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Molecular Dynamics 

n  Follow the Newtonian dynamics of a set of atoms based on a force law 
•  Force law (aka interatomic potential model) approximates the bonding due to 

the electronic degrees of freedom 
w  In some cases, electronic structure calculations determine the forces, but typically it 

is a classical potential 
n  Primary challenges 

•  Development of appropriate force law or interatomic potential 
w  Must reproduce the dominant features of the bonding  
w  Must be sufficiently computationally efficient to allow the problem of interest to be 

simulated 
w  Not addressed in this talk 

•  Problem definition and analysis 
w  Must identify the key microscopic process to know what to simulate 
w  Extracting understanding from the results 

§  How does one turn millions of atomic coordinates into scientific 
insight? 

w  Examples of doing this is the subject of this talk 



Fundamental Limitation of MD 

n  Computational time limits the size and time scale that can be realistically 
simulated 

•  Compute time scales linearly in both number of atoms (volume) and time 
w  Limited by (Number of atoms)x(Time simulated) 

•  A large but tractable simulation can currently treat up to ~1 atom-sec 
w  Example: 20 million atoms for a time of 50 nanoseconds 

•  This is many orders of magnitude smaller than a brute force simulation of 
a real world problem! 

w  Cubic micron of material for 1 second: ~1011 atom-sec 
w  Mole of material for a year: ~1031 atom-sec 

n  How can MD be relevant? 
•  Multiscale modeling! 

w  Provide “information” needed by higher length scale models 
§  Properties 
§  Mechanistic insights 

•  Fortuitous problems where the time and length scales of MD match the 
important processes 



Methods spanning orders of magnitude in length and 
time are employed to describe material response 
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Outline 
4 short case studies for microstructural evolution 

n  Pass information to meso-scale grain growth models 
•  Grain Boundary Energies 

w  Five-degrees of freedom challenge 
w  Comparison with experimental observations 

•  Grain Boundary Mobilities 
w  Methodlogy 
w  It is a lot more complicated than typically thought 

n  Brute-force simulations of grain evolution 
•  Annealing of nanocrystalline grain structure 

w  Comparison of growth kinetics to conventional models 
•  Nano-indentation of nanocrystalline metals 

w  Deformation induces grain growth? 
w  Identification of deformation mechanisms 
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Figure 1 Example of a computational experiment for the mobility of a
symmetric 55◦ [111] mixed-type grain boundary in f.c.c. aluminium. The atoms
are coloured from red (ξ i = 0) over green to blue (ξ i = ξmax

i ). The simulated
configuration is periodic for x, y and z directions. Note the vacancy (with a cloud of
displaced green atoms surrounding it) in the upper right corner.

Methods that study curved boundaries4–7 cannot single out a
specific misorientation. State-of-the-art mesoscale computational
methods8–14 aimed at the prediction of the grain-scale evolution
of polycrystalline microstructures are rapidly maturing to a state
where they can be applied to materials of technical interest.
Grain boundary mobility is an essential input parameter for these
approaches, as without this parameter predictions are restricted
to general scientific interest, but not applicable to the design of
specific, technical microstructures. Using molecular dynamics to
model the grain growth process itself 15,16 is limited in system size
to a few nanoscale grains.

In this article we use an artificial, crystal-orientation-dependent
driving pressure, introduced into an embedded atom molecular
dynamics simulation, to compute the grain boundary mobility
in a pure material: face-centred-cubic (f.c.c.) aluminium. This
method permits calculation of grain boundary mobility for flat
boundaries over the full range of crystallographic misorientation
space. Preliminary results provide insights into grain boundary
motion, some of which are surprising.

A crystal lattice with a specific orientation I implies that, ideally,
each atom i with position vector ri has its nearest-neighbour atoms
j at specific positions rI

j . Any local deviation from that orientation
results in nearest-neighbour positions rj . We define the order
parameter ξi for each atom i as

ξi =
∑

j

|rj −rI
j |,

where the sum is over the N nearest-neighbour atoms j of i,
and rI

j is the nearest ideal lattice site of crystal I to rj . N is 12
for the f.c.c. materials of this article. Note that ξi is zero if the
local orientation is exactly I , and is positive for any deviation from
that orientation.

Now consider an atom i in a perfect lattice with orientation J .
The orientation difference between I and J can be expressed as an
‘ideal’ value (in the absence of defects and thermal vibrations)

ξI J =
∑

j

|rJ
j −rI

j |

where rJ
j are the lattice sites in crystal J that neighbour atom i.

In a bicrystal system with grain A having orientation I and
grain B having orientation J , we now add an orientation-dependent
potential energy to the atoms that creates a driving pressure acting
on the grain boundary. Such an artificial potential uξ(ri) can be

defined at each atom i as

uξ(ri) =






0 ξi < ξl

V

2
(1−cos2ωi) with ωi =

π

2

ξi − ξl

ξh − ξl

ξl < ξi < ξh

V ξh < ξi

(1)

with ξl = f ξI J and ξh = (1 − f )ξI J . The cosωi function is chosen
such that its derivative is zero at ξl and ξh and shows a smooth
transition between those two values. The value of the fraction f
is chosen to reduce the effect of the artificial potential on the
normal thermal vibrations of the atoms around their lattice sites,
and ensures that the added energy is free energy. The optimal value
of f depends on the material, potential and temperature. The effect
of uξ(ri) is that atoms of grain B far from the AB interface now have
a potential energy larger than the potential energy of grain A atoms
by a value of V per atom. This potential energy difference goes to
zero as an atom’s coordinates cross the bicrystal interface from B
to A. This is the equivalent of grain B containing a stored energy;
consequently, atoms near the interface will be driven into a grain A
orientation and the grain boundary will migrate into grain B. The
extra force on each atom is given by

F(ri) = − ∂uξ

∂ri

= − πV

2(ξh − ξl)

{(
∑

j

δ ij

|δ ij|

)

sin2ωi

+
∑

j

[
− δ ji

|δ ji|
sin2ωj

]}

for ξl < ξi,ξj < ξh,

where δ ij =ri +Iij −rj and Iij =rI
j −ri. For ξi and ξj outside the given

limits F(ri) is a zero length vector. In these simulations, we use as
our baseline potential an embedded atom method (EAM) potential
for aluminium published in ref. 17. We add equation (1) to that
potential with f = 0.25 and V set as discussed below. This model
has been implemented as an option in the LAMMPS molecular
dynamics package18,19. Despite the ‘artificial’ nature of the extra
driving force, this method is a conventional molecular dynamics
implementation, which follows the relevant statistical mechanics
rules. All atomic motion mechanisms, including thermal vibrations
as well as random and directed motion along and across
boundaries, are included, and detailed balance is maintained. In
fact, our flat boundaries move analogously to any flat boundary
experiencing a volumetric driving force; the only difference is that
our driving force does not arise from a physical cause such as stress
or a magnetic field but rather is applied synthetically.

Figure 1 shows an example of a computational experiment
on a fully periodic system of about 26,000 atoms (a range
between 14,000 and 150,000 was used for the runs discussed
here). Note that, owing to the simpler geometry of the current
simulations, this system size is considerably smaller than required
for curvature-driven molecular dynamics simulations5. The grain
at the ends is set to orientation I , the grain in the middle to
orientation J and the artificial potential energy term is added to all
atoms. As a consequence both grain boundaries move towards the
centre of the sample during a molecular dynamics run of 100 ps
in timesteps of 0.001 ps, as illustrated by the plot of Fig. 2. (If
I and J were reversed, both grain boundaries would move away
from the centre.) Figure 2 shows that boundary velocity is constant
throughout the simulation, as expected in a constant driving
pressure system, and is about the same for both boundaries. We can
calculate the boundary mobility by dividing this constant velocity
by the driving pressure assuming the nominal lattice constant
of 4.032 Å.

To study mobility as a function of misorientation angle, we
examined several boundary series at a temperature of 800 K.
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Why does anyone care about grain growth? 

n  Grain-level microstructure strongly 
influences a wide range of materials 
properties 

•  Strength 
w  Hall-Petch relationship: 

•  Toughness and Fracture 
•  Corrosion resistance 
•  Electrical conductivity 
•  Magnetic susceptibility  
•  … 

n  Controlling the microstructure, 
including grain size, is a central 
problem in materials science. 
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What is the big deal about determining grain boundary 
properties? 

n  “We hold these truths to be self-evident, that all grain boundaries 
are NOT created equal, that they are endowed by their material 
with certain fundamental properties, that among these are 
Energy, Mobility and a Five-Dimensional Space…”  
 - apologies to Thomas Jefferson 

•  There is a 5-dimensional space of macroscopic grain boundary structure 
•  Energy and mobility vary throughout this 5-D space in an, at best, partially 

understood manner 
•  And this doesn’t even consider the effects of impurities, precipitates, …  
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Feeding mesoscale simulations of micrsostructural 
evolution with interfacial property data 

•  Consider two nearly identical grain growth simulations:!
"

•  The only difference between these simulations is a grain boundary 
mobility function that depends on crystallography.!

⇒In order to accurately model microstructural evolution, we need accurate values for 
boundary properties. ""

Uniform boundary energy and mobility →!
 uniform grain growth"

Uniform boundary energy and !
misorientation-dependent mobility →!

highly nonuniform grain growth"



Computational survey of grain boundary energies in 
FCC metals 

Using molecular statics, we built and 
minimized a catalog of 388 flat grain 
boundaries in Al, Au, Cu and Ni. 
n Includes all boundaries that can fit inside 
a box of size 15a0/2. 
n For each boundary, we minimize 
hundreds or thousands of configurations. 
n Result: The largest computational survey 
of grain boundary energies. 
 
How do we use these results? 
n Compare calculated energies with 
experimentally measured energies. 
n Compare grain boundary energies in 
different FCC metals. [Olmsted, Foiles, Holm, Acta Mater. 57 3694 

(2009)]  



Experimental measurement of grain boundary 
energies in Ni 

n CMU used EBSD and serial sectioning to measure the relative energies of a large 
number of grain boundaries in Ni. 

•  Measured 105 boundaries, binned into 17,894 bins (8.2° bin width). 

•  30% of boundaries are Σ3 type; 15% are Σ9 type. 

•  15% of bins contain < 5 measurements. 

[Li, Dillon, Rohrer, Acta Mater. 57 4304 (2009)]  

γ(n|60°/[111]), a.u. γ(n|38.9°/[110]), a.u. γ(n|36.9°/[100]), a.u. 



Comparing computation to experiment: 
unweighted correlation 

•  There is little correlation between 
measured and calculated grain 

boundary energies. 

- RU ~ 0.18 



Comparing computation to experiment: 
weighted correlation 

•  Energy bin population varies widely in the 
experimental data. 

•  When the correlation is weighted by the bin 
population, we find excellent agreement 

between experiment and simulation: RW ~ 0.92.!

⇒ Experiments and simulations agree when 
the experimental statistics are adequate. 

•  For infrequently observed boundaries, the 
calculated energy is likely more accurate 

than the measured energy. 

•  Some frequently observed boundaries are 
rarely simulated; some infrequently 

observed boundaries are widely simulated.!

⇒ Experiments should guide selection of 
boundaries for simulation. 

 Σ5 



The relationship between grain boundary population 
and grain boundary energy 

•  Both theory and experiments suggest 
the GBCD (population) is related to the 

boundary energy: ln(P) ∝ γ	



•  The correlation between measured ln(P) 
and calculated γ is stronger than that 

between measured and calculated 
energies. 

•  The GBCD is a more direct and accurate 
representation of the microstructure. 

⇒ The grain boundary population provides 
a more robust metric for comparison to 

calculated grain boundary energies. 

[Rohrer et al., Acta Mater. 58 5063 (2010)]  



Confirmation of Ni results: 
Boundary populations from an HEDM study 

•  High energy diffraction microscopy 
(HEDM) was used to assemble a 

large,  
3D Ni grain structure: 

- Pure Ni, ~3500 grains, ~23,600 
grain boundaries 

•  The measured GBCD shows 
excellent correlation with the 

calculated boundary energy for high 
population boundaries. 

⇒ This independent data set confirms 
the excellent agreement between 

experiment and simulation. 



Validating additional grain boundary types: 
Low stacking fault materials 

• Ni microstructures are dominated by the twin network, comprised 
mainly of Σ3 and Σ9 boundaries. 

•  In Ni, only the Σ3 and Σ9 boundaries were observed in sufficient 
populations to compare to simulation data.!

• Higher stacking fault materials such as Al should contain fewer 
twins, permitting additional boundary types to be observed. 

⇒ We investigate the GBCD of a large Al polycrystal.!

- Commercially pure Al alloy 1050 
- ~77,000 grain boundaries 

- Characterized by EBSD and stereological analysis 
 



Computation vs. experiment in Al: 
Complete boundary set 

•  As in Ni, the population-weighted 
correlation shows excellent agreement 
between experiment and simulation: RW 

~ 0.91. 

•  Also as in Ni, agreement is stronger for 
higher population boundaries. 

•  The 50.6°[111](111) boundary has higher 
population than predicted due to 

overlap with the coherent twin bin. 

•  The Σ11 50.5°[110](311) outlier is 
unexplained.!

⇒ Experimental results in Al validate 
computational data, as in Ni. 

50.6°(111)[111]  

Σ11 50.5°  
[110](311)  



Validation for additional boundary types 

•  Although some Σ3 boundaries have 
high population in Al, they do not 

dominate the microstructures. 

•  Weighted fits for high population 
boundary types show excellent 

agreement for Σ3, Σ7, Σ11 and <111> 
twist boundaries.!

• Σ5, Σ9 and Σ15 boundaries are 
scarce in Al.!

⇒ For all boundary types observed 
with sufficient frequency, the 

measured population correlates well 
with the computed grain boundary 

energy. 

[Holm et al., Acta Mater. 59, 5250 (2011)]  



In recent years, a variety of MD methods have been 
employed to compute boundary mobility 

n  Mobility relates the boundary velocity, v, to the driving force for boundary 
motion, “p” 

 
n  Curvature driven methods 

•  Exploit energy gain from reducing boundary area 
n  Stress driven boundary motion methods 

•  Exploit anisotropic elastic constants to create energy density difference  
n  Synthetic driving force methods 

•  Introduce an artificial energy that favors one grain 
n  Fluctuation methods 

•  Consider boundary motion as a random walk and exploit the time-dependence 
of the fluctuations 

n  Hybrid synthetic and fluctuation methods 

v =Mp
ARTICLES

Figure 1 Example of a computational experiment for the mobility of a
symmetric 55◦ [111] mixed-type grain boundary in f.c.c. aluminium. The atoms
are coloured from red (ξ i = 0) over green to blue (ξ i = ξmax

i ). The simulated
configuration is periodic for x, y and z directions. Note the vacancy (with a cloud of
displaced green atoms surrounding it) in the upper right corner.

Methods that study curved boundaries4–7 cannot single out a
specific misorientation. State-of-the-art mesoscale computational
methods8–14 aimed at the prediction of the grain-scale evolution
of polycrystalline microstructures are rapidly maturing to a state
where they can be applied to materials of technical interest.
Grain boundary mobility is an essential input parameter for these
approaches, as without this parameter predictions are restricted
to general scientific interest, but not applicable to the design of
specific, technical microstructures. Using molecular dynamics to
model the grain growth process itself 15,16 is limited in system size
to a few nanoscale grains.

In this article we use an artificial, crystal-orientation-dependent
driving pressure, introduced into an embedded atom molecular
dynamics simulation, to compute the grain boundary mobility
in a pure material: face-centred-cubic (f.c.c.) aluminium. This
method permits calculation of grain boundary mobility for flat
boundaries over the full range of crystallographic misorientation
space. Preliminary results provide insights into grain boundary
motion, some of which are surprising.

A crystal lattice with a specific orientation I implies that, ideally,
each atom i with position vector ri has its nearest-neighbour atoms
j at specific positions rI

j . Any local deviation from that orientation
results in nearest-neighbour positions rj . We define the order
parameter ξi for each atom i as

ξi =
∑

j

|rj −rI
j |,

where the sum is over the N nearest-neighbour atoms j of i,
and rI

j is the nearest ideal lattice site of crystal I to rj . N is 12
for the f.c.c. materials of this article. Note that ξi is zero if the
local orientation is exactly I , and is positive for any deviation from
that orientation.

Now consider an atom i in a perfect lattice with orientation J .
The orientation difference between I and J can be expressed as an
‘ideal’ value (in the absence of defects and thermal vibrations)

ξI J =
∑

j

|rJ
j −rI

j |

where rJ
j are the lattice sites in crystal J that neighbour atom i.

In a bicrystal system with grain A having orientation I and
grain B having orientation J , we now add an orientation-dependent
potential energy to the atoms that creates a driving pressure acting
on the grain boundary. Such an artificial potential uξ(ri) can be

defined at each atom i as

uξ(ri) =






0 ξi < ξl

V

2
(1−cos2ωi) with ωi =

π

2

ξi − ξl

ξh − ξl

ξl < ξi < ξh

V ξh < ξi

(1)

with ξl = f ξI J and ξh = (1 − f )ξI J . The cosωi function is chosen
such that its derivative is zero at ξl and ξh and shows a smooth
transition between those two values. The value of the fraction f
is chosen to reduce the effect of the artificial potential on the
normal thermal vibrations of the atoms around their lattice sites,
and ensures that the added energy is free energy. The optimal value
of f depends on the material, potential and temperature. The effect
of uξ(ri) is that atoms of grain B far from the AB interface now have
a potential energy larger than the potential energy of grain A atoms
by a value of V per atom. This potential energy difference goes to
zero as an atom’s coordinates cross the bicrystal interface from B
to A. This is the equivalent of grain B containing a stored energy;
consequently, atoms near the interface will be driven into a grain A
orientation and the grain boundary will migrate into grain B. The
extra force on each atom is given by

F(ri) = − ∂uξ

∂ri

= − πV

2(ξh − ξl)

{(
∑

j

δ ij

|δ ij|

)

sin2ωi

+
∑

j

[
− δ ji

|δ ji|
sin2ωj

]}

for ξl < ξi,ξj < ξh,

where δ ij =ri +Iij −rj and Iij =rI
j −ri. For ξi and ξj outside the given

limits F(ri) is a zero length vector. In these simulations, we use as
our baseline potential an embedded atom method (EAM) potential
for aluminium published in ref. 17. We add equation (1) to that
potential with f = 0.25 and V set as discussed below. This model
has been implemented as an option in the LAMMPS molecular
dynamics package18,19. Despite the ‘artificial’ nature of the extra
driving force, this method is a conventional molecular dynamics
implementation, which follows the relevant statistical mechanics
rules. All atomic motion mechanisms, including thermal vibrations
as well as random and directed motion along and across
boundaries, are included, and detailed balance is maintained. In
fact, our flat boundaries move analogously to any flat boundary
experiencing a volumetric driving force; the only difference is that
our driving force does not arise from a physical cause such as stress
or a magnetic field but rather is applied synthetically.

Figure 1 shows an example of a computational experiment
on a fully periodic system of about 26,000 atoms (a range
between 14,000 and 150,000 was used for the runs discussed
here). Note that, owing to the simpler geometry of the current
simulations, this system size is considerably smaller than required
for curvature-driven molecular dynamics simulations5. The grain
at the ends is set to orientation I , the grain in the middle to
orientation J and the artificial potential energy term is added to all
atoms. As a consequence both grain boundaries move towards the
centre of the sample during a molecular dynamics run of 100 ps
in timesteps of 0.001 ps, as illustrated by the plot of Fig. 2. (If
I and J were reversed, both grain boundaries would move away
from the centre.) Figure 2 shows that boundary velocity is constant
throughout the simulation, as expected in a constant driving
pressure system, and is about the same for both boundaries. We can
calculate the boundary mobility by dividing this constant velocity
by the driving pressure assuming the nominal lattice constant
of 4.032 Å.

To study mobility as a function of misorientation angle, we
examined several boundary series at a temperature of 800 K.
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Boundary mobility calculated for a catalogue of 388 boundaries using a 
synthetic driving force method  

[Janssens, Olmsted, Holm, Foiles, Plimpton and Derlet, Nature Materials 5, 124 (2006)] 

•  Apply a synthetic driving force for boundary motion:!
!For an atom in the 

favored/growing grain: 

! 

" = "EAM

For an atom in the 
unfavored/shrinking grain: 

! 

" ="EAM +u

Additional free energy per atom 
drives the unfavored grain to 

shrink; thus the boundary moves. 
This energy is of undetermined, 

arbitrary origin. 

•  Excess potential energy function!
–  Depends on position of an atoms neighbors!
–  Zero in one grain, positive in another!

•  Now just run molecular dynamics with this 
addition energy term!

–  Implemented in Sandia LAMMPS code for 
massively parallel MD (http://lammps.sandia.gov)!

Mobility computed with artificial driving 
force agrees with calculations using 

elastic strain energy driving force where 
both methods can be applied. 

  

! 
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Grain boundary mobility vs. misorientation 

•  Note the wide range of observed mobilities (log scale). Most have mobility around 100 m/s_GPa, but 
some are as high as 5000 m/s_GPa, or as low as 0 m/s_GPa. 

•  Mobility is not correlated with disorientation angle or boundary type, except <111> twist boundaries 
have very low mobility, as do some <110> symmetric tilts. 

•  The highest mobility boundaries are: Σ111 (9°), Σ57 (13°), and Σ3 (60°). 

Grain boundary mobility in Foiles-Hoyt EAM Ni 



Grain	
  boundary	
  mobility	
  vs.	
  temperature	
  
Not	
  as	
  simple	
  as	
  we	
  thought!	
  

Olmsted, Foiles, Holm, Acta Mater. 57 (2009) 3704.	



•  Conventional wisdom presented in the standard 
textbooks is that grain boundary motion is an 
activated process 

•  In a recent survey of grain boundary mobilities, we 
identified several classes of the temperature 
dependence of mobility 
-  The majority of boundaries are thermally 

activated, and are slow at low temperatures 
-  Roughening transitions often lead to 

especially slow motion at low temperatures 
-  About 20% of boundaries are not thermally 

activated, and are fast at low temperatures 
•  Understanding how boundary mobility varies with 

temperature is a topic of current research 

M =M0e
!QkT

athermal (5%) 

thermally activated 
(57%) 

anti-thermal 
(8%) 

thermally 
damped 
(6%) 



Direct MD Simulation of Annealing of Nanograined Ni 

n  3-D Cubic cell with periodic boundary 
conditions 

•  Perform Isothermal-Isobaric dynamics 
n  Initial structure 

•  Randomly centered and oriented grains 
•  Voronoi construction of grains 

w  Initial triple junction angles wrong 
•  Typical initial grain diameter: ~5 nm 

n  EAM Potential for Ni 
•  Foiles, Hoyt, Acta Mat. 54, 3351 (2006) 

T/TM 0.65 0.75 0.85 
Cell side  19.5 nm 39.0 nm 39.0 nm 

Initial Grains 100 800 800 

# of atoms ~653,000 ~5,104,000 ~5,104,000 

Time 10 ns 7 ns 2 ns 



Analysis identifies local grain orientation, twin and 
stacking faults, and boundaries 

n  For each atom, find the rotation that gives the best match between 
the locations of an ideal FCC first neighbor shell and the actual 
neighbors of the atom 

•  If good match, FCC environment and rotation defines local crystal 
orientation 

w  Color the atom based on the orientation 
•  If poor match, repeat for an ideal HCP first neighbor shell 

w  If good match, atom is locally in HCP environment 
§  Color the atom RED 

•  If neighbors don’t match either FCC or HCP 
w  Atom in a locally disordered region 

§  Here they are mostly grain boundary atoms 
w  Color the atom BLACK 

n  This produces the images 
•  Show slices through the 3D cell 
 



Analysis identifies local grain orientation, twin and 
stacking faults, and boundaries 

n  Easy estimate of the grain size 
•  Simple dimensional arguments 
•  Area is proportional to the number of non-crystalline (other) atoms 
•  Estimate of grain size:  

n  Estimate of the total twin and stacking fault area 
•  Twin boundary: atoms in the central plane have an HCP nearest neighbor 

arrangement 
w  HCP atom with 6 HCP nearest neighbors is in a twin boundary 

•  Stack Fault: atoms in the two central planes have an HCP nearest neighbor 
arrangement 

w  HCP atom with 9 HCP nearest neighbors is in a stacking fault  

! 
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! 
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Visualization of Grain Growth at T = 0.75 TM 



Brute Force MD can follow grain growth in nanocrystals 
What do we learn? 

T = 0.75 TM; 39 nm cube;  
1.0 ns steps 

• Formation of twin boundaries 
• Vacancies seen in grain interior 
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n  Initial transient is not physical 
n  Conventional scaling of grain size with 

time1/2 observed for significant period 
n  Why does the growth slow down?!? 



MD simulations can study individual boundaries: 
Catalog of mobility for 388 Ni grain boundaries 

Can consider crystallographic 
dependence of mobility. 

-But no trends in M found 
-But not enough data to interpolate 

Can look for groups of similar 
boundaries, regardless of 
crystallography 

-High mobility boundaries 
-Low mobility boundaries 

How could one use such data? 

Transition temperature between low/high mobility 

•  Relative fraction of High and Low 
mobility boundaries is temperature 
dependent 

•  In many boundaries, associated 
with roughening  



Mesoscale Microstructure Simulations reveal the consequences of temperature 
dependent population of High/Low mobility boundaries  

n  Monte Carlo Potts Model simulations 
•  Low mobility: M ~ 0 
•  High Mobility: M ~ 1 
•  Fraction, f0, of High/Low mobility 
•  Allow system to evolve via normal 

grain growth physics 
- Grain size stagnates 

- f0 determines final size 
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Explanation of grain growth stagnation in pure metals? 
Holm, Foiles, Science 328, 1138 (2010) 

Convert temperature to 
fraction of low mobility 

boundaries 



Mechanically-­‐induced	
  grain	
  growth	
  limits	
  the	
  fa=gue	
  life	
  of	
  
nanocrystalline	
  metals.	
  

Boyce and Padilla, Metall. Mater. Trans A 42A (2011) 1793.	



•  During fatigue tests of nanocrystalline alloys, 
failure is always observed to initiate at colonies of 
very large grains. 

•  These abnormal grains develop during fatigue 
testing. 

•  Room temperature 
•  Nominally elastic 
•  High Schmid factor grains 

•  In the absence of large grains, the material does 
not fail. 



Mechanically	
  induced	
  grain	
  growth	
  –	
  over	
  a	
  wide	
  temperature	
  
range	
  -­‐	
  has	
  been	
  recognized	
  for	
  decades	
  

Plas=c	
  strain-­‐induced	
  boundary	
  migra=on	
  
in	
  deformed	
  Al,	
  observed	
  during	
  
annealing	
  at	
  350°C.	
  

•  Driving	
  force	
  is	
  direct	
  removal	
  of	
  
stored	
  disloca=ons	
  by	
  boundary	
  
sweeping.	
  

	
  
Beck and Sperry, J. Appl. Phys. 21 (1950) 150.	



Elas=c	
  stress-­‐induced,	
  reversible	
  low-­‐angle	
  grain	
  
boundary	
  migra=on	
  in	
  Zn	
  bicrystals	
  at	
  -­‐196°C	
  
and	
  375°C.	
  

•  Driving	
  force	
  is	
  relief	
  of	
  elas=c	
  stress	
  via	
  
grain	
  boundary	
  disloca=on	
  mo=on.	
  

Bainbridge, Li, and Edwards, Acta Metall. 2 (1954) 322.	





Legros, Gianola, and Hemker, Acta Mater. 56 (2008) 
3380.	



Mechanically-­‐induced	
  grain	
  growth	
  is	
  widely	
  observed	
  in	
  
nanocrystalline	
  metals.	
  

Linck and Gross, J. Appl. 
Phys. 84 (1998) 5547. 

A. Minor, LBNL, personal communication (2009).	



Plas=c	
  strain-­‐induced	
  grain	
  
disappearance	
  during	
  RT	
  
indenta=on	
  of	
  nanocrystalline	
  Al.	
  

	
  

Elas=c	
  stress-­‐induced	
  
grain	
  growth	
  during	
  RT	
  
annealing	
  of	
  damascene	
  
Cu.	
  
	
  

Elas=c	
  stress-­‐induced	
  grain	
  disappearance	
  
near	
  a	
  crack	
  =p	
  during	
  RT	
  fracture	
  of	
  
nanocrystalline	
  Al.	
  

	
  



Zhang, Weertman, and Eastman, Appl. 
Phys. Lett. 87 (2005) 061921.	



Mechanically-­‐induced	
  grain	
  growth	
  increases	
  	
  
as	
  temperature	
  decreases.	
  

In	
  indenta=on	
  studies	
  of	
  nanocrystalline	
  Cu,	
  grain	
  growth	
  
was	
  more	
  extensive	
  at	
  cryogenic	
  (LN2)	
  temperatures	
  than	
  
at	
  room	
  temperature.	
  

•  Growth	
  was	
  most	
  prominent	
  near	
  the	
  indent	
  corner,	
  
i.e.	
  in	
  the	
  highest	
  strain	
  region.	
  

	
  



Direct MD simulation of indentation of nanocrystalline 
Ni reveals mechanically-induced grain growth 

n  Indent an equilibrated nanocrystalline sample 
•  ~53 nm on a side, periodic in plane 
•  Initial Voronoi grain structure annealed at 0.75 TM 

for 1 ns 
w  Typical grain size doubled during anneal – artifact of 

initial structure should be removed 
•  15 nm ideal spherical indenter 

w  Indent to 5 nm depth, hold and than raise  
w  Indentations performed at room temperature (300 K) 
w  Three indentation rates: 5, 1 and 0.2 m/s 

n  Some Questions 
•  Is there mechanically-induced grain growth? 
•  Is there a rate dependence? 
•  What are the deformation mechanisms? 

shown in Figure 2, a slight drop in the resulting force on the indenter is observed during the hold

phase, and no force remains after full removal of the indenter at the conclusion of the lift phase.

Significant GB relaxation and atomic rearrangement occur during both the hold and lift phase of

each simulation causing a drop in the force on the indenter. The duration of the indentation phase

is 1 ns, 5 ns, and 25 ns, for the corresponding indentation rates of 5 m/s, 1 m/s, and 0.2 m/s,

respectively. The duration of the following hold phases are 0.2 ns, 1 ns, and 5 ns, respectively,

while the remaining 0.3 ns, 1.5 ns, and 7.5 ns compose the lift phase in each simulation. This data

is summarized in Table 1.
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Figure 2: The calculated force on the indenter versus Time* during the simulations, where Time* is the simulation

time normalized by the length of the indentation phase. The hold (yellow) and lift (blue) phases of each simulation

are shown and all three indentation rates are displayed as well: red is 0.2 m/s, blue is 1.0 m/s, and green is 5.0 m/s.

Table 1: The simulation times (ns) of each phase for each indentation rate.

Indentation Rate Indentation (tI) Hold Lift

0.2 m/s 25.0 5.0 7.5

1.0 m/s 5.0 1.0 1.5

5.0 m/s 1.0 0.2 0.3

To compare the different rates, the simulation time is normalized by the duration of the inden-

tation phase (tI), leading to normalized time (Time*) spanning from 0.0 to 1.5. Therefore, in Figure

2, the indentation phase corresponds to Time* less than 1.0, the hold phase for Time* between 1.0

and 1.2, and the lift phase corresponds to Time* greater than 1.2. During the initial stages of in-

dentation, the resulting force on the indenter is approximately equal for all three indentation rates.

However, differences in the Force-Time* behavior begin around a Time* value of 0.25, and until

Time* equals 1.0 (the start of the hold phase). During the indentation phase, the fastest rate (5.0

m/s) results in the greatest force on the indenter. These results suggest that a different distribution

6



Visualization demonstrates modest grain growth 
during indentation 

n  Color by local orientation n  Color by local Von-Misses stress 



Quantitative analysis confirms the visual impression of 
grain growth 

n  Evolution of the normalized 
number of grains 

•  Track below and above average 
populations separately 

n  Histogram of grain sizes 
before and after indentation 

•  More large grains after indent 
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Figure 6: Grain number evolution as a function of indentation rate showing the behavior of two groups of grains based
on average grain size: grains with a diameter less than 6 nm (closed circles and solid lines), and grains with a diameter
greater than 6 nm (open circles and dotted lines).

reverse. The normalized grain number (Grain Number*) for grains larger than 6 nm in diameter
begins to increase and the number of grains smaller than 6 nm begins to decrease. Stress-assisted
grain boundary migration and grain growth are likely candidates for this new behavior. Grains near
the indenter appear to grow at the expense of smaller grains. The upward trend in the number of
larger grains and downward trend in the number of smaller grains continues through both the hold
and lift phases as well. In fact, at the end of the lift phase, there are fewer grains less than 6 nm
in diameter than in the initial structure, and more grains larger then 6 nm in diameter than initially
too. If so, grain growth has certainly occurred and the total average grain size in the simulation
cell should have increased.

Figure 7 shows how the average grain size (in nm) changes as a function of Time* for each
indentation rate. Initially, the average grain size in the NC simulation cell is approximately 5.98
nm; however, the final average grain size is a function of the applied indentation rate, as Figure
7 shows. The final average grain size is largest for the slowest indentation rate (i.e., 0.2 m/s),
while the fastest rate leads to the smallest average grain size at the end of the simulation (Time* =
1.5). Although there is a slight rate dependence in the computed average grain size, the difference
between final average grain size is only about 0.1 nm. The final average grain sizes are approxi-
mately 6.25 nm, 6.28 nm, and 6.34 nm for the indentation rates of 0.2 m/s, 1.0 m/s, and 5.0 m/s,
respectively. These changes correspond to an approximate increase of grain size of 4.3%, 4.8%,
and 5.6%, respectively.

To further explore changes in the grain size distribution during indentation, computed grain
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Figure 7: The total average grain size evolution as a function of indentation rate.
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Both full and partial dislocations are active during the 
deformation cycle 

n  The local “slip vector” is analyzed to determine whether there has been 
local dislocation activity 

•  Xαβ, xαβ are the nearest neighbor vectors in the reference and current 
configurations  

s! = ! 1
ns

x!" ! X!"( )
!""

n

#

size results are displayed in Figure 8 comparing the initial (gray) NC structure with the final
structures corresponding to indentation rates of 0.2 m/s (red) and 5.0 m/s (blue). The data shown
in Figure 8 is the total computed volume of each grain size group as a function of the groups
average grain size (in nm). For example, the volume of all grains with an approximate diameter
of 5 nm are summed and displayed in units of nm3 on the y-axis. The results show that there is
indeed a shift to larger average grain sizes due to indentation during grain growth, and there is a
small indentation rate dependence on the grain size distribution character. In general, the slower
indentation rate simulation leads to a higher volume of larger grains, as compared to the faster
indentation rate simulation. Smaller grains are certainly sacrificed for the generation of larger
grains.

3.3. Dislocation and Twin Evolution
During the indentation, hold, and lift phases of each simulation, the underlying substructure

changes dramatically (e.g., grain growth). In addition to grain growth, other important defor-
mation mechanisms are active, such as dislocation nucleation/migration, grain boundary migra-
tion/sliding, and twinning. Using the aforementioned metrics of slip vector and computed atomic
CNA values, a detailed analysis of the evolution of dislocation processes (i.e., both partial and
full slip) and twinning can be provided. Figure 9 shows the rate dependence of (a) the evolution
of partial and full slip processes, and (b) the fractional evolution of twin boundaries during the
simulations.
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Figure 9: The evolution of the (a) atomic fraction that have undergone either partial (dotted) or full (solid) slip during
the simulations as a function of Time* for each indentation rate, and (b) the twin boundary atomic fraction.

The data shown in Figure 9 explores the rate-dependent deformation processes that accompany
grain growth by determining the fraction of atoms that have been traversed by migrating disloca-
tions (e.g., partial slip and full slip) as well as those located within twin boundaries. In Figure 9(a),
the evolution of the atomic fraction of atoms that have been traversed by both partial and full dis-
locations is shown. The fastest indentation rate of 5.0 m/s corresponds to higher atomic fractions
in both slip categories, indicating that dislocation nucleation/migration is favored for this rate, as
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Outline 
4 short case studies for microstructural evolution 

n  Pass information to meso-scale grain growth models 
•  Grain Boundary Energies 

w  Five-degrees of freedom challenge 
w  Comparison with experimental observations 

•  Grain Boundary Mobilities 
w  Methodlogy 
w  It is a lot more complicated than typically thought 

n  Brute-force simulations of grain evolution 
•  Annealing of nanocrystalline grain structure 

w  Comparison of growth kinetics to conventional models 
•  Nano-indentation of nanocrystalline metals 

w  Deformation induces grain growth? 
w  Identification of deformation mechanisms 

ARTICLES

Figure 1 Example of a computational experiment for the mobility of a
symmetric 55◦ [111] mixed-type grain boundary in f.c.c. aluminium. The atoms
are coloured from red (ξ i = 0) over green to blue (ξ i = ξmax

i ). The simulated
configuration is periodic for x, y and z directions. Note the vacancy (with a cloud of
displaced green atoms surrounding it) in the upper right corner.

Methods that study curved boundaries4–7 cannot single out a
specific misorientation. State-of-the-art mesoscale computational
methods8–14 aimed at the prediction of the grain-scale evolution
of polycrystalline microstructures are rapidly maturing to a state
where they can be applied to materials of technical interest.
Grain boundary mobility is an essential input parameter for these
approaches, as without this parameter predictions are restricted
to general scientific interest, but not applicable to the design of
specific, technical microstructures. Using molecular dynamics to
model the grain growth process itself 15,16 is limited in system size
to a few nanoscale grains.

In this article we use an artificial, crystal-orientation-dependent
driving pressure, introduced into an embedded atom molecular
dynamics simulation, to compute the grain boundary mobility
in a pure material: face-centred-cubic (f.c.c.) aluminium. This
method permits calculation of grain boundary mobility for flat
boundaries over the full range of crystallographic misorientation
space. Preliminary results provide insights into grain boundary
motion, some of which are surprising.

A crystal lattice with a specific orientation I implies that, ideally,
each atom i with position vector ri has its nearest-neighbour atoms
j at specific positions rI

j . Any local deviation from that orientation
results in nearest-neighbour positions rj . We define the order
parameter ξi for each atom i as

ξi =
∑

j

|rj −rI
j |,

where the sum is over the N nearest-neighbour atoms j of i,
and rI

j is the nearest ideal lattice site of crystal I to rj . N is 12
for the f.c.c. materials of this article. Note that ξi is zero if the
local orientation is exactly I , and is positive for any deviation from
that orientation.

Now consider an atom i in a perfect lattice with orientation J .
The orientation difference between I and J can be expressed as an
‘ideal’ value (in the absence of defects and thermal vibrations)

ξI J =
∑

j

|rJ
j −rI

j |

where rJ
j are the lattice sites in crystal J that neighbour atom i.

In a bicrystal system with grain A having orientation I and
grain B having orientation J , we now add an orientation-dependent
potential energy to the atoms that creates a driving pressure acting
on the grain boundary. Such an artificial potential uξ(ri) can be

defined at each atom i as

uξ(ri) =






0 ξi < ξl

V

2
(1−cos2ωi) with ωi =

π

2

ξi − ξl

ξh − ξl

ξl < ξi < ξh

V ξh < ξi

(1)

with ξl = f ξI J and ξh = (1 − f )ξI J . The cosωi function is chosen
such that its derivative is zero at ξl and ξh and shows a smooth
transition between those two values. The value of the fraction f
is chosen to reduce the effect of the artificial potential on the
normal thermal vibrations of the atoms around their lattice sites,
and ensures that the added energy is free energy. The optimal value
of f depends on the material, potential and temperature. The effect
of uξ(ri) is that atoms of grain B far from the AB interface now have
a potential energy larger than the potential energy of grain A atoms
by a value of V per atom. This potential energy difference goes to
zero as an atom’s coordinates cross the bicrystal interface from B
to A. This is the equivalent of grain B containing a stored energy;
consequently, atoms near the interface will be driven into a grain A
orientation and the grain boundary will migrate into grain B. The
extra force on each atom is given by

F(ri) = − ∂uξ

∂ri

= − πV

2(ξh − ξl)

{(
∑

j

δ ij

|δ ij|

)

sin2ωi

+
∑

j

[
− δ ji

|δ ji|
sin2ωj

]}

for ξl < ξi,ξj < ξh,

where δ ij =ri +Iij −rj and Iij =rI
j −ri. For ξi and ξj outside the given

limits F(ri) is a zero length vector. In these simulations, we use as
our baseline potential an embedded atom method (EAM) potential
for aluminium published in ref. 17. We add equation (1) to that
potential with f = 0.25 and V set as discussed below. This model
has been implemented as an option in the LAMMPS molecular
dynamics package18,19. Despite the ‘artificial’ nature of the extra
driving force, this method is a conventional molecular dynamics
implementation, which follows the relevant statistical mechanics
rules. All atomic motion mechanisms, including thermal vibrations
as well as random and directed motion along and across
boundaries, are included, and detailed balance is maintained. In
fact, our flat boundaries move analogously to any flat boundary
experiencing a volumetric driving force; the only difference is that
our driving force does not arise from a physical cause such as stress
or a magnetic field but rather is applied synthetically.

Figure 1 shows an example of a computational experiment
on a fully periodic system of about 26,000 atoms (a range
between 14,000 and 150,000 was used for the runs discussed
here). Note that, owing to the simpler geometry of the current
simulations, this system size is considerably smaller than required
for curvature-driven molecular dynamics simulations5. The grain
at the ends is set to orientation I , the grain in the middle to
orientation J and the artificial potential energy term is added to all
atoms. As a consequence both grain boundaries move towards the
centre of the sample during a molecular dynamics run of 100 ps
in timesteps of 0.001 ps, as illustrated by the plot of Fig. 2. (If
I and J were reversed, both grain boundaries would move away
from the centre.) Figure 2 shows that boundary velocity is constant
throughout the simulation, as expected in a constant driving
pressure system, and is about the same for both boundaries. We can
calculate the boundary mobility by dividing this constant velocity
by the driving pressure assuming the nominal lattice constant
of 4.032 Å.

To study mobility as a function of misorientation angle, we
examined several boundary series at a temperature of 800 K.
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