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%‘ Personal Background

« St. Michael’s College (VT)
— mathematics major
— minors: music, computer science, secondary education
— AmeriCorps volunteer in New Orleans, IT focus

* Ph.D., Computational and Applied Mathematics, NC State
— So, what can math be used for?
— mathematics, statistics, computer science, immunology
— nondeterministic model calibration (HIV)

* SNL, Albuquerque since 2005: ‘
— mix of algorithm development, production software @
— went for optimization focus; diversified into UQ

— sciencel/engineering application customers drive research
and software

Sandia
Laboratories
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}.‘ Roles for Math Sciences

Goal: demonstrate the intertwined role of
mathematics, statistics, computer science,
and disciplinary science
in executing Sandia National Laboratories’ mission

« SNL: A U.S. Department of Energy laboratory

« Computational modeling motivation and demo

« Computing research supporting simulation

« Application examples and training needed

« Optimization and uncertainty quantification, with examples

Sandia
3 Laboratories



SNL Core Thrust Areas Address
Evolving National Security Needs

Nuclear Weapons

Defense Systems

and Assessments

Energy, Climate,

Infrastructure
Security

International,
Homeland,
Nuclear Security

* Engineering lead
for NW systems
 Design, fabricate,
test components

« Simulations
* Physical testing

Information ops
Military systems
Non-proliferation
Remote sensing
and verification
Space mission

» Surveillance &
reconnaissance

* Infrastructure
Security

* Energy Security

» Climate Security

* Enabling
Capabilities

* Critical asset
protection

» Global security

 Homeland
Defense and
Force Protection

 Homeland
Security
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'
B 4 ' Fundamental Research
' Supports Mission Capabilities

High Performance Nanotechnologies & Extreme

Computing Microsystems Environments
Computer Materials Engineering Micro Bioscience Pulsed Power

Science Sciences Electronics

Research Disciplines

: : Sartia
Innovation: most compelling reason to work at SNL @m


https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/HPC.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/Microsystems.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/Nanotechnology.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/ExtremeEnv.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/AFM.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/Top10_Computers.ppt
https://sharepoint.sandia.gov/sites/07_Projects04/0712_Oview/ColumbiaStudy.ppt

_
. 'Staff at Five Principal Sites

majority engineers; many with computational focus

: FY11 Operating Revenue
= On-site workforce: 11,876 22 4 bil?ion

= Regular employees: 9,122
= Gross payroll: ~$943 million

Technical staff (4,557) by discipline

(Operating Budget)

& Nuclear Weapons

@ Defense Systems & Assessments

u Energy, Climate & Infrastructure Security

@ International, Homeland, and Nuclear Security

Computing 17%
Other fields 12%
Other science 6%
Physics 6%
Chemistry 5%
Math 2%

—e Electrical engineering 20%
Mechanical engineering 17%
Other engineering 15%

Albuquerque,
New Mexico
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}.‘ Roles for Math Sciences

Goal: demonstrate the intertwined role of
mathematics, statistics, computer science,
and disciplinary science
in executing Sandia National Laboratories’ mission

« Computational modeling motivation and demo

« Computing research supporting simulation

« Application examples and training needed

« Optimization and uncertainty quantification, with examples

Sandia
8 Laboratories



‘ Why Computational Modeling?

Researchers and designers at SNL need to understand
complex engineering and science phenomena, but physical
experimentation might not be feasible, due to, e.g.,:

« Safety: dangerous to test a mechanical component or new
type of chemical reaction in the regime of interest

« Laws/ethics: may prohibit nuclear weapons testing; human
subjects or genetics experiments

* Practicality: can’t readily experiment with climate,
economics, or the universe, except at reduced scale

» Cost/availability: building prototypes, destructive testing
on legacy systems or in extreme environments often
prohibitively expensive

In these cases, we pair limited experimentation and data with
computational models intended to represent reality.



‘ A Modeling Process

update reality implifyi
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Benefits of
Computational Models

* Quickly test theories/hypotheses

« Explore engineering designs with fewer prototypes

« Make predictions in regimes where testing impractical
« Gain new insights about reality

« Advise limited data collection (design of experiments)

But!

« Each modeling stage makes assumptions and
approximations; conclusions must be qualified and
relevance vetted

» Solving equations numerically introduces approximation
errors, which must be quantified

« And that’s all assuming the computer code is correct!

Sandia
Laboratories



Example:

Modeling a MacPherson Strut

>~

Goal: design a shock absorber with desired characteristics 4,,
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I.IF"
. ' Mathematical Model
} and Computation of Solution

|
a2 dt

 Mathematical model: second-
order ordinary differential
equation in time

* Predicts displacement y(t)

* For given fixed mass m, what
c and k should one use?

 Discretize, program, and
simulate with Matlab
computer software

 Can see effect of k, C
variations without building a
prototype

%Representative Matlab code

% define the right side of the ODE
function xdot = osc_rhs(t, x, q, f)

m=q(1);

c =q(2);

k = q(3);

xdot(1,1) = x(2);

xdot(2,1) = -k/m*x(1) - c/m*x(2) +

interpl(f(1,:), f(2,:), t)/m;

% solve the ODE

q=[m c k];
f=[0, 0.1, 0.11, 100;
0*[1000, 1000, 0, 0]];

x0 = [fac,0];

[t,x] = odel5s(@osc_rhs,[0:0.1:10],
x0,[1,q,f);

see Matlab demo...

Sandia
Laboratories



Simple System May Give
Insight in Diverse Scenarios

;,,7

« automobile suspension

* shock-absorbing truck seats

* recoilless firearms, artillery

« seismograph (amplify oscillations)

* structures of linked oscillators;
many mechanical and chemical structures e

- structure stability: Tacoma Narrows Bridge, G
cadence on bridges, John Hancock tower ——> [

— building swayed back-and-forth, exhibited snake-like
bending; famous glass shedding

— used spring—mass—dashpot to control; two 300-ton
weights installed on 58-th floor, attached with springs

and shock absorbers.
— added 1,500 tons of steel braces to stiffen
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SNL Examples of
Computational Simulation

== Mgl == Systems of systems
analysis: multi-scale,

multi-phenomenon

Micro-electro-mechanical
systems (MEMS): quasi-
static nonlinear elasticity,
process modeling

Electrical circuits: networks,
PDEs, differential algebraic
equations (DAEs), E&M

{
2NN 2

wind

* 2

Iz +

Hurricane Katrina: weather,
logistics, economics,
human behavior

Sandia
National
Laboratories
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Earth penetrator: nonlinear
PDEs with contact, transient

analysis, material modeling
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%‘ Roles for Math Sciences
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Goal: demonstrate the intertwined role of
mathematics, statistics, computer science,
and disciplinary science
in executing Sandia National Laboratories’ mission

« Computing research supporting simulation
« Application examples and training needed
« Optimization and uncertainty quantification, with examples

Sandia
Laboratories
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}‘ Computing Research at SNL

17

« How does our group support use of simulation?

« Routine engineering or decision making with models often
cannot be done on a desktop computer...

— simulate digital circuits with millions of transistors
— solve PDEs with billions of degrees of freedom
— simulate disaster response with millions of actors

 Scientific discovery, such as for climate or fusion energy,
might require ground-breaking fidelity and computational
power to resolve arange of scales

« Supercomputers grow and architectures change rapidly

We perform research and development for next-generation
computing hardware and the software and algorithms to
efficiently utilize them for mission-critical applications.
Sandia
Laboratories
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>4 'Computing Research at SNL:
; Architectures, Algorithms, Applications

Cielo
Enable simulation with: 142272 cores

| 6" on TOP500 Ml
« Extreme-scale Computing: ‘
guantum devices, scalable architectures,
supercomputer operating systems

« Computational Sciences and Math:
scalable algorithms: numerical PDEs,
solvers optimization, uncertainty quantification;
simulation of shock physics, electrical
devices and circuits, nuclear power

 Information and Cognitive Science:
large data handling and visualization, discrete math /
complex systems, cognitive modeling and systems

Paraview
visualization

 For more information:
— http://Iwww.cs.sandia.gov/highlights/CCIM_Highlights_2009.pdf
— http://lwww.cs.sandia.gov/ S
18 Laboratories



High Performance Computing:
Sandia Systems and Software

) '’ . Aéd Red : . Red Storm
CM-2 nCUBE-2 iPSC-860 Paragon 1996 Cplant 2005
1988 1990 1993

1992 1998
L — | | .
1987 1989 1991 1993 1995 1997 | _
1988 1990 1992 ‘ 1994 1996 1998

\ -
] ‘-m/ "
] - : el T FASTOS

- {.- - 2004 -

s - . : \.l
@%a Puma, Cougar,

Computational Plant

7t Honsn S Cplant
Partition Model Portals Catamount 1997 — 2005
1990 - 1997 1990 — 1992 — 1993 -
Sandia
National

Laboratories



Algorithm R&D Transforming
Computational Modeling & Simulation

'f System Design Physics

v v
Geometric Modeling Model Equations

2 v

—> Meshing Discretization
1 \4 v JV

Partitioning and Mapping

Optimization Adapt Time integration

and UQ

Nonlinear solve

Linear solve




Scalable Informatics
and Visualization

Advanced Graph Analysis:
Community Clustering focuses on a
smaller subset of interest.
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. [Attributed Relational Graﬁh
16 o 13

Advanced linear algebra and multi-

way tensors to infer missing links
and help recognize patterns
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Goal: demonstrate the intertwined role of
mathematics, statistics, computer science,
and disciplinary science
in executing Sandia National Laboratories’ mission

« Application examples and training needed
« Optimization and uncertainty quantification, with examples

Sandia
Laboratories



Disease Outbreak

VA
} Characterization

s GOAL: Determine source and magnitude of natural or terrorist
disease outbreak, given patients presenting for treatment

Day 6 Day9
« 3-year effort with Jaideep Ray (PI), Karen

Devine, Youssef Marzouk, Michael Wolf
(UIUC), others
. R

®
< e « Bayesian inverse problem to determine
: initial conditions

o . « Agent-based social contact network
disease propagation simulator

Day 15 Pay:21 — model geographic spread
— model chain of contacts
r,,-m = p Ao,
Cr N}.{;’ S £ o
Y ° ® : Ve ® vs
» o . 2
Sandia
National

@ ® Laboratories



% Network-based Disease Model

Each person’s health modeled with (ordinary) differential
equations; dynamic social network connecting people:

« Graph theory for parallel partitioning and model reduction
(cluster analysis on bipartite graph)

« Math biology for in-host disease models (pathogenesis) and
transmission (epidemiology)

« Scalable parallelism via MPI for efficient simulations
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CANARY

% | (M?{ Duratigh Q}agssian Igvent
real-time event ] Ve l m\fnww‘,ﬁm
Event t@?] '

detection J

\ i Square Event .

PONI

real-time
contaminant
source inversion

SPOT

sensor placement
optimization

TEVA

contaminant response protocol for
simulation and Isolation, flushing, and

vulnerability decontamination

assessment booster

courtesy Bill Hart



TEVA-SPOT:
Optimization of Sensor Networks

Goal: design a sensor network with optimal sensor locations

Motivating Applications:

+ Detect contaminants in water networks

* Protect air networks in sensitive buildings
» Detect intruders in road networks

* Physical site security protection

Discrete Mathematics:

* Is used to solve large problems quickly

« Can determine optimality of the final solution

* Reduce problem size to solve on commodity computers

Impact:

» Sensor placements designed for 8 large U.S. cities

* Sensors installed at 4 U.S. cities based on these designs

» Estimated fatalities from high consequence attacks on
drinking water are decreased by a median of 48%

* The estimated value of lives lost due to high consequence
attacks is reduced by a median of $19 billion dollars

Sensor Network Optimization - Sandia
courtesy Bill Hart 2006 Laboratories



Water Security:
Beneficial Expertise

%
 Civil engineering, water network design and operation
« Physics of fluid flow, electrical circuits

« Algebraic modeling of the physical processes

 Discrete optimization to place sensors (discrete math,
graph theory, operations research)

« Continuous (and discrete) optimization for source inversion
« Statistics and signal processing for anomaly detection

Sandia
27 Laboratories
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Goal: demonstrate the intertwined role of
mathematics, statistics, computer science,
and disciplinary science
in executing Sandia National Laboratories’ mission

« Optimization and uncertainty quantification, with examples
(my corner of the SNL world)

Sandia
Laboratories



My Work Life
Largely Centers on DAKOTA

« Algorithm and software development

— Implement new algorithms and infrastructure in C++

— Collaborate with labs and universities; publish important results
« Software project management

— Manage priorities in team development environment

— Deliver usable algorithms to customers; enable team do research
» Application to nuclear energy and beyond

— Solve nuclear energy and other national security problems

— Help people understand and use our software
application
Impact

requirements

29



‘ DAKOTA In a Nutshell

DAKOTA supports engineering transformation through advanced
modeling & simulation. Adds value by answering science and
engineering questions via iterative analysis of computational models:

« Sensitivity: what are the crucial factors/parameters and how
do they affect key metrics?

— Which of m, c, or k, is system performance most sensitive to?
 How safe, reliable, robust, or variable is my system?
(quantification of margins and uncertainty: QMU, UQ)

— If the damping c is known inexactly or it varies in manufacturing,
how much variability will there be in the performance?

 What is the best performing design or control? (optimization)

— What spring and damper will stabilize the car quickly without
over-stressing it?
« What models and parameters best match experimental data?
(calibration)
— Given experimental data, calibrate m, ¢, and k in the math model

to the real world. Does it then predict unseen scenarios —

(validation)? National
Laboratories



Simulation-based
Optimization and Calibration

« GOAL: Vary parameters of a simulation to extremize objectives,
while satisfying constraints to find (or tune) the best design,
estimate best parameters, analyze worst-case surety

« Mapping from decision variables to objectives and constraints is
(at least partially) implicit; no explicit algebraic form

* Relationship is calculated by a “black box” computational model
of target phenomenon (often loosely coupled to the solver)

« Solver iteratively evaluates the simulation and adapts based on

its outputs to maximize fithess.

« Same process can calibrate, adjusting parameters to maximize

agreement with experimental data

( -
Optimization ]< fitness

decision Solver

variables
(parameters)

e.g.,c and k

31

<> experimental data
responses (objectives,
constraints, derivatives)
e.g., stress, Sandia

. National
displacement Laboratories




Optimization for Lockheed-Martin
F-35 External Fuel Tank Design

F-35: stealth and
supersonic cruise

~ $20 billion cost

~ 2600 aircraft (USN,
USAF, USMC, UK & other
foreign buyers)

LM CFD code:
* Expensive: 8 hrs/job on

fuel tanks 16 processors
e Fluid flow around tank
highly sensitive to

features an optimized external

fuel tank. shape changes

Determine the optimal tank shape that
* minimizes drag for

* maximum range and
* minimizes yawing moment for separation of adjacent stores.

Optimal design found with DAKOTA and later verified in wind
Sandia

tunnel experiments.
National
Laboratories



Problem Formulation:
Objectives and Constraints

:;,7

Information with which to configure the solver:

Minimize: f(Xq, .o Xp) Objective function(s)*

Subjectto: g,z <g(x)<g,s Nonlinear inequality constraints

h(x) = hg Nonlinear equality constraints

(Metrics above are typically implicit: computed
by/extracted from a simulation code)

(Algebraic metrics below are typically specified
directly to an optimization solver)

AX =D, Linear inequality constraints
AeX = be Linear equality constraints
Xig $X = Xyg Bound constraints

* In practice, multiple f-values can comprise the objective function
(“multi-objective optimization”), and there can be multiple Sandia
constraints of each type. s
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Uncertainty:
But | wrote down and solved the equations!”

A few uncertainties affecting computational model output/results:

physics/science parameters

statistical variation,
inherent randomness

model form / accuracy
material properties
manufacturing quality

operating environment, Temperature [deg C]
Interference

initial, boundary conditions; forcing

geometry / structure / connectivity

experimental error (measurement error, measurement bias)
numerical accuracy (mesh, solvers); approximation error
human reliability, subjective judgment, linguistic imprecision

Final Temperature Values

IN

%in Bin ¢

o

5
.5
4
.5
3
5
2
5
1
5
0 -

The effect of these on model outputs should be integral to an
analyst’s deliverable: best estimate PLUS uncertainty! Sandia

Laboratories



‘ Uncertainty Quantification

 Identify and characterize uncertain variables (may not be normal, uniform)

 Forward propagate: quantify the effect that (potentially correlated)
uncertain (nondeterministic) input variables have on model output:

e _ I
IL\ptharlabIes u Com utational] Variable
(physics parameters, P Performance
geometry, initial and Model J M f
boundary conditions) easures f(u)

(here assumed a black-box)

(possibly given distributions)

Potential Goals:

* based on uncertain inputs, determine variance of outputs and probabilities
of failure (reliability metrics)

 validation: is the model sufficient for the intended application?

« quantification of margins and uncertainties (QMU): how close are
uncertainty-aware code predictions to performance expectations or limits?

« quantify uncertainty when using calibrated model to predict Sandia
Iaboretvis



‘ Thermal Uncertainty Quantification

» Device subject to heating (experiment or
computational simulation)

» Uncertainty in composition/ environment
(thermal conductivity, density, boundary),
parameterized by
Ug, -.xy Uy

* Response temperature f(u)=T(uy, ..., Uy)
calculated by heat transfer code

Given distributions of u,,...,uy, UQ
Final Temperature Values methods calculate statistical info
on outputs:

.2 ' * Mean(T), StdDev(T),
4 Probability(T 2 T.,itica)
35
%S * Probability distribution of
\%2 . temperatures
at.5 =
¥ Tﬂﬂﬂ » Correlations (trends) and
0 eI sensitivity of temperature
30 36 42 48 54 Sandia
Temperature [deg C] National

Laboratories




'
e 4 Assess Nuclear Reactor
' Crud Uncertainty
« Crud deposits form in nuclear reactors,
affecting nuclear reactions

« Resulting crud-induced power shift affects
reactor operation in potentially costly ways

* Induced in part by localized boiling in the core
« Key uncertainties affecting boiling predictions:
— Operating temperature, pressure, flow rate, power

— Radioisotope concentrations in the fuel

— Assumptions in physical models, e.g., heat transfer rates,
correlation coefficients, corrosion product release rates

Key question: what is the likelihood of (substantial) crud
formation in a nuclear reactor and where will it occur? How
sure are we based on models?

Sandia
Laboratories



Uncertainty in Boiling Rate for
(Nuclear Reactor Quarter Core

ME nnz ME meannz ME max
Mean Std Mean Std Mean Std
Method Dev Dev Dev
LHS (40) 651.225 | 297.039 | 127.836 27.723 361.204 55.862

LHS (400) 647.33 | 286.146 | 127.796 | 25.779 | 361.581 | 51.874
LHS (4000) [ 688.261 | 292.687 [ 129.175 | 25.450 | 364.317 | 50.884
PCE (©(2)) 687.875 | 288.140 | 129.151 | 25.7015 | 364.366 | 50.315
PCE (O (3)) [ 688.083 | 292.974 | 129.231 | 25.3989 | 364.310 | 50.869
PCE (O (4)) [ 688.099 | 292.808 | 129.213 | 25.4491 | 364.313 | 50.872

mean and standard deviation of key metrics

®¢ ;9 e~
anisotropic uncertainty

distribution in boiling rate
throughout quarter core model

ME_nnz

Moments
Mean £88.261
Std Dev 292 68724
’ Std Err Mean 46277916
3 sooe sooo | Upper95% Mean 697.33405
Lower 95% Mean 679.18795
— Gamma(5.30746,129.678.0) N 4000

normally distributed inputs need
not give rise to normal outputs...

Sandia
Laboratories




Mass Evaporation Rate
In Reactor Quarter Core

mean of boiling rate: O 07 194 N 201
size indicates standard deviation of boiling rate (b, /hr-ft?)
i

Laboratories
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%‘ Combining Optimization and UQ

DAKOTA facilitates studies that meld opt and UQ:
* Optimization under uncertainty

« Robust design

« Uncertainty surrounding optimal design

Sandia

40 Laboratories



Shape Optimization
of Compliant MEMS

* Micro-electromechanical system (MEMS): typically made from silicon,
polymers, or metals; used as micro-scale sensors, actuators, switches,
and machines

« MEMS designs are subject to substantial variability and lack historical
knowledge base. Materials and micromachining, photo lithography,
etching processes all yield uncertainty.

* Resulting part yields can be low or have poor cycle durability

» Goal: shape optimize finite element mechanics model of bistable switch
— Achieve prescribed reliability in actuation force
— Minimize sensitivity to uncertainties (robustness)

actuation force

uncertainties to be considered
(edge bias and residual stress)

variable mean std. dev. | distribution

. A -0.2 pm 0.08 normal
bistable S 11 Mpa 4.13 normal
MEMS o L '
switch Sandia

National



MEMS Switch Design:
Geometry Optimization

.

tapered beam
anchor

»~—— shuttle

-—/ﬂctuﬂiiﬂn force

\

.nhew tapered beam design,_,

. )

g e -3 xn.-irvi
4 NesD)
6.000e 400

1_
.. 13 design vars d: )
| W, L, 6,
051
_1_
‘g 151
=25 WG
-3+ -
-35
‘ ) I'1 ) L2 ) L3 ) L4 ) /
4s 100 "0 50 10 20 0
X (1 m)
force
A switch . .
contact key relationship: force
Fpay = ~ vs.displacement via
"\ finite element analysis
Ez E3
E, \_
P Y (lisI)lacemE

Typical design specifications:

 actuation force F,;, reliably 5 uN
* bistable (F,,.,> 0, F,i; < 0)

* maximum force: 50 < F__, < 150

max

« equilibrium E2 < 8 ym
e maximum stress < 1200 MPa




'
e 4 'Optimization Under Uncertainty
; Design to be Robust and Reliable

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
s,(d), e.g., mean, variance, reliability, probability:

Opt | <« min f(d) + Wsy(d)
{d}‘ {S,} s.t. g < g(d) < gu
_ U0 ] h(d) = hy
{u}[ . :|{Ru} d <d< dy
Sim aj S Az Su(d) S ay
(nested paradigm) Ae su(d) = ay

Bistable switch problem formulation (Reliability-Based Design Optimization):

force

simultaneously reliable and robust designs A switch

max E [Fin(d, x)] contact 13 design vars d: W, L;, q;
s.t. Y o fer'('df(d) Fipay o 2 random variables x: AW, S,
50 < E[Fmaz(d,x)] 150

E [Ex(d, x)] 8 ' 2 5
E [Smaz(d, X)] 3000 _5](53

IAIAIA

displacem

F oo e

min




% Examples of UQ Challenges

Warp to credible simulation conclusion

Sania
Laboratories



'
e 4 ' Challenge: UQ for

Fluid-Structure Interactions

« Atmospheric entry vehicles are subject to turbulent flow, complex
chemical reactions, thermal and pressure loads.

« Example goal: assess uncertainty in loads imposed on structures
without running costly CFD over many scenarios (typically can’t
afford full coupling).

* Need: random field characterization of uncertainty from CFD and
efficient way to assess effect on structural dynamics.

Vehicle
trajectory

NASA (public domain)
45



FSI: Nuclear Reactor
Grid-to-rod Fretting Failure

» Clad failure can result from rod-spring

interactions - Spacer grid cell
. : 9 Force
— Induced by flow vibration |q R
— Amplified by irradiation-induced grid 0 « 1
spacer growth and spring relaxation @

 Power uprates and burnup increase ) Force
potential for fretting failures (leading @9 IQQAL.
cause of fuel failures in PWRS) 2

* Ideally: High-fidelity, fluid structural
interaction tool to predict uncertainty
in gap, turbulent flow excitation,rod | “| [ .+
vibration and wear Correlation 3

’wi

Sources: CASL DOE
Energy Innovation Hub,
Roger Lu, Westinghouse




‘ UQ for Coupled Multi-Physics

» Can we efficiently propagate UQ across scales/disciplines?
* Naively wrapping multi-physics with UQ often too costly

« Can we invert loops and perform multi-physics analysis on
UQ-enriched simulations (couple based on scalar statistics,

random fields, stochastic processes)?
A
2R /\SL_ Avirtual reactor simulation
~ tool with predictive capability coupling
state-of-the-art fuels performance,
neutronics, thermal-hydraulics, and
structure models, with existing

systems/safety analysis tools

Source: CASL g : ) National
) Primary System Secondary System :
47 (DOE Energy Innovation Hub) Laboratories



'
€ Multi-Physics, Multi-Fidelity,
” Heterogeneous UQ

« Component-level uncertainty propagation via
stochastic expansions

» Stochastic dimension reduction at
component interfaces

« Strongly coupled solver technology for
coupled stochastic problems

P
1
1
|
|
L

« Stochastic upscaling for low-fidelity models

g
3

» Stochastic sensitivities with respect to

Low-fidelity Network Plant Model
system components ‘L

Component 1
vz = Gi(v1,p1) = gr(ui(v1), p1) s.t. fi(ua,vi,p1) =0

5] Uz

Component 2
v1 = Gz2(vz,p2) = g2(uz(v2),p2) s.t. f2(uz,vz,p2) =0

Nonlinear elimination
Equations Newton Step _ o ) ]
vg — Gy (v1,p1) = 0 [_dgﬂdﬂ, 1 mh} _ [w — Gy (v1,p1) High-fidelity Multi-physics
1 — Ga(va,pa) = 0 P TdG/dullfnl o e Galen ) Component Model (Core)
dGi _ _99: (ﬂ) afi Sandia
duvy Au; \ Auy vy Namﬂal

Graphics courtesy: Rod Schmidt,

BRISC project

Laboratories



‘ Electrical Modeling Complexity

Circuit Board

ASIC: 1000sto /

.
o

v,
3
[
2
. . . . o
millions of devices Large Digital Circuit =
(e.g., ASIC) — =1
S(‘;?]';’I';C‘;'t \sub-circuit: 10sto  [g
2 100s of devices g
: =
: 1 :
< :
T— Single Device =
—_— 2
i
device: 1 to 100s of params (G. Gray, M. M-C, SNL) [
- simple devices: 1 parameter, - complex devices: many parameters, some
typically physical and physical, others “extracted” (calibrated)

measurable - multiple modes of operation

* €.g., resistor @ 100Q +/- 1% - e.g., zener diode: 30 parameters, 3 bias
* resistors, capacitors, inductors, states; many transistor models (forward,
voltage sources reverse, breakdown modes) Sandia
lboraoies



'
? Hierarchical/Network Structure

 How can we exploit electrical systems’ natural
hierarchy or network structure?

system level
« How does uncertainty propagate? Sufficient to (performance metrics)

propagate variance? T
» Use surrogate/macro-models as glue between . circuitlevel
(circuit characteristics)
levels? T
« Can approaches be implemented generically to

device level
(model parameters)

T

process level
(physical parameters)

apply to any circuit implemented in Xyce?

Sandia
Laboratories




V&V, UQ, and Model Fidelity
Support Credible Simulation

Insight, prediction, and risk-informed decision-making
require credibility for intended application

VALIDATION ACTIVITIES

Validation experiments
Hierarchical experiments
Validation simulations
Validation metrics

Spatial discretization error
Temporal discretization

\Nondeterministic Results

\ VERIFICATION ACTIVITIES

Software quality assurance
Static testing :
Dynamic testing -
Traditional analytical solutions
Manufactured solutions

Order of accuracy assessment

non-

&8 deterministic

element




Getting Started.:

A
}Computational Applied Mathematics

Goal: demonstrate the intertwined role of
mathematics, statistics, computer science,
and disciplinary science
in executing Sandia National Laboratories’ mission

Helpful Training: Ways to Contribute:

« Mathematics, including * New theories
statistics and probability - Analytic solutions/proofs

* Engineering / disciplinary  Computational methods, iterative
science algorithms

« Computer science and - Software implementations

programming skills - Validation with experimental data

« See Careers in Math at http://siam.org/careers/thinking.php

« Contact me with any questions: briadam@sandia.gov

Sandia
National
Laboratories
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Abstract

Applied Mathematical Sciences at Sandia
Brian M. Adams

Optimization and Uncertainty Quantification
Sandia National Laboratories, Albuquerque, NM

Through this presentation | will relate my six year experience working in a mathematics and computer science research
group at Sandia, a national security laboratory. The broad mission areas of the lab foster research in disciplines
including engineering, materials, bioscience, energy and water, infrastructure security, scalable scientific computation,
and beyond. Computational scientists support them with contributions ranging from theory and hardware to algorithms
and software to solve application problems of national importance.

I will survey a number of application problems whose solution relies on mathematics, statistics, disciplinary science, and
high-performance parallel computing. These are used in creating computational models (simulations) that scientists and
engineers use for insight and decision making. | will also introduce optimization and uncertainty quantification
algorithms and discuss their application to nuclear reactor performance assessment, water network security, micro-
electro-mechanical system (MEMS) design, and disease spread modeling. | will touch on challenges of simulation
credibility, or knowing that computer models are appropriate in the context in which they are used.

Bio: Brian M. Adams (http://www.sandia.gov/~briadam) is a Principal Member of Technical Staff in the Optimization and
Uncertainty Quantification department at Sandia National Laboratories, Albuquerque, NM, where he has worked since
2005. He is generally interested in developing and applying algorithms and software for scientific computing. Brian’s
focus at Sandia has primarily been on sensitivity analysis, uncertainty quantification, and optimization of computational
models (simulations). He leads the DAKOTA software project (http://dakota.sandia.gov) which addresses these
problems. His recent work has also touched on surrogate (response-surface) modeling, agent-based models of disease
spread, optimal electrical power flow, and nuclear reactor performance. Brian earned his B.S. in mathematics from St.
Michael's College (Colchester, VT); M.S. and Ph.D. in computational applied mathematics from NC State University.

His dissertation focused on HIV modeling and probabilistic calibration to patient data.
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