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_ Research Challenge 6:
Art Fischer ..
PI Beyond Spontaneous Emission

Exploring coherent light sources for ultra-efficient solid-state
lighting: understanding their potential and limitations

Art Fischer, Igal Brener*, Weng Chow*, Dan Koleske*,
Qiming Li*, Willie Luk*, Jeff Tsao*, George Wang™*, Jon
Wierer*, and Jeremy Wright*

Sandia National Labs

Steve Brueck® and Alexander Neumann
University of New Mexico

Yoshi Ohno and Wendy Davis
NIST — Gaithersburg

Alexander Carmele, Julia Kabuss, Martin Richter, and
Andreas Knorr
Technical University of Berlin

*Participants in other Research Challenges
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Outline of Talk

e Introduction and Motivation
— Why go “Beyond Spontaneous Emission” ?

e Human Factors Study
— Built a four color laser illuminant

e Nanowire Lasers
— Multi-mode and single mode operation

e Polariton Lasers
— RT strong coupling for GaN microcavities

e Strong Coupling Theory

— Phonon interactions, coherence control

e Future Directions

SSLS
EERC

£ o

Above Threshold

Energy (eV)

o
~w” Y Exciton
n -
Polaritons

]
!
n

44 46 48 50 52 54 56 58

Angle (Degrees)

QD Photons

N

}

e, @)
Uy, @)

~—

T 1 9590
n
by bq Phonons
wro, TLO
ﬁ Sandia
ng THE UNIVERSITY of National

NEW MEXICO Laboratories



SSL Efficiency: near 100% efficiency ?

State of the art white light emitter

SSL Technology Grand Challenges

SSL is only 20% efficient
- Blue InGaN LEDs - 43%

85%

Spectral
Efficiency

antw e )
b Ty o e

1 Droop : near 100% efficiency at all currents
2 Green-Yellow Gap : near 100% efficiency

at all wavelengths

InGaN light emission processes:
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non-radiative

recombination
Laser

| _ Emission

Beyond spontaneous emission...
Use a very fast light emission process !
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Lasers for Solid State Lighting

Advantages of lasers for Ilghtlng Clamped carrier density

- Lasers show very high efficiency at high power
- LED and LD current densities are converging
- Carrier density is clamped at threshold

- Circumvent the droop problem in LEDs

- Need to reduce threshold to avoid losses 0011 .
- After threshold slope efficiency is one
- Directionality, polarized emission, modulation

100

L (W)

1014 ¢
Laser Sources For SSL: 1
* High efficiency .
e Low threshold 1012
 Focus on lll-nitrides
 Nanowire lasers 1 (A)
 Low threshold
- Polariton lasers Are narrow linewidth

* Ultralow threshold sources acceptable?
 New physics

N (cm?)
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Human Factors Study: RYGB Laser llluminant

from broadband sources

lasers for SSL

Incandescent

chromatic beam-
combiners i
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Poster: Four color laser white illuminant e S
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- Paves the way for serious consideration of

Ne tral-white LED 40%

/ \vs Neutral-

white P14

LED
0%

()

* Constructed an RYGB laser white-light source
 Compare Laser, Incandescent, and LEDs

- Laser sources are virtually indistinguishable

Percentage of Responses
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Conventional Nanowire Lasers

Advantages of Nanowires
- Few or no threading dislocations
- Possibility of very high IQE
- Reduced piezoelectric strain
- Wider range of alloy compositions are possible
- High efficiency green and yellow emitters

GaN/InGaN core-shell NW

Why Nanowire Lasers?
- Nanowire forms a low loss optical cavity
- Low threshold due to small mode volume ¢

e ;.

& £
< ay “

- Circumvent droop using NW stimulated emission GaN NWs on tungsten foil
- Possibility of high efficiency lasers at green and 5
yellow wavelengths

- Scale to small diameter for single-mode operation
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Nanowire Lasers: Multimode Operation

Poster: Lasing from llI-V Nanowires
- Jeremy Wright

£ o

Below Threshold Above Threshold

Intensity (A.U.)

350 360 370 380  Nanowire dimensions: ~500 nm x 4.7um
Wavelenath (nm)

Optically-pumped Nanowire Laser
 Pump laser: 266nm, 8 kHz rep. rate, 800 ps pulse
» Larger diameter wires typically lase multi-mode
e Multi-mode linewidth ~ 5 nm, threshold ~ 500 kW/cm?
» Gain calculations and modal simulations to help
understand laser operation

&
s a\ Sandia
+ g ng THE UNIVERSITY of National

NEW MEXICO Laboratories



Nanowire Lasers: Single Mode Operation

i Single mode lasing

Intensity (Counts)

------

HFW

11

,;il%j’ﬁ’?!i!ﬁﬁmw by ; 72/40 2 AM QND ‘ 001 ‘ 000 /‘ ‘ 6.08 ym Quani
— Nanowire dimensions:

| 1 | 1 | 1
352.5 360.0 367.5 375.0
Wavelength (nm)

Optically-pumped Nanowire Laser
- Smaller diameter wires lase single mode
* Narrow linewidth < 0.1 nm, threshold ~ 250 kW/cm?
» >18 dB side mode suppression ratio

« Single mode operation is more desirable
* No mode hopping, lower noise, stable far-field patterns

* Lower threshold operation
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GaN-based polariton light source

Polariton Dispersion Curves Exciton - Bound state of an electron-hole pair

Polariton - Strongly coupled mixed state of a
' Upper cavity photon and an exciton.
! Polariton

, Branch

Why Study Polariton Lasers?
* Threshold is 2 — 3 orders of magnitude lower
than photon lasers.

+ 2 x 10" cm-3 > University of Michigan
+2x 10" cm > South Hampton, EPFL

* Operate at a density below the turn on of droop.
*1-5x10" cm= - Droop becomes important

* Investigate new physics in strong coupling

> regime.

K ' * Polariton condensates, BEC, etc.

* Photon-like wavefunction can extend past crystal
defects to avoid non-radiative recombination.

Polariton
Branch

Polariton Condensate
Polariton Laser 2 Fast Photon Emission

& ssLs N )\ Sandi
Ig THE UNIVERSITY National
aﬁ EERE NEW MEXICO Laboratories



on

Introduct

icrocavities

1D GaN M

<
Q
-
5 o ‘
o © =
T o = ]
O I o |
I o
o

.
-
]
-
|

-

B

T
.
-
m
o
-

|
|
]
|
| |

.

—

=
=
=

.

.

—
—
-
o
-
o
-

o
.
-

=499
Cavity
Resonance

=
=
=
-
s
=
-
i

=
-
-
.

e
-

"
=
-
-

329.1 nm

Q

.
-

Wavelength (nm)

-
-

=

10 pair GaN m

|
| |
| 1|

300 320 340 360 380 400 420 440

...0“4 (- ...0“4 0 L © s N Q
T [ T ~ o o o o o
S & JUSIOIIS0D UONOBJeY
Om <= Qnm
7 N=) % 8 »ao
o
2 3
g >
(5] -
o~ | W
Q 8| 18
S c
X o - 3| E
= s 2| £
mw o o g 2 =
I e 0 °8§ % =
= - 5§25/ SO
= ! 53s(|¥5
- < T o
\ﬂl Anu nonNn ()
o O e ©
o = g
(3] ] %W
E o -
o0 LTIz ======
=
L e o
n‘“v o [e0) © <t N o me
m - o o o o o
o JUSIDIYB0Y) UOI09|oY

ies

Sandia
iona
Laborator

Nat

()

THE UNIVERSITY of

NEW MEXICO

NIST

SSLS
EERC

[



Angle-resolved PL (5 pair, 2\ cavity)
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Angle-resolved Reflectivity (8 pair, A cavity)

36 3E5nel;’g4y (e?’\:l,’) 3 2 o - Angle-resolved Reflection maps out k-space
— 1135 - 8 pair HfO,/SiO, DBRs — one A cavity
sl p e - Two dips observed at all angles
_ " _ - Observed Rabi splitting of 37.5 meV
-~ . » Goal: RT electrically-injected polariton laser
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Modeling: Strongly Coupled QD-Photon-Phonon System

All investigations based on Sandia/TU developed model for strongly-coupled QD-photon-phonon system

- Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010)

- Carmele, Kabuss, Richter, Richter, Knorr & Chow and Knorr, J. Modern Optics 58, 1951 (2011)

Sandia National Labs -- EFRC
Weng Chow

Technical University, Berlin -- SFB 787 funding

Alexander Carmele — Student/Posdoc
Ph.D. dissertation (2010) research related to EFRC
strong coupling task

Carl-Ramsauer Prize for outstanding doctoral
dissertation in the field of physics

Julia Kabuss — Student
Ph.D. expected completion Fall, 2012

Research on quantum coherence and phonon
physics in strongly coupled systems

Andreas Knorr — Professor of Theoretical Physics
Collaborator since 1990

Collaborated on first lll-gain theory paper (APL, 1995).
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Modeling: Strongly Coupled Systems

1) Photon antibunching in strongly-coupled QD-photon-phonon system
- Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010)

on 307 -
S « Nonclassical (better than laser) intensity correlation
o
c 157 . - .
S » Potential Application : Room temperature single-
2 photon sources
o O T 1 T

0 41 2 3

0.8 g@(0)

2) Using quantum coherence to control strong coupling
- Kabuss, Carmele, Richter, Chow and Knorr, physica status solidi B 248, 872 (2011)

Photon statistics change
by drive pulse

Potential Applications
 Photon-on-demand sources
« Fundamental efficiency limit of PVCs

Quantum
coherence \J
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Summary: Research Highlights

e Experimental demonstration that four-color laser white
light can be illuminant quality

e Demonstrated a low-threshold single-mode GaN
nanowire laser*

e Observed room temperature strong coupling and
polaritons in a 1D GaN microcavity

e Developed a new theory for strong coupling in emitter-
photon-phonon systems = non-classical sources.

*Synergistic with other Research Challenges
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Future Work: DFB Nanowire Lasers

=

Wires are placed on The wire is then rotated

The wire is finally
gratings with random to minimize optical
orientations. feedback.

rotated to maximize
optical feedback.

* Nano-grating will help to select a single axial mode.

* The lasing threshold may be lowered from additional reflectivity due to the
relatively low end facet reflections.

* Bragg reflectors are used in VCSELS for high reflectivity and used in in-plane
lasers for frequency selectivity.
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* GaN nanowires as a platform for polariton studies
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* Nanowires are defect free, narrow linew
* GaN nanowire micro PL - polariton effects
- Easier method of demonstrating strong coupling

*Use the nanowire as the cavity
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Future Work: Study GaN Polariton Relaxation Dynamics

A Upper ’e
E Polariton /;59
Branch ‘Q

exciton [F=-=-"" Relaxation
bottleneck
Lower
Polariton
Branch

SSLS
EERC

)

Study polariton relaxation dynamics

* Measurements for GaN and InGaN
*Measure lifetime for different parts of
dispersion curve
* Exciton-like vs photon-like
*Investigate Phonon Bottleneck
* Must overcome relaxation bottleneck
* Polariton-polariton scattering
* Room temperature phonon scattering
*Time-Resolved Photoluminescence
measurements
* Time-correlated single-photon counting
* Streak Camera measurements
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Future Work: Explore anti-Stokes phonon-assisted strong coupling

3641

Discovered under EFRC: Anti-crossings at
detunings of +/- one LO phonon energy

\

Detuning [meV]
|

2 - Carmele, Kabuss and Chow, submitted to Optics Express
-36,4 - = .-8
! L ! | | 0 <
1.500 1.505
Frequency [fs ']
\ — _..... Alsodiscovered that phonon-assisted strong-coupling
08 Cwew can change phonon population and statistics
0.6 : =015 1=0.15 1 \ v l
3 Substrate temperature
S04¢ _g“m ! I
\ o N | ’ Carrier injection
025 N U‘Hn. | ]
e el QD/
% i3 - 015 — Photons Outcoupling
w VVH AVAVAL =
¥
Explore improving LED efficiency with T ~\N\N
self-cooling by anti-Stokes (o > Q), Q
phonon-assisted strong coupling Phonons Heat sink: T,
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Summary: Future Directions

e Fundamental limits to efficiency of lasers for SSL

e Conventional nanowire lasers: DFB, photonic crystal*

e GaN-based nanowire polariton lasers: nanowire, DBR cavity™
e Explore anti-stokes phonon-assisted strong coupling

e Investigate polariton relaxation dynamics for GaN materials

* Demonstrate GaN polariton condensates (polariton lasing)

*Synergistic with other Research Challenges
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