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Personal Background 

• St. Michael’s College (VT) 

– mathematics major 

– minors: music, computer science, secondary education 

– AmeriCorps volunteer in New Orleans, IT focus 

 

• Ph.D., Computational and Applied Mathematics, NC State 

– So, what can math be used for? 

– mathematics, statistics, computer science, immunology 

– nondeterministic model calibration (HIV) 

 

• SNL, Albuquerque since 2005: 

– mix of algorithm development, production software 

– went for optimization focus; diversified into UQ 

– science/engineering application customers drive research 

and software 



Roles for Math Sciences 

• SNL: A U.S. Department of Energy laboratory 

• Computational modeling motivation and demo 

• Computing research supporting simulation 

• Application examples and training needed 

• Optimization and uncertainty quantification, with examples 
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Goal: demonstrate the intertwined role of  

mathematics, statistics, computer science,  

and disciplinary science  

in executing Sandia National Laboratories’ mission 



SNL Core Thrust Areas Address 

Evolving National Security Needs 

Nuclear Weapons 
Defense Systems 

and Assessments 

Energy, Climate,  

Infrastructure 

Security 

International, 

Homeland, 

Nuclear Security 

• Engineering lead 

for NW systems 

• Design, fabricate, 

test components 

• Simulations 

• Physical testing 

• Information ops 

• Military systems 

• Non-proliferation 

• Remote sensing 

and verification 

• Space mission 

• Surveillance & 

reconnaissance 

• Infrastructure 

Security 

• Energy Security 

• Climate Security 

• Enabling 

Capabilities 

• Critical asset 

protection 

• Global security 

• Homeland 

Defense and 

Force Protection 

• Homeland 

Security 
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Emerging SNL  

National Security Thrusts 

5 

Nuclear 

Science & 

Technology 

Energy & 

Climate 

Cyber 



Fundamental Research  

Supports Mission Capabilities 

6 
Research Disciplines 

Computer 
Science 

Materials Engineering 
Sciences 

Micro 
Electronics 

Pulsed Power Bioscience 

 

High Performance 
Computing 

Nanotechnologies & 
Microsystems 

Extreme 
Environments 

Innovation: most compelling reason to work at SNL 

https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/HPC.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/Microsystems.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/Nanotechnology.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/ExtremeEnv.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/AFM.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/Top10_Computers.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/ColumbiaStudy.ppt


Staff at Five Principal Sites 
majority engineers; many with computational focus 
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Mechanical engineering 17% 

Electrical engineering 20% 

Other engineering 15% 

Math 2% 

Computing 17% 

Other science 6% 

Other fields  12% 

Chemistry 5% 

Physics 6% 

32% 

 On-site workforce: 11,876 

 Regular employees: 9,122 

 Gross payroll: ~$943 million 

Technical staff (4,557) by discipline 

 50% 

29% 

 11%  
10% 

FY11 Operating Revenue 
 $2.4 billion 

Nuclear Weapons

Defense Systems & Assessments

Energy, Climate & Infrastructure Security

International, Homeland, and Nuclear Security

(Operating Budget) 

Albuquerque, 

New Mexico 



Roles for Math Sciences 

• SNL: A U.S. Department of Energy laboratory 

• Computational modeling motivation and demo 

• Computing research supporting simulation 

• Application examples and training needed 

• Optimization and uncertainty quantification, with examples 

 

8 

Goal: demonstrate the intertwined role of  

mathematics, statistics, computer science,  

and disciplinary science  

in executing Sandia National Laboratories’ mission 



Why Computational Modeling? 

Researchers and designers at SNL need to understand 

complex engineering and science phenomena, but physical 

experimentation might not be feasible, due to, e.g.,: 

• Safety: dangerous to test a mechanical component or new 

type of chemical reaction in the regime of interest 

• Laws/ethics: may prohibit nuclear weapons testing; human 

subjects or genetics experiments 

• Practicality: can’t readily experiment with climate, 

economics, or the universe, except at reduced scale 

• Cost/availability: building prototypes, destructive testing 

on legacy systems or in extreme environments often 

prohibitively expensive 

 

In these cases, we pair limited experimentation and data with 

computational models intended to represent reality. 
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A Modeling Process 
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reality 
(observed or 
postulated) 

theory or 
explanation 

mathematical 
or statistical 

model 

discretization/ 
solution 
scheme 

software 
implementa-

tion 

model 
solution 

conclusions 

direct analysis 

data 

update 

understanding 
simplifying 

assumptions 

abstract/ 

quantify 

computational 

analysis 

code 

run 

simulation 

compare / 

interpret 



Benefits of  

Computational Models 

• Quickly test theories/hypotheses 

• Explore engineering designs with fewer prototypes 

• Make predictions in regimes where testing impractical 

• Gain new insights about reality 

• Advise limited data collection (design of experiments) 

 

But! 

• Each modeling stage makes assumptions and 

approximations; conclusions must be qualified and 

relevance vetted 

• Solving equations numerically introduces approximation 

errors, which must be quantified 

• And that’s all assuming the computer code is correct! 
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Example: 

Modeling a MacPherson Strut 

k 
c 

y 

m 

Goal: design a shock absorber with desired characteristics 

simplify: physical model 



Mathematical Model  

and Computation of Solution 

• Mathematical model: second-
order ordinary differential 
equation in time 

• Predicts displacement y(t) 

• For given fixed mass m, what 
c and k should one use? 

• Discretize, program, and 
simulate with Matlab 
computer software 

• Can see effect of k, c 
variations without building a 
prototype 

%Representative Matlab code 
 
% define the right side of the ODE 
function xdot = osc_rhs(t, x, q, f) 
  
    m = q(1); 
    c = q(2); 
    k = q(3); 
  
    xdot(1,1) = x(2); 
    xdot(2,1) = -k/m*x(1) - c/m*x(2) + 
interp1(f(1,:), f(2,:), t)/m; 
 
% solve the ODE  
q = [m c k]; 
f = [0, 0.1, 0.11, 100; 
     0*[1000, 1000, 0, 0]]; 
     
x0 = [fac,0];  
  
[t,x] = ode15s(@osc_rhs,[0:0.1:10], 
x0,[],q,f); 

see Matlab demo… 



Simple System May Give  

Insight in Diverse Scenarios 

• automobile suspension 

• shock-absorbing truck seats 

• recoilless firearms, artillery 

• seismograph (amplify oscillations) 

• structures of linked oscillators; 
many mechanical and chemical structures 

• structure stability: Tacoma Narrows Bridge,  
cadence on bridges, John Hancock tower 

– building swayed back-and-forth, exhibited snake-like 

bending; famous glass shedding 

– used spring—mass—dashpot to control; two 300-ton 

weights installed on 58-th floor, attached with springs 

and shock absorbers. 

– added 1,500 tons of steel braces to stiffen 

 

 



SNL Examples of 

Computational Simulation  

d 
Hurricane Katrina: weather, 

logistics, economics, 

human behavior 

Electrical circuits: networks, 

PDEs, differential algebraic 

equations (DAEs), E&M 

Earth penetrator: nonlinear 

PDEs with contact, transient 

analysis, material modeling 

Micro-electro-mechanical 

systems (MEMS): quasi-

static nonlinear elasticity, 

process modeling 

Joint mechanics: system-level 

FEA for component 

assessment 

Systems of systems 

analysis: multi-scale,  

multi-phenomenon 



Roles for Math Sciences 

• SNL: A U.S. Department of Energy laboratory 

• Computational modeling motivation and demo 

• Computing research supporting simulation 

• Application examples and training needed 

• Optimization and uncertainty quantification, with examples 
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Goal: demonstrate the intertwined role of  

mathematics, statistics, computer science,  

and disciplinary science  

in executing Sandia National Laboratories’ mission 



Computing Research at SNL 

• How does our group support use of simulation? 

• Routine engineering or decision making with models often 

cannot be done on a desktop computer… 

– simulate digital circuits with millions of transistors 

– solve PDEs with billions of degrees of freedom 

– simulate disaster response with millions of actors 

• Scientific discovery, such as for climate or fusion energy, 

might require ground-breaking fidelity and computational 

power to resolve a range of scales 

• Supercomputers grow and architectures change rapidly 

 

We perform research and development for next-generation 

computing hardware and the software and algorithms to 

efficiently utilize them for mission-critical applications. 
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Computing Research at SNL: 
Architectures, Algorithms, Applications 

Enable simulation with: 

• Extreme-scale Computing:  
quantum devices, scalable architectures,  

supercomputer operating systems 

• Computational Sciences and Math: 
scalable algorithms: numerical PDEs,  

solvers optimization, uncertainty quantification;  

simulation of shock physics, electrical  

devices and circuits, nuclear power 

• Information and Cognitive Science: 
large data handling and visualization, discrete math /  

complex systems, cognitive modeling and systems 

• For more information: 

– http://www.cs.sandia.gov/highlights/CCIM_Highlights_2009.pdf 

– http://www.cs.sandia.gov/ 
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Cielo 

142272 cores 

6th on TOP500 

Paraview 

visualization 



High Performance Computing: 

Sandia Systems and Software 

Designed by Rolf Riesen, July 2005 
1988 1990 1992 1994 1996 1998 2000 2002 2004 

2003 2001 1999 1997 1995 1993 1991 1989 2005 1987 

CM-2 

1988 

nCUBE-2 

1990 
iPSC-860 

1992 

Paragon 

1993 

ASCI Red 

1996 

Red Storm 

2005 Cplant 

1998 

Puma, Cougar, 

Catamount 

1993 –  

Net I/O

System Support

Service

Sys Admin

Users

F
ile

 I
/O

Compute

/home

Partition Model 

1990 –  

Cplant 

1997 – 2005 SUNMOS 

1990 - 1997 

Portals 

1992 –  

FASTOS 

2004 -  



Algorithm R&D Transforming 

Computational Modeling & Simulation 

System Design 

Geometric Modeling 

Meshing 

Physics 

Model Equations 

Discretization 

Partitioning and Mapping 

Nonlinear solve 

Linear solve 

Time integration 

Information Analysis & Validation 

Adapt 
Optimization 

and UQ 

Improved design and understanding 

CUBIT 



Scalable Informatics  

and Visualization 

Visual Informatics: understand complex 

relationships; detect anomalies 

Advanced Graph Analysis:  
Community Clustering focuses on a 
smaller subset of interest. 

Advanced linear algebra and multi-

way tensors to infer missing links 

and help recognize patterns 



Roles for Math Sciences 

• SNL: A U.S. Department of Energy laboratory 

• Computational modeling motivation and demo 

• Computing research supporting simulation 

• Application examples and training needed 

• Optimization and uncertainty quantification, with examples 
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Goal: demonstrate the intertwined role of  

mathematics, statistics, computer science,  

and disciplinary science  

in executing Sandia National Laboratories’ mission 



Disease Outbreak  

Characterization 

• 3-year effort with Jaideep Ray (PI), Karen 

Devine, Youssef Marzouk, Michael Wolf 

(UIUC), others 

• Bayesian inverse problem to determine 

initial conditions 

• Agent-based social contact network 

disease propagation simulator 

– model geographic spread 

– model chain of contacts 

 GOAL: Determine source and magnitude of natural or terrorist 
disease outbreak, given patients presenting for treatment 



Network-based Disease Model 

• Graph theory for parallel partitioning and model reduction 

(cluster analysis on bipartite graph) 

• Math biology for in-host disease models (pathogenesis) and 

transmission (epidemiology) 

• Scalable parallelism via MPI for efficient simulations 

Each person’s health modeled with (ordinary) differential 

equations; dynamic social network connecting people: 



Water Security 

CANARY 

real-time event 
detection  

PONI 

real-time 
contaminant 

source inversion 

CWaRK 

response protocol for 
isolation, flushing, and 

decontamination 
booster  

TEVA 

contaminant 
simulation and  

vulnerability 
assessment 

SPOT 

sensor placement 
optimization 

Event Duration 

Event Strength 

Gaussian Event 

Square Event 

courtesy Bill Hart 



courtesy Bill Hart 

Sensor Network Optimization - 
2006 

TEVA-SPOT: 

Optimization of Sensor Networks 

Goal: design a sensor network with optimal sensor locations  

 

Motivating Applications: 

•  Detect contaminants in water networks 

•  Protect air networks in sensitive buildings 

•  Detect intruders in road networks 

•  Physical site security protection 

 

Discrete Mathematics: 

•  Is used to solve large problems quickly 

•  Can determine optimality of the final solution 

•  Reduce problem size to solve on commodity computers 

 

Impact: 

• Sensor placements designed for 8 large U.S. cities 

• Sensors installed at 4 U.S. cities based on these designs 

• Estimated fatalities from high consequence attacks on 

drinking water are decreased by a median of 48% 

• The estimated value of lives lost due to high consequence 

attacks is reduced by a median of $19 billion dollars 

  



Water Security: 

Beneficial Expertise 

• Civil engineering, water network design and operation 

• Physics of fluid flow, electrical circuits 

• Algebraic modeling of the physical processes 

• Discrete optimization to place sensors (discrete math, 

graph theory, operations research) 

• Continuous (and discrete) optimization for source inversion 

• Statistics and signal processing for anomaly detection 
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Roles for Math Sciences 

• SNL: A U.S. Department of Energy laboratory 

• Computational modeling motivation and demo 

• Computing research supporting simulation 

• Application examples and training needed 

• Optimization and uncertainty quantification, with examples 

(my corner of the SNL world) 

 

28 

Goal: demonstrate the intertwined role of  

mathematics, statistics, computer science,  

and disciplinary science  

in executing Sandia National Laboratories’ mission 



My Work Life  

Largely Centers on DAKOTA 

• Algorithm and software development 

– Implement new algorithms and infrastructure in C++ 

– Collaborate with labs and universities; publish important results 

• Software project management 

– Manage priorities in team development environment 

– Deliver usable algorithms to customers; enable team do research 

• Application to nuclear energy and beyond 

– Solve nuclear energy and other national security problems 

– Help people understand and use our software 
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Algorithm and 

software R&D 

Partner/embed for 

application work 

Document, 

deploy, 

train  

Strategic 

Vision 

In
c
re

a
s
in

g
 

 u
s
e
r a

u
to

n
o

m
y
 

Consult on  

user projects 

Support independent/ 

power users 

requirements 

application 

impact 



DAKOTA in a Nutshell 

• Sensitivity: what are the crucial factors/parameters and how 

do they affect key metrics? 

– Which of m, c, or k, is system performance most sensitive to? 

• How safe, reliable, robust, or variable is my system? 

(quantification of margins and uncertainty: QMU, UQ) 

– If the damping c is known inexactly or it varies in manufacturing, 

how much variability will there be in the performance? 

• What is the best performing design or control? (optimization) 

– What spring and damper will stabilize the car quickly without 

over-stressing it? 

• What models and parameters best match experimental data? 

(calibration) 

– Given experimental data, calibrate m, c, and k in the math model 

to the real world. Does it then predict unseen scenarios 

(validation)?  

DAKOTA supports engineering transformation through advanced 

modeling & simulation. Adds value by answering science and 

engineering questions via iterative analysis of computational models: 



Simulation-based  

Optimization and Calibration 

• GOAL: Vary parameters of a simulation to extremize objectives, 

while satisfying constraints to find (or tune) the best design, 

estimate best parameters, analyze worst-case surety  

• Mapping from decision variables to objectives and constraints is 

(at least partially) implicit; no explicit algebraic form 

• Relationship is calculated by a “black box” computational model 

of target phenomenon (often loosely coupled to the solver) 

• Solver iteratively evaluates the simulation and adapts based on 

its outputs to maximize fitness. 

• Same process can calibrate, adjusting parameters to maximize 

agreement with experimental data 
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Optimization  

Solver 

Computational Model 

(physics, chemistry, 

biology, electrical) 

decision  

variables 

(parameters) 
responses (objectives, 

constraints, derivatives) 

experimental data 
fitness 

e.g., c and k e.g., stress, 

displacement 



fuel tanks 

Determine the optimal tank shape that 
• minimizes drag for  

• maximum range and  

• minimizes yawing moment for separation of adjacent stores. 

Optimal design found with DAKOTA and later verified in wind 

tunnel experiments. 

F-35: stealth and 

supersonic cruise 

~ $20 billion cost 

~ 2600 aircraft (USN, 

USAF, USMC, UK & other 

foreign buyers) 

LM CFD code: 

• Expensive: 8 hrs/job on 

16 processors 

• Fluid flow around tank 

highly sensitive to 

shape changes   

Optimization for Lockheed-Martin  

F-35 External Fuel Tank Design 



Objective function(s)* 

 

Nonlinear inequality constraints 

Nonlinear equality constraints 
(Metrics above are typically implicit: computed 

by/extracted from a simulation code) 

 

(Algebraic metrics below are typically specified 

directly to an optimization solver) 

Linear inequality constraints 

Linear equality constraints 

 

Bound constraints 

Problem Formulation: 

Objectives and Constraints 

Minimize:  f(x1, ...,xN) 

 

Subject to:  gLB ≤ g(x) ≤ gUB 

   h(x) = hE 

 

    

 

   AIx ≤ bI 

   AEx = bE 

 

   xLB ≤ x ≤ xUB 

    

 
* In practice, multiple f-values can comprise the objective function 

(“multi-objective optimization”), and there can be multiple 

constraints of each type. 

Information with which to configure the solver: 



• physics/science parameters 

• statistical variation,  

inherent randomness 

• model form / accuracy 

• material properties 

• manufacturing quality 

• operating environment,  

interference 

• initial, boundary conditions; forcing 

• geometry / structure / connectivity 

• experimental error (measurement error, measurement bias) 

• numerical accuracy (mesh, solvers); approximation error 

• human reliability, subjective judgment, linguistic imprecision 

 

0
0.5

1
1.5
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3.5

4
4.5

5

%
 in

 B
in

Temperature [deg C]

Final Temperature Values

Test 

Data 
Model 

Data 

Uncertainty:  
“But I wrote down and solved the equations!” 

A few uncertainties affecting computational model output/results: 

The effect of these on model outputs should be integral to an 

analyst’s deliverable: best estimate PLUS uncertainty! 



Potential Goals: 

• based on uncertain inputs, determine variance of outputs and probabilities 
of failure (reliability metrics) 

• validation: is the model sufficient for the intended application? 

• quantification of margins and uncertainties (QMU):  how close are 

uncertainty-aware code predictions to performance expectations or limits? 

• quantify uncertainty when using calibrated model to predict 

Uncertainty Quantification 

Input Variables u 
(physics parameters,  

geometry,  initial and  

boundary conditions) 

Computational 

Model 

Variable  

Performance 

Measures f(u) 

(possibly given distributions) 

(here assumed a black-box) 

• Identify and characterize uncertain variables (may not be normal, uniform) 

• Forward propagate: quantify the effect that (potentially correlated) 
uncertain (nondeterministic) input variables have on model output: 



Thermal Uncertainty Quantification 

• Device subject to heating (experiment or 
computational simulation) 

• Uncertainty in composition/ environment 
(thermal conductivity, density, boundary), 
parameterized by  
u1, …, uN 

• Response temperature f(u)=T(u1, …, uN)  
calculated by heat transfer code 

Given distributions of u1,…,uN, UQ 

methods calculate statistical info 

on outputs: 

• Mean(T), StdDev(T),  

Probability(T ≥ Tcritical) 

• Probability distribution of 

temperatures 

• Correlations (trends) and 

sensitivity of temperature 0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
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Assess Nuclear Reactor  

Crud Uncertainty 

• Crud deposits form in nuclear reactors, 

affecting nuclear reactions 

• Resulting crud-induced power shift affects 

reactor operation in potentially costly ways 

• Induced in part by localized boiling in the core 

• Key uncertainties affecting boiling predictions: 

– Operating temperature, pressure, flow rate, power 

– Radioisotope concentrations in the fuel 

– Assumptions in physical models, e.g., heat transfer rates, 

correlation coefficients, corrosion product release rates 

 

Key question: what is the likelihood of (substantial) crud 

formation in a nuclear reactor and where will it occur? How 

sure are we based on models? 



Uncertainty in Boiling Rate for 

(Nuclear Reactor Quarter Core 

Method 

ME_nnz ME_meannz ME_max 

Mean Std 

Dev 

Mean Std 

Dev 

Mean Std 

Dev 

LHS (40) 651.225 297.039 127.836 27.723 361.204 55.862 

LHS (400) 647.33 286.146 127.796 25.779 361.581 51.874 

LHS (4000) 688.261 292.687 129.175 25.450 364.317 50.884 

PCE (Θ(2)) 687.875 288.140 129.151 25.7015 364.366 50.315 

PCE (Θ (3)) 688.083 292.974 129.231 25.3989 364.310 50.869 

PCE (Θ (4)) 688.099 292.808 129.213 25.4491 364.313 50.872 

anisotropic uncertainty 

distribution in boiling rate 

throughout  quarter core model 

normally distributed inputs need 

not give rise to normal outputs… 

mean and standard deviation of key metrics 



Mass Evaporation Rate  

in Reactor Quarter Core   

size indicates standard deviation of boiling rate 

mean of boiling rate:  0 291 97 194 

(lbm/hr-ft2)  



Combining Optimization and UQ  

DAKOTA facilitates studies that meld opt and UQ: 

• Optimization under uncertainty 

• Robust design 

• Uncertainty surrounding optimal design 
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Shape Optimization  

of Compliant MEMS  

• Micro-electromechanical system (MEMS): typically made from silicon, 
polymers, or metals; used as micro-scale sensors, actuators, switches, 
and machines 

• MEMS designs are subject to substantial variability and lack historical 
knowledge base.  Materials and micromachining, photo lithography, 
etching processes all yield uncertainty. 

• Resulting part yields can be low or have poor cycle durability 

• Goal: shape optimize finite element mechanics model of bistable switch 

– Achieve prescribed reliability in actuation force 

– Minimize sensitivity to uncertainties (robustness) 

bistable  

MEMS  

switch 

uncertainties to be considered 

(edge bias and residual stress) 



13 design vars d: 

 Wi, Li, qi 

σ 
σ 

key relationship: force 

vs. displacement via  

finite element analysis 

new tapered beam design 

Typical design specifications: 

• actuation force Fmin reliably 5 μN 

• bistable (Fmax > 0, Fmin < 0) 

• maximum force: 50 < Fmax < 150 

• equilibrium E2 < 8 μm 

• maximum stress < 1200 MPa  

MEMS Switch Design: 

Geometry Optimization 



Optimization Under Uncertainty 
Design to be Robust and Reliable 

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min 

s.t. 

(nested paradigm) 

Rather than design and then post-process to evaluate uncertainty… 

actively design optimize while accounting for uncertainty/reliability metrics 

su(d), e.g., mean, variance, reliability, probability: 

13 design vars d:  Wi, Li, qi 

2 random variables x: ΔW, Sr 

σ 
σ 

-5.0 

simultaneously reliable and robust designs 

Bistable switch problem formulation (Reliability-Based Design Optimization): 

min 

s.t. 



Examples of UQ Challenges 

Warp to credible simulation conclusion 



Challenge: UQ for 

Fluid-Structure Interactions 

• Atmospheric entry vehicles are subject to turbulent flow, complex 

chemical reactions, thermal and pressure loads. 

• Example goal: assess uncertainty in loads imposed on structures 

without running costly CFD over many scenarios (typically can’t 

afford full coupling). 

• Need: random field characterization of uncertainty from CFD and 

efficient way to assess effect on structural dynamics. 
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NASA  (public domain) 



FSI: Nuclear Reactor 

Grid-to-rod Fretting Failure 

• Clad failure can result from rod-spring 

interactions  

– Induced by flow vibration  

– Amplified by irradiation-induced grid 

spacer growth and spring relaxation 

• Power uprates and burnup increase 

potential for fretting failures (leading 

cause of fuel failures in PWRs) 

• Ideally: High-fidelity, fluid structural 

interaction tool to predict uncertainty 

 in  gap, turbulent flow excitation, rod 

vibration and wear 

 

 

1 

2 

Spacer grid cell 

    

Fuel 

Fuel 
  

Fuel 3 

Sources: CASL DOE  

Energy Innovation Hub, 

Roger Lu, Westinghouse 



UQ for Coupled Multi-Physics 
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Source: CASL  

(DOE Energy Innovation Hub) 

• Can we efficiently propagate UQ across scales/disciplines? 

• Naively wrapping multi-physics with UQ often too costly 

• Can we invert loops and perform multi-physics analysis on 

UQ-enriched simulations (couple based on scalar statistics, 

random fields, stochastic processes)?   



Multi-Physics, Multi-Fidelity,  

Heterogeneous UQ 
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Low-fidelity Network Plant Model 

High-fidelity Multi-physics 

Component Model (Core) 

Component 1 

Component 2 

Nonlinear elimination 
Equations Newton Step 

• Component-level uncertainty propagation via 

stochastic expansions 

• Stochastic dimension reduction at 

component interfaces  

• Strongly coupled solver technology for 

coupled stochastic problems 

• Stochastic upscaling for low-fidelity models 

• Stochastic sensitivities with respect to 

system components 



Electrical Modeling Complexity 

• simple devices: 1 parameter, 

typically physical and 

measurable 

• e.g., resistor @ 100Ω +/- 1% 

• resistors, capacitors, inductors, 

voltage sources 

Circuit Board 

Large Digital Circuit 

(e.g., ASIC) 
Sub-circuit  

(analog) 

Single Device 

device: 1 to 100s of params 

sub-circuit: 10s to  

100s of devices 

ASIC: 1000s to  

millions of devices 

• complex devices: many parameters, some 

physical, others “extracted” (calibrated) 

• multiple modes of operation 

• e.g., zener diode: 30 parameters, 3 bias 

states; many transistor models (forward, 

reverse, breakdown modes)  

s
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 tim
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 (G. Gray, M. M-C, SNL) 



Hierarchical/Network Structure 

• How can we exploit electrical systems’ natural 

hierarchy or network structure? 

• How does uncertainty propagate?  Sufficient to 

propagate variance? 

• Use surrogate/macro-models as glue between 

levels? 

• Can approaches be implemented generically to 

apply to any circuit implemented in Xyce? 

 

process level

(physical parameters)

device level

(model parameters)

circuit level

(circuit characteristics)

system level

(performance metrics)

process level

(physical parameters)

device level

(model parameters)

circuit level

(circuit characteristics)

system level

(performance metrics)



V&V, UQ, and Model Fidelity 

Support Credible Simulation 

Bill Oberkampf 

Insight, prediction, and risk-informed decision-making  

require credibility for intended application 

 

     non- 

deterministic  

element 



Getting Started: 

Computational Applied Mathematics 

Helpful Training: 

• Mathematics, including 

statistics and probability 

• Engineering / disciplinary 

science 

• Computer science and 

programming skills 

 

 

Ways to Contribute: 

• New theories 

• Analytic solutions/proofs 

• Computational methods, iterative 

algorithms 

• Software implementations 

• Validation with experimental data 

• See Careers in Math at http://siam.org/careers/thinking.php 

• Contact me with any questions: briadam@sandia.gov 

Goal: demonstrate the intertwined role of  

mathematics, statistics, computer science,  

and disciplinary science  

in executing Sandia National Laboratories’ mission 



Abstract 

Applied Mathematical Sciences  at Sandia 

Brian M. Adams 

Optimization and Uncertainty Quantification 

Sandia National Laboratories, Albuquerque, NM 

 

Through this presentation I will relate my six year experience working in a mathematics and computer science research 

group at Sandia, a national security laboratory.  The broad mission areas of the lab foster research in disciplines 

including engineering, materials, bioscience, energy and water, infrastructure security, scalable scientific computation, 

and beyond.  Computational scientists support them with contributions ranging from theory and hardware to algorithms 

and software to solve application problems of national importance.   

 

I will survey a number of application problems whose solution relies on mathematics, statistics, disciplinary science, and 

high-performance parallel computing.  These are used in creating computational models (simulations) that scientists and 

engineers use for insight and decision making.  I will also introduce optimization and uncertainty quantification 

algorithms and discuss their application to nuclear reactor performance assessment, water network security, micro-

electro-mechanical system (MEMS) design, and disease spread modeling.  I will touch on challenges of simulation 

credibility, or knowing that computer models are appropriate in the context in which they are used.   

 

Bio: Brian M. Adams (http://www.sandia.gov/~briadam) is a Principal Member of Technical Staff in the Optimization and 

Uncertainty Quantification department at Sandia National Laboratories, Albuquerque, NM, where he has worked since 

2005.  He is generally interested in developing and applying algorithms and software for scientific computing.  Brian’s 

focus at Sandia has primarily been on sensitivity analysis, uncertainty quantification, and optimization of computational 

models (simulations).  He leads the DAKOTA software project (http://dakota.sandia.gov) which addresses these 

problems.  His recent work has also touched on surrogate (response-surface) modeling, agent-based models of disease 

spread, optimal electrical power flow, and nuclear reactor performance.  Brian earned his B.S. in mathematics from St. 

Michael's College (Colchester, VT); M.S. and Ph.D. in computational applied mathematics from NC State University.  

His dissertation focused on HIV modeling and probabilistic calibration to patient data. 
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