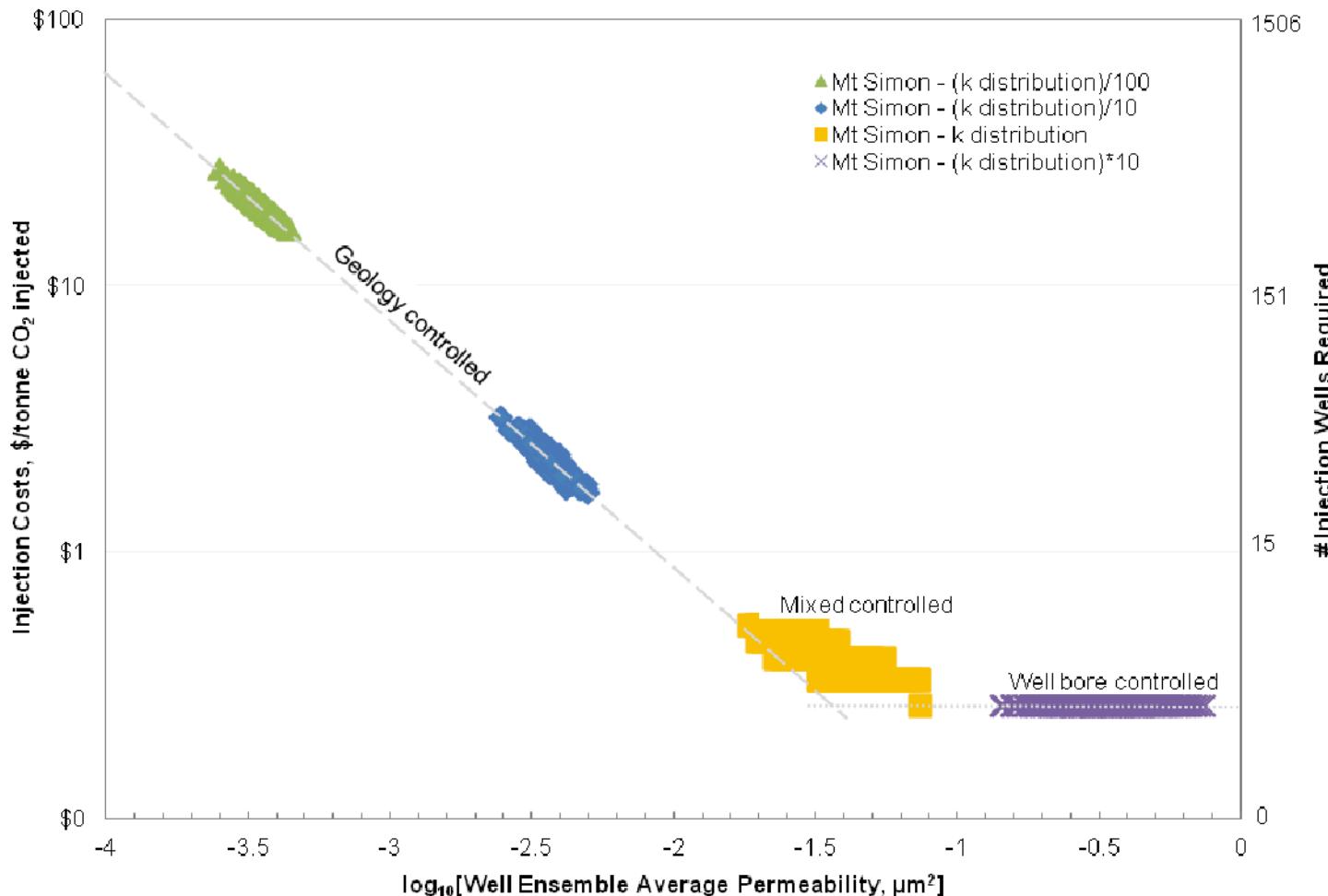
Acknowledgements: This work is developing under the funding and support of the National Energy Technology Laboratory.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Working Results.

Water, Energy and CO₂ Sequestration (WECS) Model:

(4) H₂O Treatment & Use

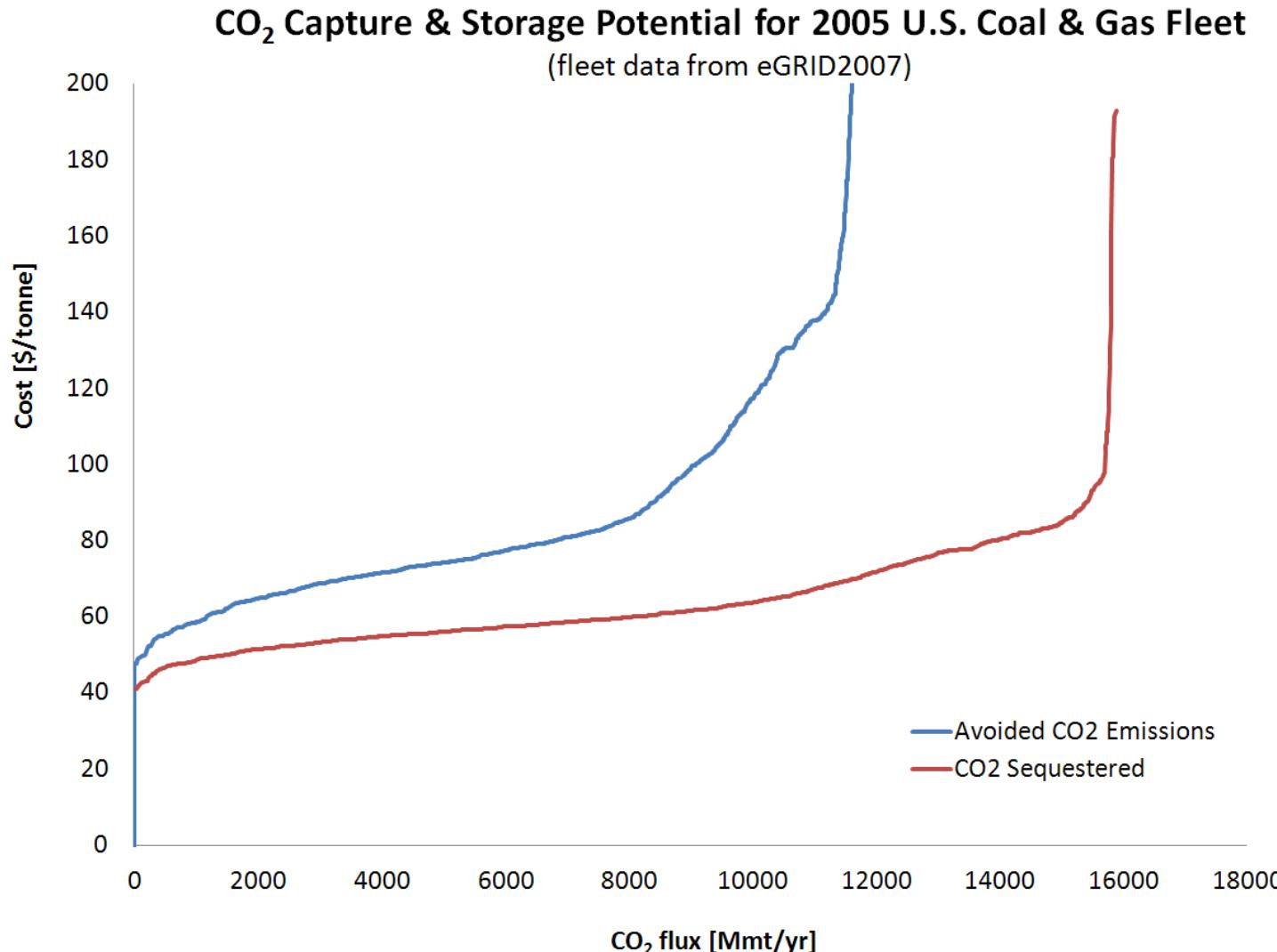
(1) CO₂ Capture


(3) H₂O Extraction

(2) Formation Assessment & CO₂ Storage

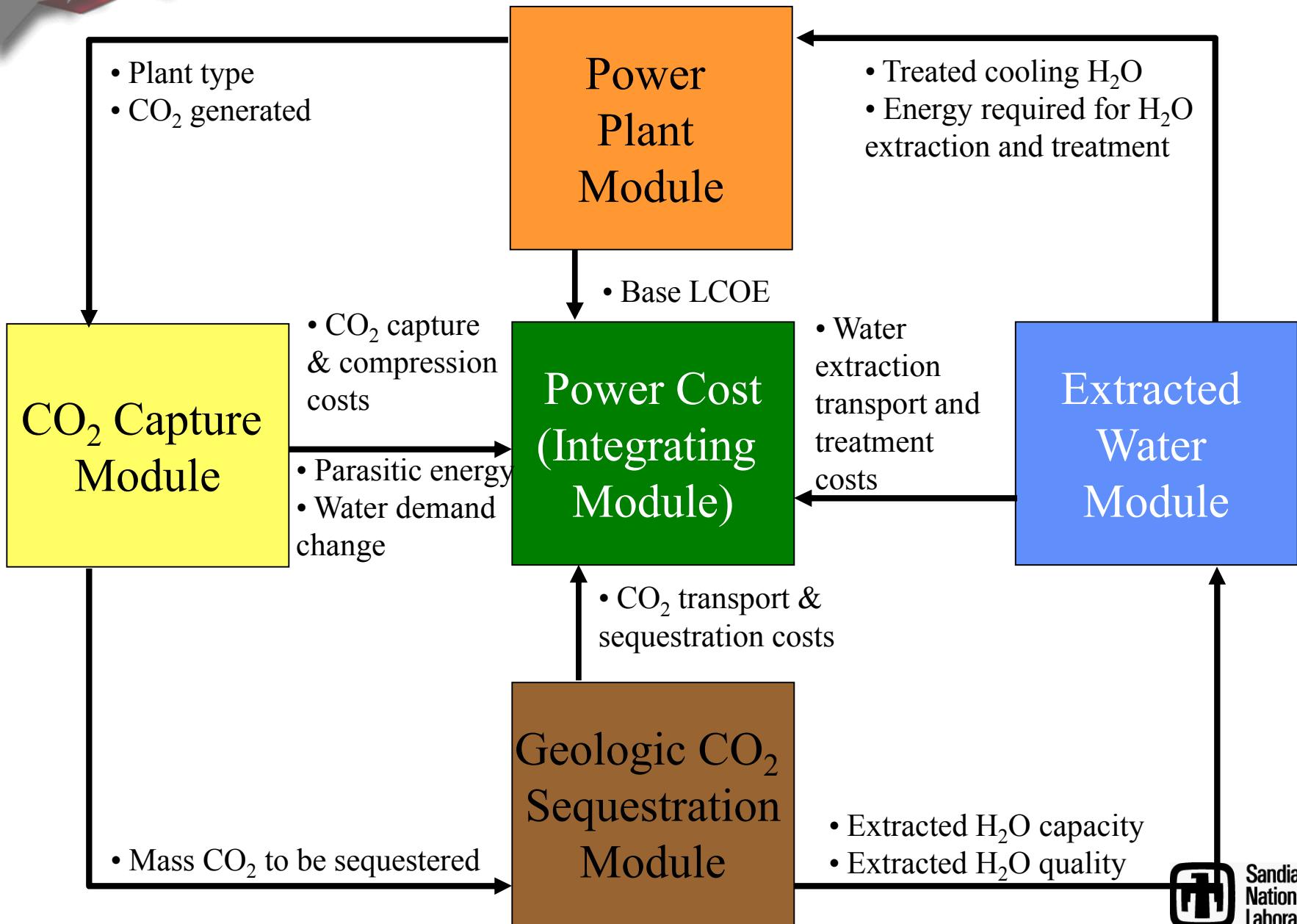
Geologic Saline Formation

Phase V: Permeability & Engineered Constraints Drive Well Costs



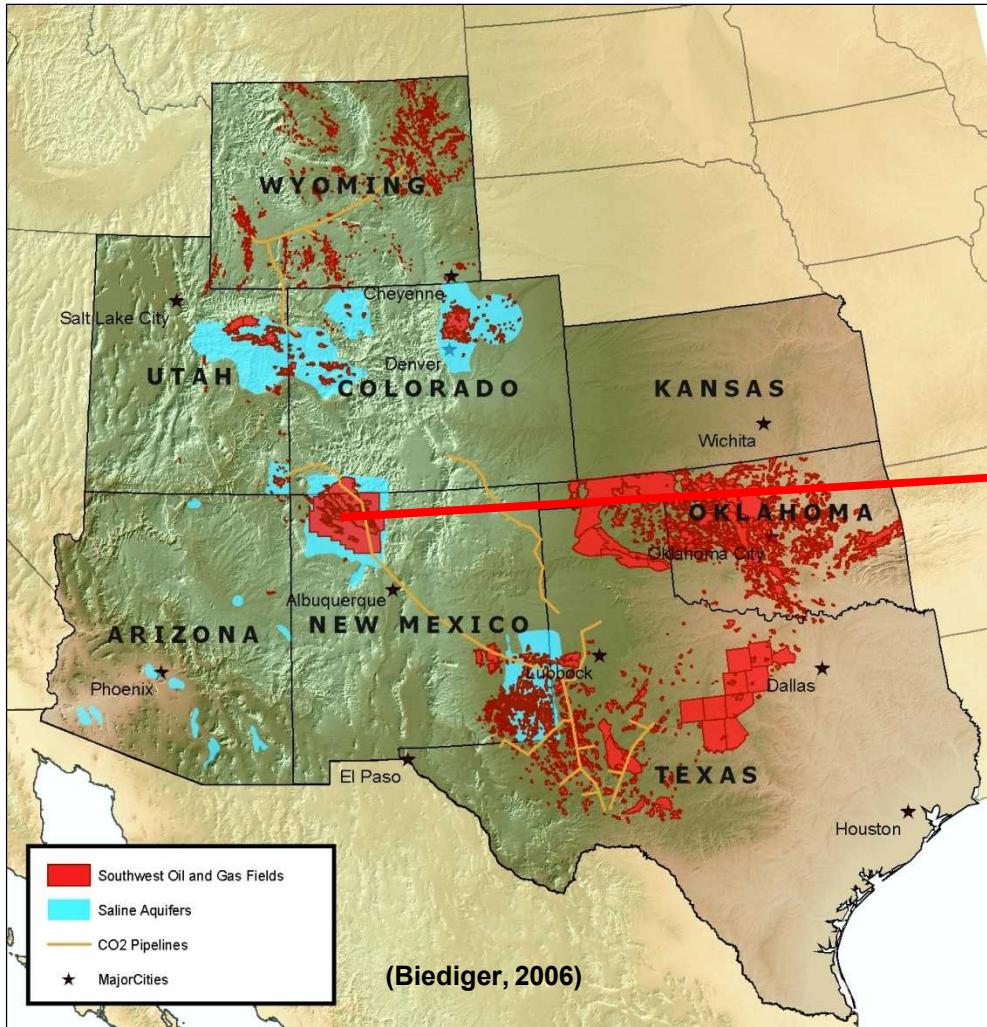
Source: Heath, J.E., Kobos, P.H., Roach, J.D., Dewers, T.A. and S.A. McKenna, "Geologic Heterogeneity and Economic Uncertainty of Subsurface Carbon Dioxide Storage," SPE Economics & Management Journal, *in press*.

Working Results: *Developing a National, Dynamic CO₂ Storage Supply Curve*

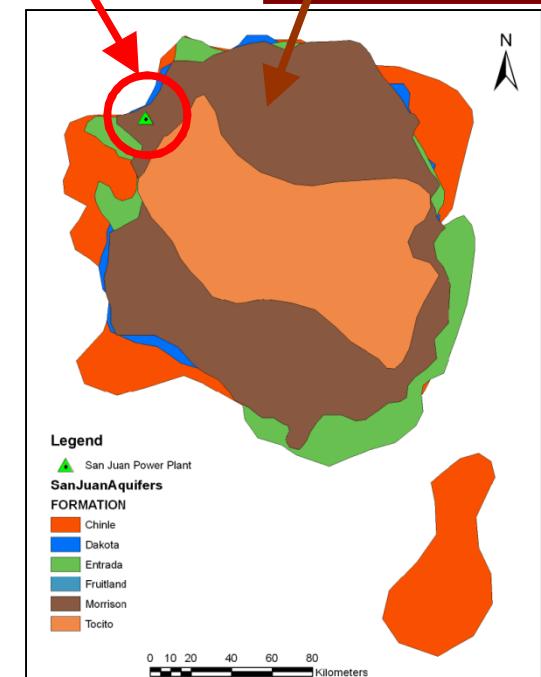


Project Timeline & Goals

Timeline

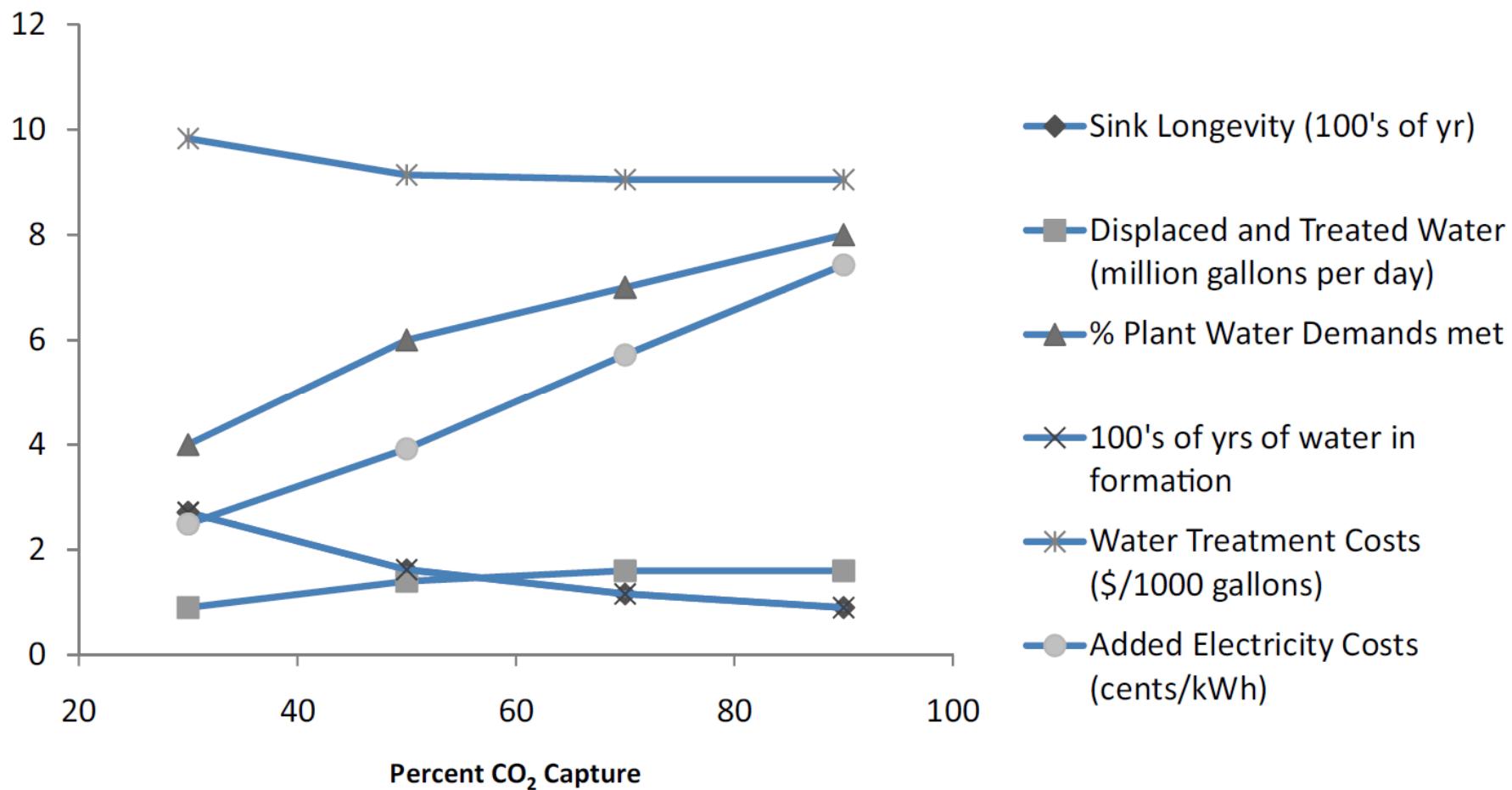

- 2007
 - Completed Phase I: Developed a Test Case Model (WECS)
- 2008
 - Completed Phase II: Additional TOUGH2 Analysis
- 2009
 - Completed Phase III: Developed a single power plant to any saline formation sink in the U.S. systems calculator
- 2010
 - Phase IV: Expanding the role of uncertainty in the model
 - Several order of magnitude variation in key geologic parameter (permeability)
 - Incorporating uncertainties into costs
- 2011
 - Phase V:
 - Refining permeability, porosity representation in WECSsim
 - Finalizing WECSsim Interface (Spring/Summer)
 - Develop WECSsim User's manual (Summer/Fall)
- 2012

WECSsim Modular Structure

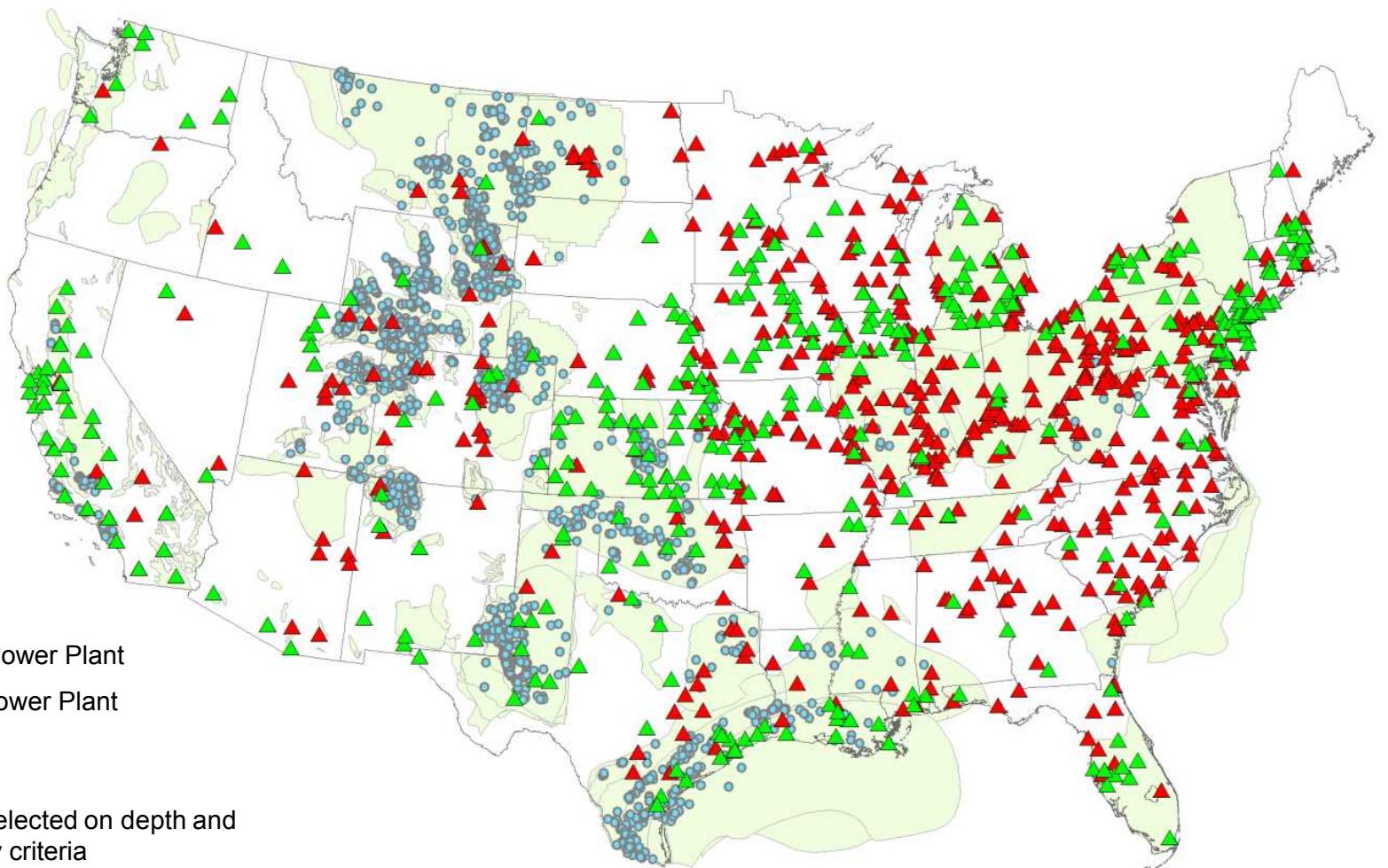

Phase I:

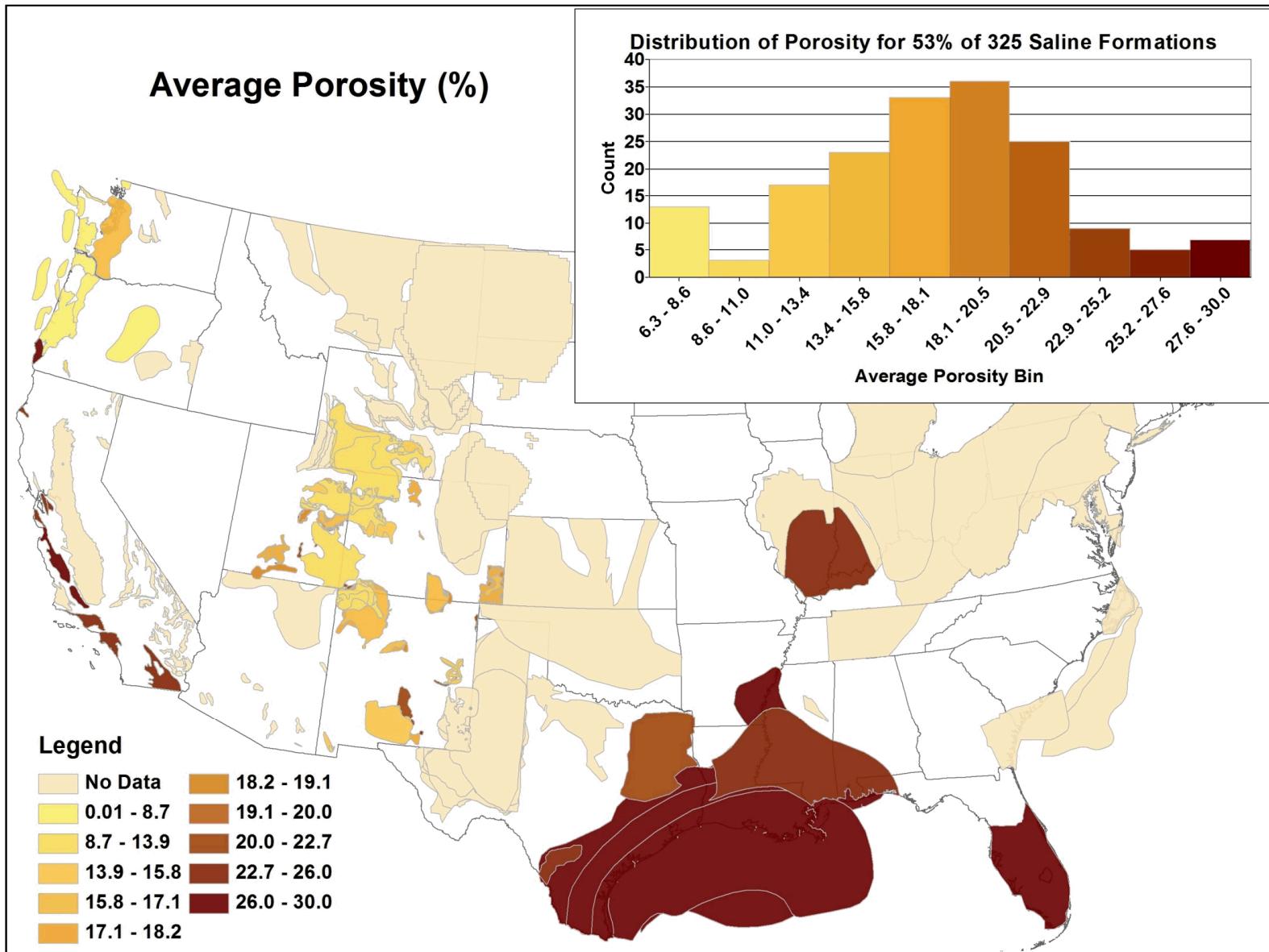
The San Juan Power Plant and Morrison Formation

San Juan Power Plant


Morrison Formation

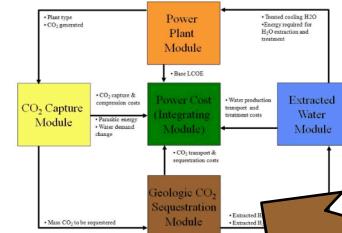
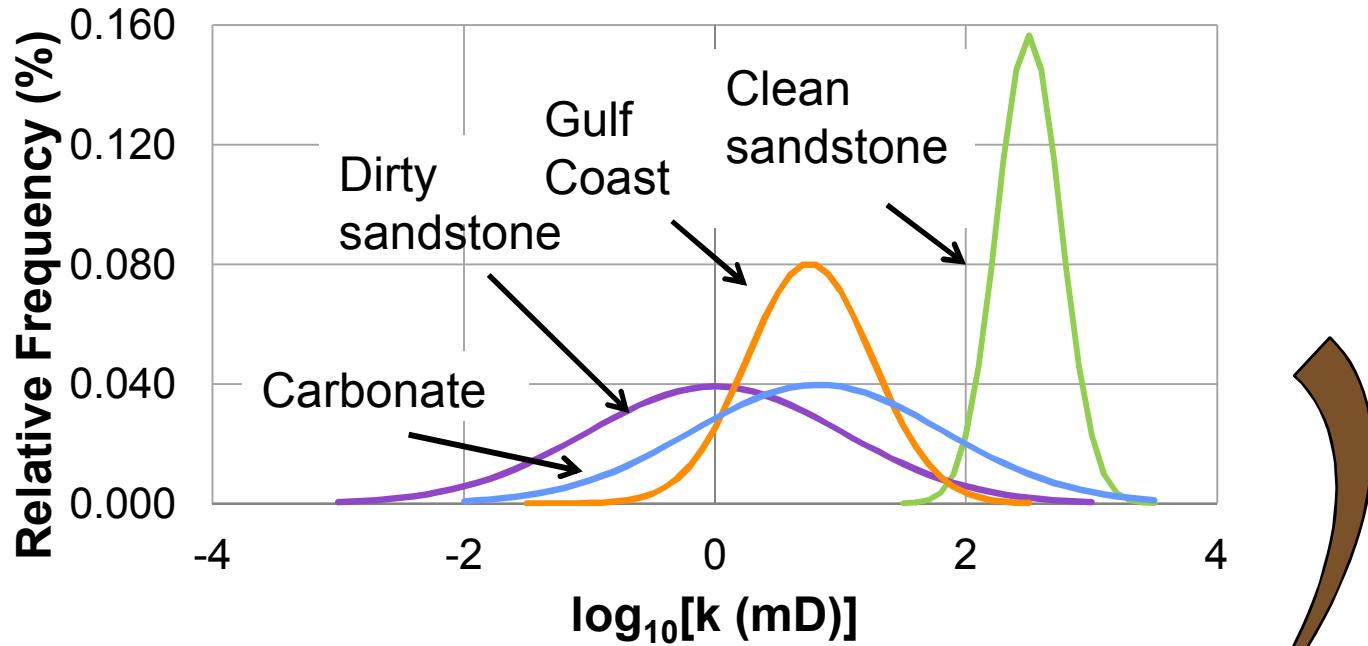
Sandia
National
Laboratories

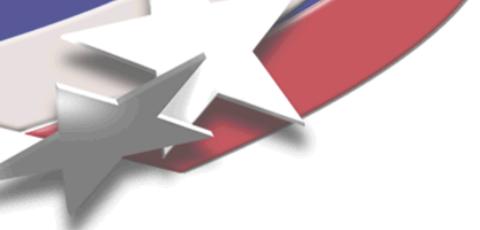

Phase II & III: Single Power Plant to Single Geologic Storage Site


Source: Kobos et al., 2011, *International Journal of Greenhouse Gas Control*, 5, 899-910.

Phase III & IV: Geological CO₂ Storage Database Challenges

Phase V: Distribution of *Porosity*, & other characteristics

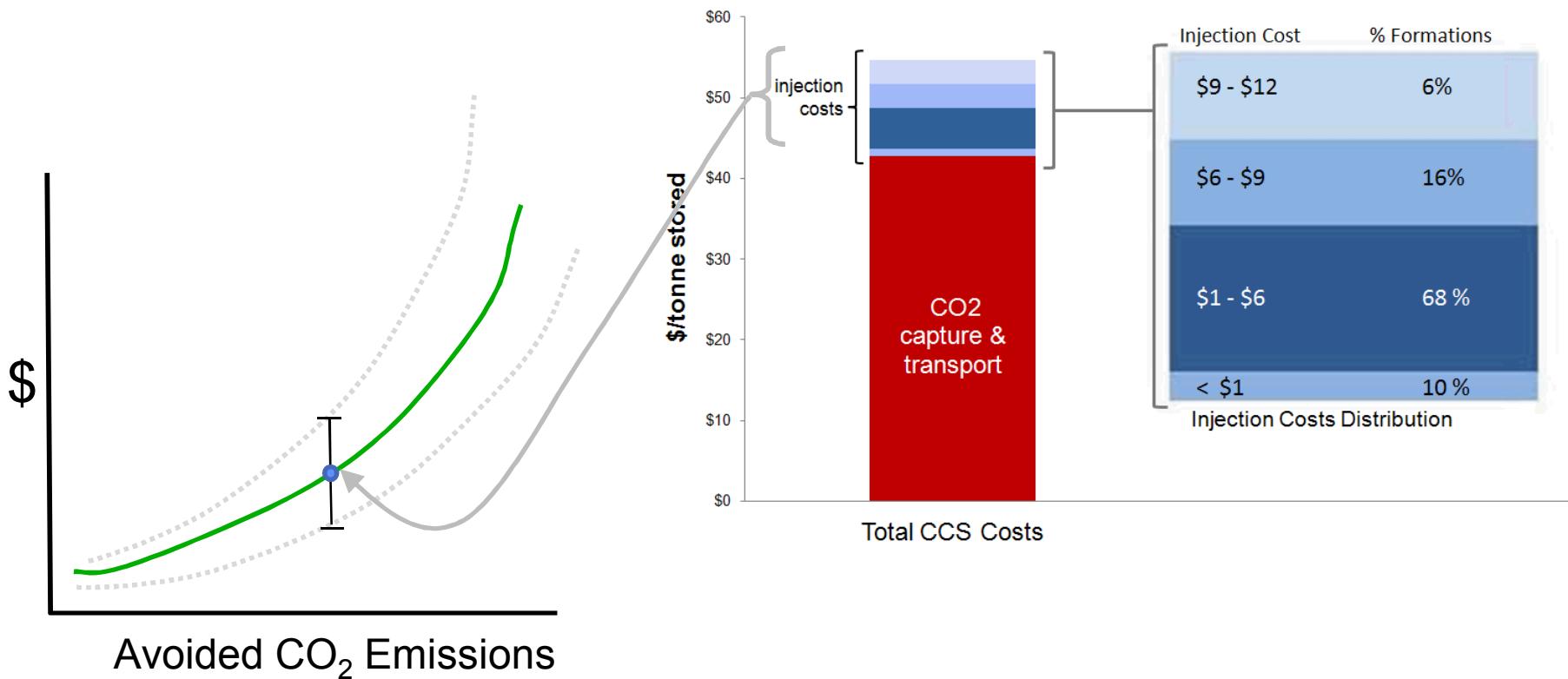


Phase V: Data Challenge in the Context of Cost


Data Challenge	Required to Calculate	Result
Formation Permeability	→	Injection Rates per Well
Injection Rates Per Well	→	Number of Wells per Power Plant & CO ₂ Sink Combo.
Number of Wells	→	Cost of Infrastructure & Well Spacing
Costs & Well Spacing	→	Manage Communication between Wells
Communication Between Wells	→	Calculate the Levelized Lifetime Cost (and years) for the CO ₂ Sink & H ₂ O resource

Phase V: Expanding the 'Geology Controlled' (Permeability) factor to Cost Relationship across all Sinks

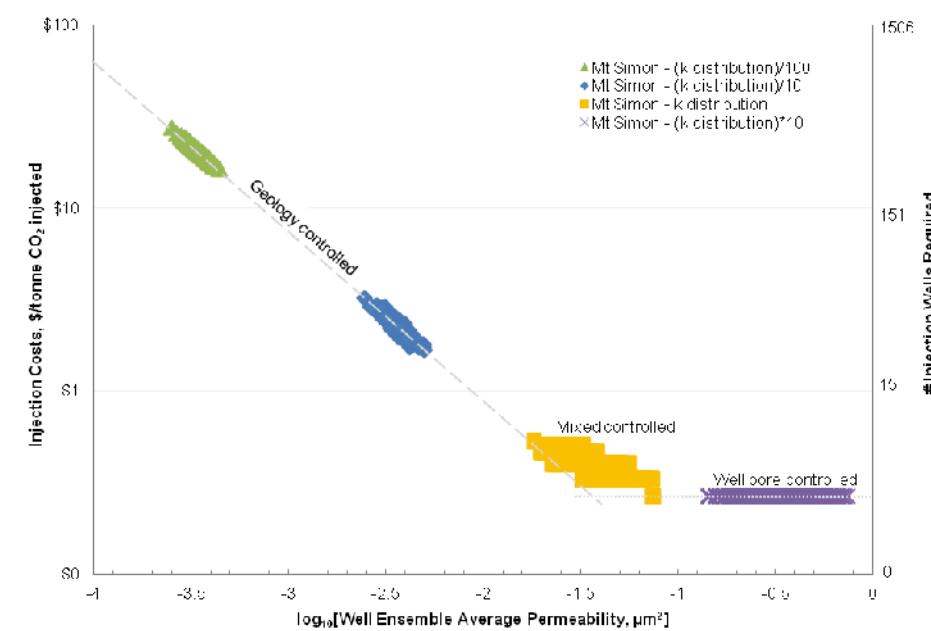
Injectivity equation: permeability sampled from 4 Rock Types

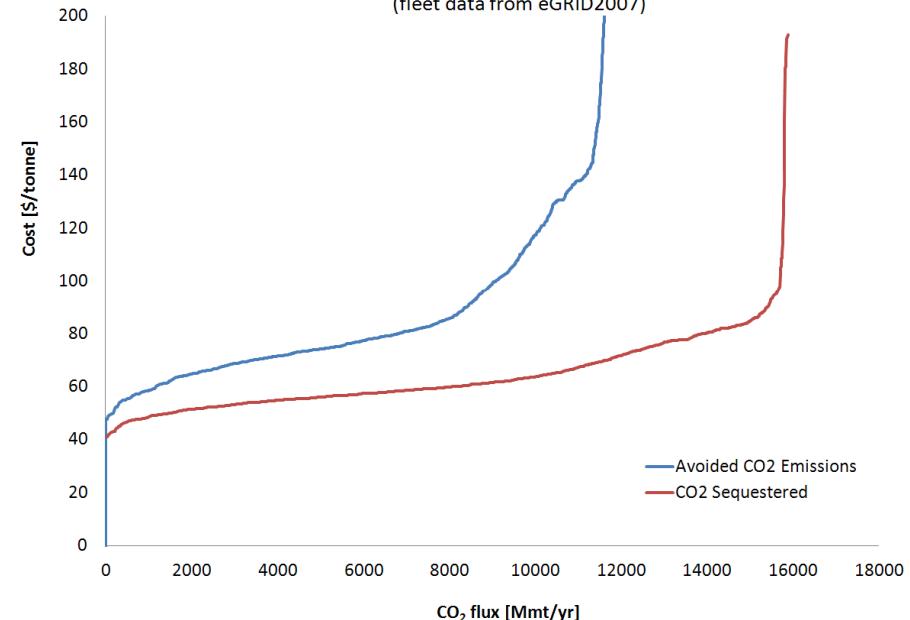
Methods behind the Permeability-to-Cost Analysis



Source: Heath, J.E., Kobos, P.H., Roach, J.D., Dewers, T.A. and S.A. McKenna, "Geologic Heterogeneity and Economic Uncertainty of Subsurface Carbon Dioxide Storage," SPE Economics & Management Journal, *in press*.

WECSsim Results:


Similar Full Economic Analysis Underway


Note: Illustrative Example at this time

Summary:

Phase V identifying costs, capacity, and siting criteria

CO₂ Capture & Storage Potential for 2005 U.S. Coal & Gas Fleet
(fleet data from eGRID2007)

Phase V: Other notable progress

- **WECSSim**
 - Substantial interface ease-of-use work
 - Improved usability: single power plant, or national storage supply curve
 - Model dissemination strategy update
- **Output:**
 - Published manuscript in SPE Journal of Economics & Management
 - Poster accepted for upcoming 11th Annual conference on CCUS
 - Finalizing manuscript documenting data assessment of NatCarb information

Key Messages

Framework for National Level Assessment

- Cost of CCS from any U.S. fossil fuel power plant to any deep saline formation
- Site-specific nature of geologic data challenge

Impact of Geologic Uncertainty on Costs

- Low injectivity requires more injection wells and therefore higher costs
- High permeability reservoirs with low injection costs (< \$1/tonne) represent < ~10% of the 325 formations
- Scale-up challenge

Model Discussions

The Water, Energy and Carbon Sequestration Simulation Model (WECSsim)

Ongoing and Future Work

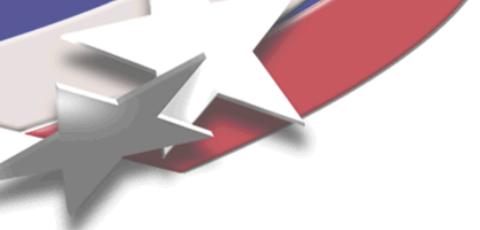
National Level Supply Assessment

- i.e., “How much low-cost CO₂ storage exists in the U.S.?”

Spatial distribution of CO₂ sources to sinks

- i.e., “Are the high quality sinks accessible to large sources?”
- “How will competition for storage sinks change the national supply curve?”

CO₂ injectivity-brine extractivity and heterogeneity


- i.e., “How do injection rates improve with brine extraction?”

Future Opportunities: Ideas to Enhance WECSSim

- 1.1 Enhanced Oil Recovery in WECSSim**
- 1.2 CO₂ Storage Competition Over Time**
- 1.3 Water Treatment Technologies for Carbon Capture, Use and Storage (CCUS)**
- 1.4 Expanding the WECSSim Model Interface to be fully Web-Based.**
- 1.5 To Extract or Not: Tradeoff Analysis for Treated Saline Formation Waters**
- 1.6 Updating WECSSim to use NatCarb 2012+**

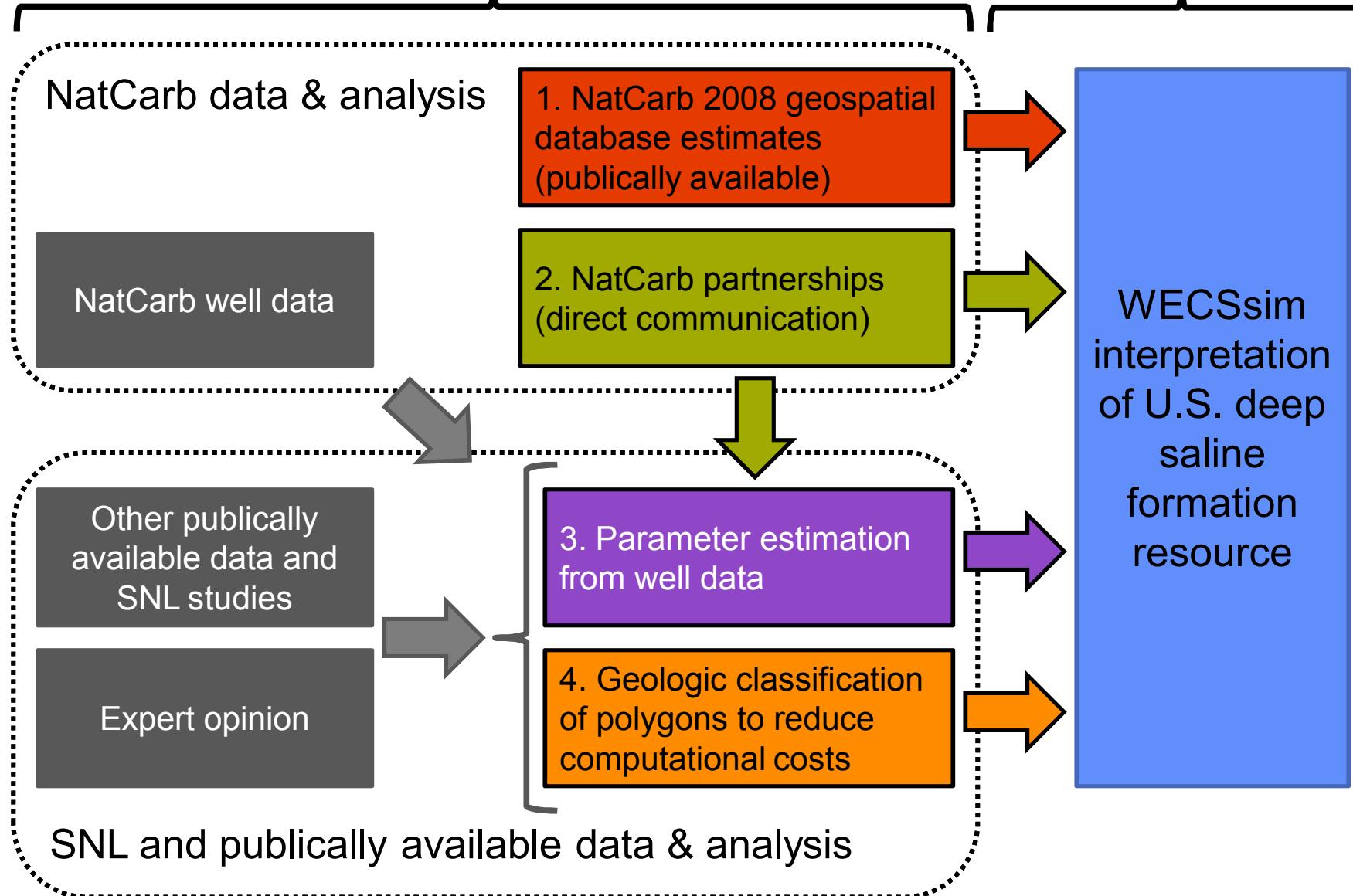
For Further Information:

Heath, J.E., Kobos, P.H., Roach, J.D., Dewers, T.A. and S.A. McKenna, "Geologic Heterogeneity and Economic Uncertainty of Subsurface Carbon Dioxide Storage," SPE Economics & Management Journal, *in press*.

Kobos, P.H., Cappelle, M.A., Krumhansl, J.L., Dewers, T.A., McNemar, A., Borns, D.J., 2011. Combing power plant water needs and carbon dioxide storage using saline formations: Implications for carbon dioxide and water management policies. *International Journal of Greenhouse Gas Control*, 5, 899-910.

The Water, Energy and Carbon Sequestration Simulation Model (WECSsim)

Thank you.



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Working Results.

Assessing U.S. deep saline formations

Data and Analysis

Product

Limited Saline Formation Data

Data availability by source for 325 polygons derived from NatCarb 2008

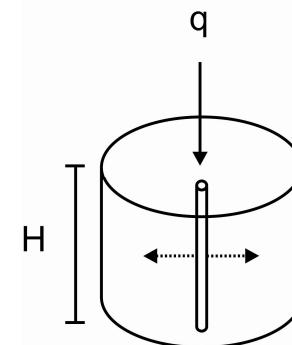
Data Source	CO ₂ storage capacity	Area	Depth	Thickness	Porosity	Perm	TDS	Temp	Pressure
NatCarb 2008	42%	100%	0%	0%	0%	0%	0%	0%	0%
Partnerships	42%	100%	62%	64%	55%	0%	18%	44%	45%
Well records	NA	NA	70% ¹	70% ¹	0%	0%	70% ¹	100% ²	NA
Geologic class	NA	NA	NA	NA	100%	100%	0%	NA	NA
No estimate	16% (52)	0% (0)	14%³ (47)	14%³ (47)	0 % (0)	0 % (0)	14%³ (47)	14%³ (47)	14%³ (47)

Notes:

1. 30% of polygons (97 of 325) have no potentially intersecting wells associated with them from well databases used here.

2. Temperature calculated from depth and geothermal gradient. Geothermal gradient was developed spatially from publically available well records.

3. 14% of polygons (47 of 325) have no depth, thickness, or salinity information and no potentially intersecting wells.


Multi-Well CO₂ Injection: With or without Brine Extraction

I well injectivity index;
measure of the “ease” of
CO₂ injection

q volumetric injection rate

ΔP the pressure gradient

$$I \equiv \frac{q}{\Delta P}$$

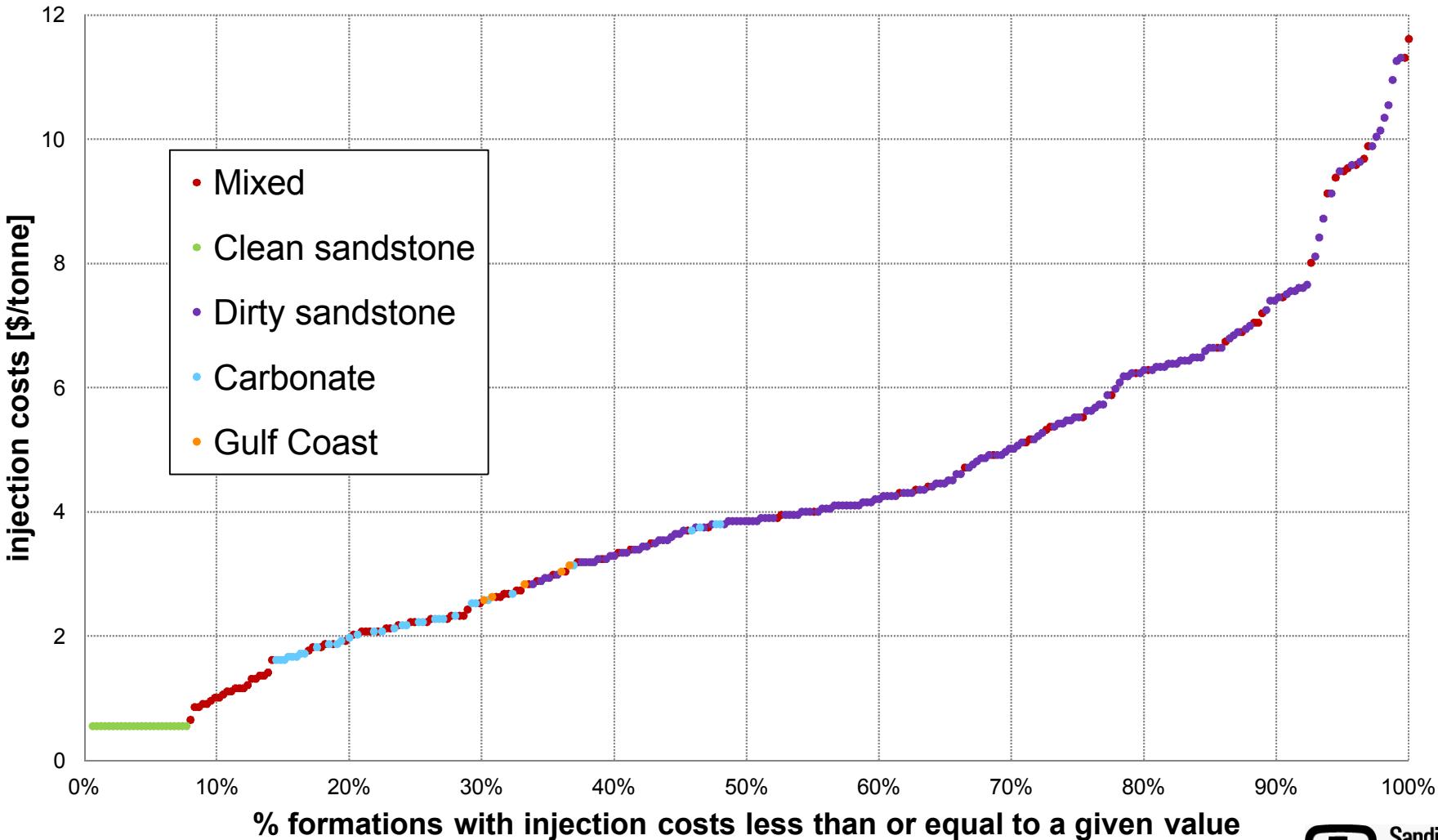
Radial flow
from the well

Options in WECSSim:

CO₂ Injectivity Method

- Bryant & Lake, 2005
- Stauffer et al., 2007
- Eccles, 2011
- McCollum, 2006
- Heath, 2011

No
brine
extraction


Brine extraction

$$I = \frac{4\pi k k_r H}{\mu \left(\ln \left(\frac{4A}{1.781 C_A r_w^2} \right) + 2s \right)}$$

The Next Step: Working Towards a National Storage Supply Curve

Injection costs for geologic storage of 11 million tonnes CO₂ per year

Productivity:

Output is more than Double the Required Deliverables

- **Project Deliverables, Reports (4+):**

- Kobos, P.H., Roach, J.D., Klise, G.T., Krumhansl, J.L., Dewers, T.A., Heath, J., Dwyer, B.P., Borns, D.J. and A. McNemar, "Study of the Use of Saline Formations for Combined Thermolectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report," SAND2011-5776P, Updated 8/2011.
- Kobos, P.H., Krumhansl, J.L., Dewers, T.A., Klise, G.T., Dwyer, B.P., Tidwell, V.C., Kottenstette, R., Borns, D.J. and A. McNemar, "Thermolectric Power Plant Water Demands Using Alternative Water Supplies: Power Demand Options in Regions of Water Stress and Future Carbon Management," SAND2011-5808P, Updated 8/2011.
- Kobos, P.H., Krumhansl, J.L., Dewers, T.A., Cappelle, M.A., Heath, J.E., Dwyer, B.P., Borns, D.J. and A. McNemar, "Study of the Use of Deep Saline Formations for Combined Thermolectric Power Plant Water Needs and Carbon Sequestration at a Regional-Scale: Phase II Report," SAND2010-8073P, 6/2010.
- Kobos, P.H., Cappelle, M.A., Krumhansl, J.L., Borns, D.J., Hightower, M.M., and A. McNemar, "Study of the Use of Saline Aquifers for Combined Thermolectric Power Plant Water Needs and Carbon Sequestration at a Regional-Scale: Phase I Report," SAND2008-4037, Updated 3/2010.

- **Journal Publications (3)**

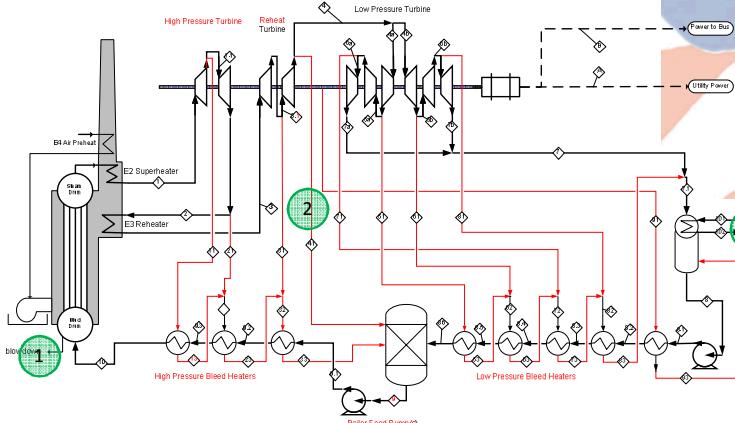
- Heath, J.E., Kobos, P.H., Roach, J.D., Dewers, T.A. and S.A. McKenna, "Geologic Heterogeneity and Economic Uncertainty of Subsurface Carbon Dioxide Storage," SPE Economics & Management Journal, in press.
- Kobos, P.H., Cappelle, M.A., Krumhansl, J.L., Dewers, T.A., McNeamar, A. and D.J. Borns, 2011 "Combining power plant water needs and carbon dioxide storage using saline formations: Implications for carbon dioxide and water management policies," International Journal of Greenhouse Gas Control, Volume 5, Issue 4, July, pages 899 – 910.

- **Conference Proceedings, Papers (6+):**

- Kobos, P.H., Roach, J.D., Heath, J.E., Dewers, T.A., McKenna, S.A., Klise, G.T., Krumhansl, J.L., Borns, D.J., Gutierrez, K.A. and A. McNemar, "Economic Uncertainty in Subsurface CO₂ Storage: Geological Injection Limits and Consequences for Carbon Management Costs," 30th USAEE/IAEE North American Conference, SAND2011-5975C, Washington, D.C., October 9 – 12, 2011.
- Kobos, P.H., Roach, J.D., Klise, G.T., Krumhansl, J.L., Heath, J.E., Dewers, T.A., Borns, D.J., McNemar, A. and M.A. Cappelle, "Expanding the Potential for Saline Formations: Modeling Carbon Dioxide Storage, Water Extraction and Treatment for Power Plant Cooling," 10th Annual Conference on Carbon Capture and Sequestration, DOE/NETL, SAND2011-2713C, Pittsburgh, PA, May 2 – 5, 2011.
- Kobos, P.H., Roach, J.D., Klise, G.T., Krumhansl, J.L., Dewers, T.A., Heath, J.E., Dwyer, B., Borns, D.J., McNemar, A., "Storing Carbon Dioxide in Saline Formations: Analyzing Extracted Water Treatment and Use for Power Plant Cooling" 29th USAEE/IAEE North American Conference, SAND2010-5972C, Calgary, Canada, October 14 – 16, 2010.
- Kobos, P.H., Roach, J.D., Klise, G.T., Krumhansl, J.L., Dewers, T.A., Dwyer, B.P., Heath, J.E., Borns, D.J. and A. McNemar, "Saline Formations, Carbon Dioxide Storage, and Extracted Water Treatment: A National Assessment Tool," 9th Annual Conference on Carbon Capture and Sequestration, DOE/NETL, SAND2010-2647C, Pittsburgh, PA, May 10 – 13, 2010.
- Kobos, P.H., Krumhansl, J.L., Dewers, T.A., Heath, J.E., Cappelle, M.A., Borns, D.J., Klise, G.T., Dwyer, B.P. and A. McNemar, "Combining Power Plant Water Needs and Carbon Storage using Saline Formation: An Assessment Tool." 8th Annual Conference on Carbon Capture and Sequestration, DOE/NETL, SAND2009-2557C, Pittsburgh, PA, May 4 – 7, 2009.
- Kobos, P.H., Cappelle, M.A., Krumhansl, J.L., Dewers, T., Borns, D.J., Brady, P.V. and A. McNemar, "Using Saline Aquifers for Combined Power Plant Water Needs and Carbon Sequestration," 28th Annual USAEE/IAEE N. American Conference, SAND2008-6482C, New Orleans, LA, December 3 – 5, 2008.

High Efficiency Water Management Strategies for Power Plant Operation

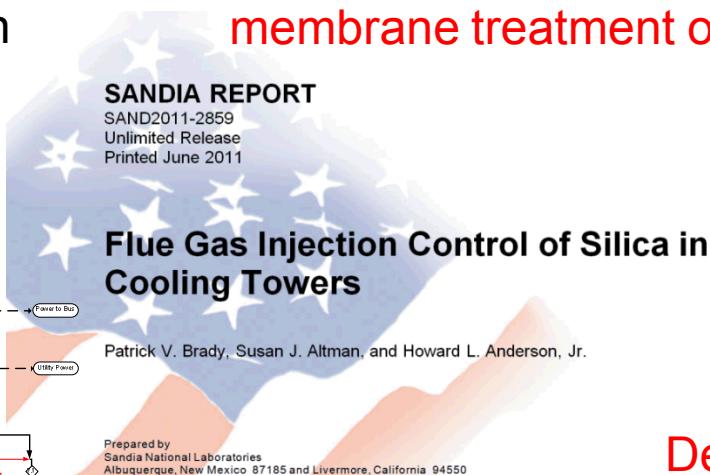
S. Altman (SNL) & I. Aurelio (NETL)


Three Tasks

- Cooling tower side-stream treatment
- Controlling silica scaling
- Power plant waste heat for water treatment

Produced

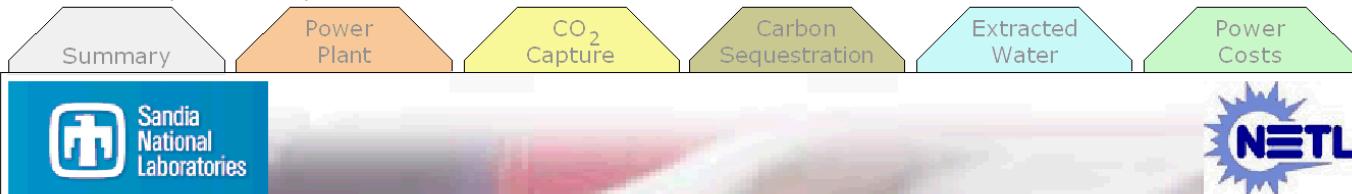
- 1 Peer-Reviewed Publication
- 4 SANDIA Reports


Analyzed three sources for waste heat for water treatment

Membrane treatment of side-stream cooling tower water for reduction of water usage

Susan J. Altman ^{a,*}, Richard P. Jensen ^b, Malynda A. Cappelle ^c, Andres L. Sanchez ^d, Randy L. Everett ^a, Howard L. Anderson Jr. ^a, Lucas K. McGrath ^e

Demonstrated water savings with membrane treatment of cooling tower water



Demonstrated method to keep silica in solution at higher concentrations and for a longer time.

Developed economically feasible method to coagulate silica

WECSSim: a dynamic analysis tool

The National Water, Energy and Carbon Sequestration Simulation (WECSSim) Model

Model Development Authors:
P.H. Kobos, J.D. Roach, G.T. Klise
J. Heath, T. Dewers, K. Gutierrez, S. McKenna, D.J. Borns

Copyright 2011 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. Government. Export of this program may require a license from the United States Government. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

[Evaluate a single
powerplant](#)

[Evaluate 2005 U.S.
powerplant fleet](#)

Version 1.0, September 2011; Working Version, as of 2/2012.

WECSSim: a dynamic analysis tool

Module Input

Overview

Power Plant
Carbon Capture
Carbon Storage
Extracted Water
Power Costs

Specify a Power Plant and Desired Carbon Capture %:

Plant Type & Specific Plant

Pulverized Coal NM - Four Corners
 IGCC FL - Polk
 NGCC AL - ExxonMobil Mobile Bay Onshore
 Gas Turbine AL - ABC Coke
 Hypothetical

% CO₂ Capture
90 %

Carbon Capture and Storage (CCS) with Saline Water Extraction: Where and How Much?

Sequestration Formation:	Southwest - SanJuan - Entrada	
CO ₂ Stored:	12.90 Mmt/yr base	16.48 Mmt/yr total (w makeup power ccs)
CCS Cost per Mass CO ₂ :	\$54.7 per tonne stored	\$72.2 per tonne of avoided emissions
Added Energy Cost:	5.48 cents/kWh for CCS	0.38 cents/kWh water related

Output

Rescale output graph axes

Locations of Formation & Power Plant

Selected formation centroid
Power plant

Mass CO₂ generated x1000 tonnes/yr

Base Case

Captured (cyan)
Emitted (orange)

LCOE cents/kWh

12.6 cents/kWh

h2o
ccs
base

Cost of avoided CO₂ emissions: \$72.2 per tonne

Background and Documentation

WECSSim: a dynamic analysis tool

Summary Power Plant CO₂ Capture Carbon Storage Extracted Water Power Costs

Module Input

Summary

Plant location
Plant type & size
Water use
LCOE

Specify a Power Plant (Existing or Hypothetical):

Plant Type & Specific Plant

Pulverized Coal NM - Four Corners
 IGCC FL - Polk
 NGCC AL - ExxonMobil Mobile Bay Onshore
 Gas Turbine AL - ABC Coke
 Hypothetical

The radio-buttons and dropdowns set the default power plant parameters to values for any eGRID 2007 plant (first four radio-button options) or an entirely user specified ("Custom") plant. In either case, resulting model defaults can be changed individually as well.

Plant type	PC-Subcritical			
Capacity & Capacity Factor	2,270 MW	0.7854		
CO ₂ Generation Rate	2,051 lbs/MWh			
Latitude - Longitude	Lat	36°41'24"	Long	-108°28'53"

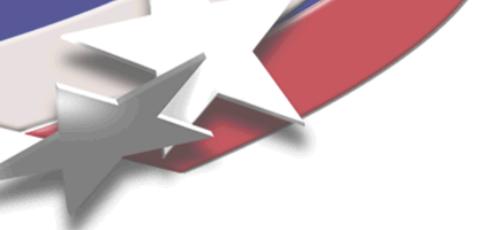
Output

Key Information from Power Plant Module

Plant type	PC-Subcritical
Base electricity generation	15,403.9 GWh/yr
Base CO ₂ generation	15,797,847.7 tons/yr
Cooling type	Cooling tower
Base water withdrawals	643.1 MGD
Base water consumption	1.6 MGD

Power Plant Location

1 COF
12.6 cents/kWh


cents/kWh

H₂O
CCS
Base

Scale

Background and Documentation

WECSSim: a dynamic analysis tool

Summary Power Plant CO₂ Capture Carbon Storage Extracted Water Power Costs

Module Input

Summary

Parasitic Energy
Make-up Power
Direct Water Use

Carbon Capture Module Inputs Summary

Plant Type	Pulverized coal subcritical
% Base CO ₂ Captured (CC)	90 %
Water withdrawal demand specific to CC & compression	298 gal/tonne CC
Make-up Power (MUP) Plant Type	PC-Subcritical
MUP CO ₂ Production Rate	1,900 lbs/MWh
% MUP CO ₂ Captured	90 %
MUP LCOE	13.1 cents/kWh
MUP Plant Cooling Type	Cooling tower
MUP water withdrawal rate	22.2 MGD

Output

Rescale output graph axes

CO₂ Capture Summary Values

Base plant type	PC-Subcritical
% CO ₂ Captured (CC)	90 %
Parasitic Energy Loss	30 %
=	534,857 kW
Make-up plant type	PC-Subcritical
Make-up plant cooling type	Cooling tower
Added water withdrawal demand	3 %
=	22 MGD
Total CC	16.5 Mmt/yr
LCOE of CC	5.4 cents/kWh

Total CO₂ Emissions & Fate

Total mass CO₂ generated

1000 tonnes/yr

20,000
15,000
10,000
5,000
0

Base Case

Captured
Emitted

CO₂ produced per kWh to grid

lbs/kWh

3
2
1
0

Base Case With CC

Captured
Emitted to Atmosphere

NETL

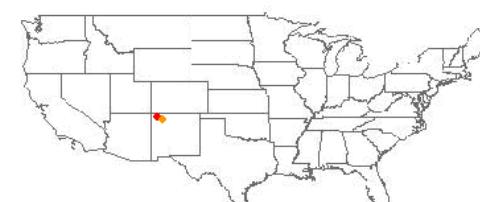
Background and Documentation

WECSSim: a dynamic analysis tool

Module Input

Summary

Carbon Storage Target (NatCarb Partnership - Basin - Formation)


Southwest - SanJuan - Entrada		
Formation Centroid	36°24'35" N	-107°42'43" W
Formation footprint area	29,181.6 km ²	
Formation depth	5,887 ft	
Formation thickness	420 ft	
Formation average porosity	0.168	
Formation geometric mean permeability	396.9 mD	
Formation temperature	59°C	
Formation pressure	175.8 bar	

Output

Carbon Storage Target

Southwest - SanJuan - Entrada	
Sink life for this CO ₂ only	550 yr
Sequestration depth	5,887 ft
Initial temp. at seq. depth	59°C
Initial pressure at seq. depth	176 bar
Resulting initial CO ₂ density	727 kg/m ³
CO ₂ to be sequestered	16.5 Mmt/yr
Power Plant to sink distance	0 mi
# injection wells required	10
LCOE CO ₂ transport & seq.	0.05 cents/kWh

Locations of Formation & Power Plant

- Selected formation centroid location (36°24'35" N -107°42'43" W)
- Power plant location (set on Power Plant Tab) (36°41'24" N -108°28'53" W)

Background and Documentation

WECSsim: a dynamic analysis tool

Module Input

Summary

Quantity & Quality
Extraction Wells
Water Treatment
Brine Disposal

Extracted Water Module Inputs Summary	
Saline formation targeted	Southwest - SanJuan - Entrada
Deep saline water extraction rate	25.25 MGD
Number of extraction wells	10
Extraction depth	2500 to 5000 ft
Minimum salinity threshold	10 ppt
Maximum salinity threshold	30 ppt
Average salinity of extracted water	19 ppt
Treated water stream	16.64 MGD
% new (CCS) H2O demands met	75 %
Brine disposal method	injection

Output

Extraction formation:	
Southwest - SanJuan - Entrada	
Holes drilled per extraction well:	2.6
Number of extraction wells:	10
Average TDS of extracted water:	19 ppt
RO treatment plant efficiency:	66 %
Brine concentrate (bc) disposal:	injection
Treated water stream:	16.6 MGD
% new (CCS) H2O demands met:	75 %
Cost of extraction and transport:	\$4.66 per 1000 gal
Cost of treatment and bc disposal:	\$5.10 per 1000 gal
Total treated water cost:	\$9.76 per 1000 gal

Distribution of water quality in target formation at depths of: 2500 to 5000 ft

Salinity Interval (ppt)	Percentage (%)
0 to 10	30
10 to 12	5
12 to 14	3
14 to 16	5
16 to 18	2
18 to 20	3
20 to 22	2
22 to 24	5
24 to 26	2
26 to 28	3
28 to 30	2
30 to 32	3
32 to 34	2
34 to 36	3
36 to 38	2
38 to 40	20
40 ppt plus	20

Rescale

Salinity Intervals

Caution: Distribution is from potentially intersecting well records and thus only an estimate of tds in the formation

Background and Documentation

WECSSim: a dynamic analysis tool

Summary
Power Plant
CO₂ Capture
Carbon Storage
Extracted Water
Power Costs

Module Input

Summary

- Base year & cap factors
- Base LCOE
- CCC Costs - Amine
- CCC Costs - Selexol
- CO₂ Pipeline Costs
- Injection Well Costs
- H₂O Extraction Costs
- H₂O Pipeline Costs
- H₂O Treatment Costs
- Brine Disposal Costs

CCS Costs Summary Values

\$ Display Year	2010
Power Plant Capitalization Factor	8.02 %/yr
Saline Formation Capitalization Factor	8.02 %/yr
Base LCOE at Plant	6.71 cents/kWh
Make-up Power LCOE	13.1 cents/kWh
CCC Costs Amine Scrubbing	1.5 cents/kWh
CCC Costs Selexol (IGCC)	? cent/kWh
CO ₂ Pipeline Costs	0 cents/kWh
CO ₂ Injection Well Costs	0.05 cents/kWh
H ₂ O Extraction Well Costs	0.18 cents/kWh
H ₂ O Pipeline Costs	0 cents/kWh
H ₂ O Treatment Costs	0.19 cents/kWh
Brine Disposal Costs	0.01 cents/kWh

Output

Power Cost Results
In **2010** dollars

<input checked="" type="radio"/>	\$/mass CO ₂ stored																						
<input type="radio"/>	\$/reduced CO ₂ emissions																						
<table border="1" style="width: 100%; border-collapse: collapse;"> <tbody> <tr> <td style="width: 15%; text-align: right;">Marginal LCOE for treated water:</td> <td style="width: 85%;">0.38 cents/kWh</td> </tr> <tr> <td style="text-align: right;">Cost of treated water:</td> <td>\$3.55 per tonne</td> </tr> <tr> <td style="text-align: right;">Marginal LCOE for CO₂ transport:</td> <td>0 cents/kWh</td> </tr> <tr> <td style="text-align: right;">Length of CO₂ pipeline:</td> <td>0 mi</td> </tr> <tr> <td style="text-align: right;">Cost of CO₂ transport:</td> <td>\$0 per tonne</td> </tr> <tr> <td style="text-align: right;">Marginal LCOE for CO₂ injection:</td> <td>0.05 cents/kWh</td> </tr> <tr> <td style="text-align: right;">Cost of CO₂ injection:</td> <td>\$0.45 per tonne</td> </tr> <tr> <td style="text-align: right;">Marginal LCOE for Make-Up Power:</td> <td>3.93 cents/kWh</td> </tr> <tr> <td style="text-align: right;">Marginal LCOE for CCC:</td> <td>1.5 cents/kWh</td> </tr> <tr> <td style="text-align: right;">CCC Cost Including Make-Up Power:</td> <td>\$50.72 per tonne</td> </tr> <tr> <td style="text-align: right;">Base LCOE:</td> <td>6.71 cents/kWh</td> </tr> </tbody> </table>		Marginal LCOE for treated water:	0.38 cents/kWh	Cost of treated water:	\$3.55 per tonne	Marginal LCOE for CO ₂ transport:	0 cents/kWh	Length of CO ₂ pipeline:	0 mi	Cost of CO ₂ transport:	\$0 per tonne	Marginal LCOE for CO ₂ injection:	0.05 cents/kWh	Cost of CO ₂ injection:	\$0.45 per tonne	Marginal LCOE for Make-Up Power:	3.93 cents/kWh	Marginal LCOE for CCC:	1.5 cents/kWh	CCC Cost Including Make-Up Power:	\$50.72 per tonne	Base LCOE:	6.71 cents/kWh
Marginal LCOE for treated water:	0.38 cents/kWh																						
Cost of treated water:	\$3.55 per tonne																						
Marginal LCOE for CO ₂ transport:	0 cents/kWh																						
Length of CO ₂ pipeline:	0 mi																						
Cost of CO ₂ transport:	\$0 per tonne																						
Marginal LCOE for CO ₂ injection:	0.05 cents/kWh																						
Cost of CO ₂ injection:	\$0.45 per tonne																						
Marginal LCOE for Make-Up Power:	3.93 cents/kWh																						
Marginal LCOE for CCC:	1.5 cents/kWh																						
CCC Cost Including Make-Up Power:	\$50.72 per tonne																						
Base LCOE:	6.71 cents/kWh																						

Total LCOE with CCS 12.57 cents/kWh

cents/kWh

Rescale axis

H ₂ O	
CCS	
Base	

