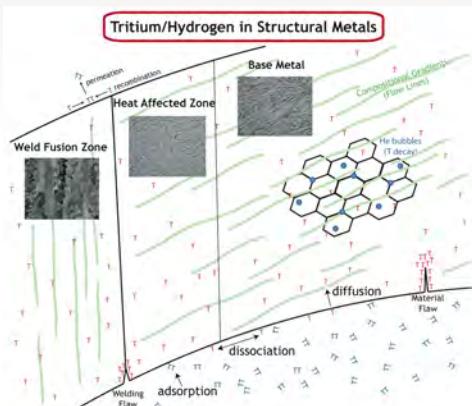


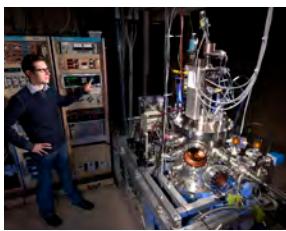
Exceptional service in the national interest


The Role of Hydrogen Isotopes in Deformation and Fracture of Aluminum Alloys

Chris San Marchi, Richard Karnesky, Robert D. Kolasinski

What is the challenge?

- Virtually all metals are embrittled by hydrogen.
 - Hydrogen embrittlement is a process by which hydrogen permeates a material and substantially reduces its resistance to fracture
 - Materials selection is greatly limited by compatibility with hydrogen
 - Environments of gaseous hydrogen isotopes are encountered in many applications:
 - Nuclear weapons
 - Fusion energy
 - Petrochemical processing
 - Fuel cell technologies
- Advantages of aluminum alloys in gaseous hydrogen service environments compared to steels, include
 - Low permeability to hydrogen
 - Low solubility for hydrogen
 - Hydrogen embrittlement has not been observed in gaseous environments.


This project investigates fundamental hydrogen-metal interactions with the aim of evaluating aluminum alloys for containment of hydrogen isotopes in nuclear weapons.

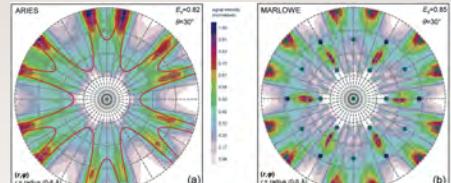
What is our innovation?

We are evaluating fundamental hydrogen-aluminum interactions using unique facilities at Sandia, Livermore CA:

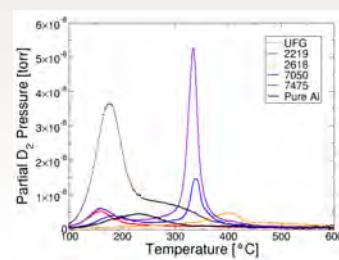
- Low energy ion scattering (LEIS) to investigate thermodynamics and kinetics of hydrogen adsorption-desorption processes on aluminum surface
- Thermal desorption spectroscopy (TDS) to measure trapping of hydrogen in aluminum
- Mechanical testing *in situ* in high-pressure gaseous hydrogen (at pressure of 100 MPa) to probe fracture behavior

The Angle Resolved Ion Energy Spectrometer (ARIES) at Sandia/CA is one of the only instruments in the world that has been specifically optimized for investigating hydrogen on surfaces.

Mechanical testing in high-pressure gaseous hydrogen requires specialized hardware and custom transducers, which have been developed over many years at Sandia/CA.

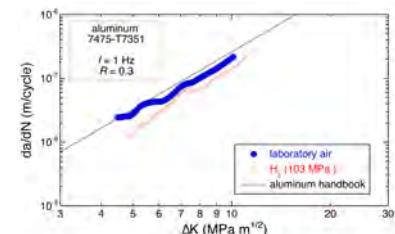


What have we learned so far?


- Aluminum surfaces have been characterized using LEIS.
- Hydrogen transport properties are not sensitive to alloy content.
- Hydrogen trapping does depend on alloy content.
- Fracture resistance and fatigue crack growth of commercial aluminum alloys are not changed by exposure to high-pressure gaseous hydrogen.

Surface science

- Experimental LEIS map shows atomic structure of the Al(111) surface in real space over a 1 nm radius. Method is being extended to hydrogen-covered surfaces.
- The experimental results can be simulated with sophisticated simulation tool.



from: RD Kolasinski, JA Whaley, RA Karnesky, C San Marchi and R Bastasz. Nucl Instrum Meth B (online 2011) doi:10.1016/j.nimb.2010.11.038.

Hydrogen transport

Thermal desorption spectra for several aluminum alloys and pure aluminum that were previously exposed to high-pressure gaseous hydrogen, showing the strength of hydrogen trapping in these alloys.

What is in progress?

- Binding location and height of H on the Al(111) surface are being investigated.
- Trapping sites are being identified and characterized.
- Input from surface and transport studies will aid optimization of experimental procedures for mechanical testing.

Why is this important for our nation?

- Provides the scientific basis for comprehensive evaluation of aluminum alloys for tritium containment in nuclear weapons;
 - an important innovation to ensure the safety and security of the stockpile.
- Has broad applicability to materials selection for hydrogen fuel applications
 - will influence international codes and standards for hydrogen-powered vehicles and infrastructure

Acknowledgements:

The experimental assistance of Ken Lee, Josh Whaley and Dean Buchenauer are gratefully acknowledged; the passion and drive of a strong team makes all the difference.