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Polypropylene studies served as the model for nylon studies

Polypropylene was isotopically labeled fCHz—C|H~> <~CH2—CIHQ)—
CH3 CH3
n n

Aged under thermal-oxidative conditions

Characterized using mass spectrometry to
identify mass shifts and degradation
products

Piece puzzle together to establish
mechanism for oxidative attack and
decomposition
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Bernstein et al. Nucl. Instr. Meth. B 2007, 265, 8-17.
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c(1)
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CH; CH;
n n
c(1,3) C(1,3)

polypropylene samples

Sample | CH | CH, | CH,
C(1) | 1.0 ]96.7| 2.3
C(2) |98.5| 0.8 | 0.8
C(1,3) | 0.9 |68.3(30.8

Relative 13C abundance (%) of selectively-labeled

(m)



Nylon is used in a wide variety of
products

Oxidation reduces the overall
lifetime of nylon which directly
alters performance

Underlying mechanisms must be
understood to predict degradation
product formation and serves as
the foundation for future sensor
development for condition
monitoring
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Shamey et al. Rev. Prog. Color 2003, 33, 93-107.
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Average % tensile strength remaining

Nylon 6.6 Accelerated Aging Studies

Predicted results for 23 °C in years
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Lifetime Prediction Validation with
Field Aged Data

Average % tensile strength remaining
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Nylon Field Aged Materials and our Thermal-Oxidative Prediction Line at 23 °C
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Methodologies

° Isotopically labeled and unlabeled nylon Identify degradation

6.6 were aged in 5 cm3 stainless steel
Po=Yo o0=o0 vessels between 1 and 243 days at 109 °C products
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Nylon degradation follows similar mechanism for all variants.

Chromatograms show high reproducibility.



Example: Carbon Dioxide

100
0=C=0
80-
>
=
v 60
C
L 40
£
20+
OT T ! T T T T 1
42 43 44 45 46 47 48 49 50
m/z

A representative carbon dioxide mass spectrum
from oxidation of unlabeled nylon 6.6
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Example: Carbon Dioxide

18— —
0=C=0
100 180=C=180
80-
60-
0=C=0
40-
20
0- \ \ T ! 1 i
42 43 44 45 46 47 48 49 50
m/z

Carbon dioxide mass spectrum from oxidation of
unlabeled nylon 6.6 in an 180 enriched environment

Q H
H I H1O

100, ©9=CFO

80~
60

40
13 -
20. 0="3C=0

Intensity

07\ T | T T T T 1
42 43 44 45 46 47 48 49 50
m/z

Carbon dioxide mass spectrum from oxidation of 13C labeled
nylon 6.6 in an oxygen environment

O
N H
13 Cn
”H{C\/\/\Q/NWCH;\/\/CWHJF




Example: Ammonia

NH
100 °

80-
60
40+

Intensity

20+

OT i T i 1 . T i 1
10 12 14 16 18 20

m/z

A representative ammonia mass spectrum
from oxidation of unlabeled nylon 6.6

Q H
MN’{C\/\/\C’N\/\/\/\N%SM
H X H16

100+ NH
80~
60
40

Intensity

20

I
OT i T i T i T i 1
10 12 14 16 18 20

m/z

Mass spectrum of ammonia from
the NIST Spectral database




Example: Ammonia
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Isotopically labeled nylon 6.6 was 51.4% min atom >N
per the manufacturer’s quality assurance




Quantitative Analysis of CO, Formation

m/z Assignment Relative MS Intensity (%) Functional Group

m/z Assignment Relative MS Intensity (%)  Functional Group
44 Cco," 17.6 £0.5 Chain End 44 Cco,” 854+0.2 Methylene
46  CO"™0O™ 423+2.7 Amide Carbonyl 45  Bco,” 14.6+0.2 N-Vicinal Methylene
48 C'o"™0™ 40.1+3.3 Methylene

CO, Products formed when aged in air
CO, Products formed when aged in 18O 0="3Cc=0

-

FL\
N CMCOH Chain End ﬁmb@é“qs CHQNJ[II N-Vicinal Methylene = 13C labeled CO,
" ©.1 0-C-0

o="*cz0
=C= O
@)
1802;:0 ‘_'_'

0O=C=0
40% of CO, comes from the methylene groups
&2 L2,

15% of all CO, comas from the N-Vicinal methylene groups
25% ( zecmmroﬂ%gn othethytaplergtoupbeled CO,

180:0—180

N-Vicinal methylene groups contribute 38% of CO, formed from the methylene groups
The other four types of methylene groups contribute 16% each to the CO, formed

from the methylene groups. The most labile hydrogen in the nylon backbone is therefore
in the N-Vicinal methylene group.




Proposed Origins of CO, and NH,
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Proposed Origins of CO,
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Proposed Origins of CO,
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Proposed Origins of CO,
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Proposed Origins of CO, and NH,
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We observed NH; and °NH; in aging experiments that employed N labeled nylon 6.6 with relative mass spectral
contributions of 46 + 13 and 54 + 12%, respectively. This is consistent with TOF-SIMS analysis of the neat
5N labeled polymer (51.6% min atom °N) and the manufacturer’s quality analysis (51.4% min atom 1°N).




Other Key Labeled Species Identified
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Conclusions

* By leveraging cryo-GC/MS in conjunction with
isotopically labeled air, we have demonstrated the
novel ability to discriminate between oxygen
originating from the polymer backbone and oxygen
from the environment.

* Experiments employing isotopically labeled and
unlabeled nylon afforded the opportunity to propose
the underlying formation mechanisms of carbon
dioxide and ammonia

 We have identified and are proposing degradation
mechanisms for other low molecular weight thermal-
oxidative and hydrolytic degradation products

(m)



 Complete the investigation of the hydrolytic

Future Work

degradation mechanisms of nylon 6.6

* |nitiate the thermal-oxidative degradation of
poly(ethylene co-vinyl acetate), EVA
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Example: Water
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Polymer Aging

Polymers used for essentially every application in today's society (automotive, medical,
food, defense, clothing, etc...)

Thermal degradation for many materials has been actively pursued using techniques
such as pyrolysis and TGA

— Fast/inexpensive
— Provides information about thermal degradation products
— Mechanisms altered; not good representation of real world (low temp long times)

Detailed oxidative degradation mechanisms and products that are formed are not as
well understood for many polymers

— Aging dependent and time dependent
— Formulation dependent (fillers, additives, antioxidants, lubricants, etc.)

Isotopic labeling of polymers can reveal detailed mechanistic information about
oxidative degradation to gain insights into realistic lifetimes of materials

Understanding degradation mechanisms is the gateway for sensor development to
identify unique volatile degradation products for condition monitoring

— Early warning system
— Establish real-time status update




Polypropylene published and ‘done’
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Labeled Polypropylene
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Example of Thermal-oxidation Products

B
C
D L
E |
A J
| K (o]
ro
G
| y N
T ik
|

w0 a0 W0 40 S0 eo0 A0 0 w0 1000 1100 1200
jrevrrret jrevrrert jreerrrree | | | jrovrrerrt jrovrrerrt jrovrrerrt jrovrrerrt jrovrrerrt jrevrrrrrt jrevrrerrt jrere

Z 3 4 g B i f 3 10 1 12 13 14 15

eak| Chemical Structure
A Carbon Dioxide
B Acetone
C Methyl acetate
D 2-methylpropanal
E Methacrolein
F 2-Butanone
G | 2-Methyl-2-propen-1-ol
H 2-Pentanone
1 Methyl-isobutyl ketone
J 3-Pentene-2-one
4-Methyl-4-pentene-2-
K one
4-Methyl-3-pentene-2-
L one
2,4,6-Trimetyl-1,3-
M dioxane
N 4-Methyl-2-heptanone
0O [1,3,5-Trimethylbenzene




Acetic Acid
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Various Thermal-oxidative Degradation Products
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Signal Intensity

CO, Studies

C(1) Labeled PP sco, C(2) Labeled PP C(1,3) Labeled PP
co,
> co, >
2 2 13C0,
co, é 13CO g
A ﬁ A 7 . e oo
39 40 41 42 43/ 44 45 46 47 39 40 41 42 43 44 45 46 39 40 41 42 43 44 45 46 47
m/z miz
Carbon atom within the polymer % CO, from this position
C(1) [methylene] 66% [+ 5%]
C(2) [tertiary] 33% [+ 5%]
C(3) [methyl group] 0% [<5%]

Thornberg, S. M.; Bernstein, R.; Derzon, D. K.; Irwin, A. N.; Klamo, S. B.; Clough, R. L. Polymer Degradation and Stability, The
Genesis of CO2 and CO in the Thermooxidative Degradation of Polypropylene Polymer Degradation and Stability, in press.




CO Studies
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% CO from this position

C(1) [methylene]
C(2) [tertiary]
C(3) [methyl group]

Thornberg, S. M.; Bernstein, R.; Derzon, D. K.; Irwin, A. N.; Klamo, S. B.; Clough, R. L. Polymer Degradation and Stability, The
Genesis of CO2 and CO in the Thermooxidative Degradation of Polypropylene Polymer Degradation and Stability, in press.

>80% [+ 10%]
<5% [+ 10%]
Not determined




CO and CO, Mechanisms
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Previous and Future Work

Methodology for detailed tracking of (complex) polymer chemistry

Polymer samples were prepared with selective isotopic labeling. Previous work employed
13C labeled polypropylene, current work uses *3C and '°N labeled Nylon.

Analysis by NMR (solid state products), and by GC/MS (volatile products)

Allows “mapping” of products onto positions of origin from original polymer




Nylon Degradation

“Despite the high level of activity and the large number of publications in this field, there is no
generally mechanism for the thermal decomposition of aliphatic nylons.”

“However, there is no agreement in the literature as to which bond in the polymer chain
predominantly undergoes scission at low or moderate temperatures.”

Levchik, S. V.; Weil, E. D.; Lewin, M. Polym Int, Thermal Decomposition of Aliphatic Nylons 1999,
48, 532-557.

“A considerable amount of work has already been carried out to investigate the mechanism of
nylon degradation but the exact mechanism of the degradation has still not been conclusively
established.”

Shamey, R.; Sinha, K. In Review of Progress in Coloration and Related Topics A review of
degradation of nylon 6.6 as a result of exposure to environmental conditions, 2003; Vol. 33, pp 93-
107.




Nylon Yellow color

Source of chromophore in Nylon uncertain

H R—NH, H
=0 —> >=N + HpO
R R

U R% N/R R R

N
H R —
' R R H N
R >:N e >j + R_NH2

Pyrroles

Azomethines
/A

N o
| . .
oligoeneamines
(CHz)¢—N
H R

Allegedly ruled out by one group (George)

Holland, B. J.; Hay, J. N. Polym. Int., Thermal degradation of nylon polymers 2000, 49, 943-948.

Levchik, S. V.; Weil, E. D.; Lewin, M. Polym Int, Thermal Decomposition of Aliphatic Nylons 1999, 48, 532-557.

Thanki, P. N.; Singh, R. P. J Macromol Sci-Rev Macromol, Progress in the area of degradation and stabilization of nylon 66 1998, C38, 595-614.

Karstens, T.; Rossbach, V. Makromol. Chem., Thermo-oxidative Degradation of Polyamide 6 and 6.6 Kintetics of the Formation and Inhibition of UV/VIS-Active Chromophores 1989, 790, 3033-3053.




100

Average % tensile strength remaining

Nylon Tensile Comparison

Air oven

Air oven 2nd run

Air oven 3rd run
Argon and 100% RH
Oxygen and 100% RH

>PE®O0e0

(1) Bernstein, R.; Derzon, D. K.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis 2005, 88, 480-488.
(2) Bernstein, R.; Derzon, D. K.; Gillen, K. T. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), Nylon degradation studies: Humidity and aging 2002, 43, 1349.

200 300 400
Days exposed, 124°C




Nylon Tensile Comparison

Conditions Normalized Slope

124 °C 109 °C

Rate for Thermal and Oxygen 1.0 1.0
:|~8 4 }15.6
7.4 14.6

Rate for Thermal, Argon, and 100% R,

Rate for Thermal, Oxygen, and 100% R, 22.9 45.0

Combined rate ca. 3 times sum of individual rates




Example: Water
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A representative water mass spectrum
from oxidation of unlabeled nylon 6.6
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NIST Mass Spectral Library match of
water spectrum




Example: Water
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A representative water mass spectrum
from oxidation of unlabeled nylon 6.6
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Water mass spectrum from oxidation of

unlabeled nylon 6.6 in an 180 enriched environment




poly(ethylene co-vinyl acetate)

EVA is employed as an adhesive material in various applications
Acetic acid outgassing and reduced physical strength concerns exist

Elucidation of the degradation chemistries is complex due to water
formation. The degradation chemistries are said to be auto-catalytic, .8l
water is a thermal-oxidative degradation species that induces hydrolytic
degradation.

Fundamental understanding of the degradation mechanisms is critical to
providing insight into physical property changes

e
0=C
0

|
T CHy=CHp 1 CH,-CH—
L ]




Objectives

* Qutgassing, cryo-GC/MS
— ldentify outgassing species over time
— Ensure degradation products are representative of performance

environment by comparing products and product distributions at
varying temperatures. This will aid in mechanism elucidation at

relevant environmental conditions.

* Physical Properties
— ldentify changes in tensile strength/elongation by performing
accelerated aging experiments on EVA films

« Correlate changes in physical properties to degradation

species formation @



Outgassing Study

« EVA specimens (40.5 £ 0.3 mg) have been subjected to
thermal-oxidative aging in 5 cm? stainless steel vials at
25°C, 40°C, 65 °C, 80 °C, 123 °C, and 138 °C

« Current samples have been aged to 84 days

« Mass spectral data results were collected for samples
aged at 40 and 60 days

(m)



Outgassing Study, 40 Days

—65C
—380C
— 109 C

123 C
— 138C

V\_N M yoffset = +15E8
A, A~ PR o~

yoffset = +8.0E6

TIC Intensity, au

IU\\ A |\ A L Ln__yoffset = +4.5E6

yoffset = +2.5E6

10 15 20 25
t, min

As the aging temperature increases, more degradation
species are formed and the concentration of the products increases

(m)



Preliminary Outgassing Data

40 C

ays at 138 °C

C4Hg
12x10°1 |[©°° CHsO
C;HO
b 10— OR
= C.H0,
g ° c / hi
E 6- C6H602 /\©
C6H14 I
9 4 / l \)\‘/
— /\/\ 8 c7 C/Hy,
2 ”Tll z
O_| | | | |
6 14 16 18 20
t, min

Preliminary mass spectral data analysis has identified a few volatile degradation species.

Water, carbon monoxide, and an acetic acid based species (acetaldehyde) have also been identified

m

(m)
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o=cC 0—o0

C4Hg acetaldehyde water carbon monoxide  oxygen
My 56 C,H,0 H,0 CoO 0,
RT 6.73 My 44 My, 18 My 28 My 32
RT 6.97 RT 7.35t09.35 RT 7.35t09.35 RT 7.35t09.35

N AN

ethyl chloride 1-pentene
C,HsCl CsHyq
My 64 My 70
RT 8.06 RT 9.1

o~ A
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/\/\/
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CeHig
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RT 12.14

O—=C—=0
carbon dioxide
Co,

My, 44
RT 7.35t0 9.35

] S

777 furan
RT 9.29 C,H,0
My, 68
RT 9.43
(@]

methyl acetate water
C;H0, carbon monoxide
My, 74 RT 11.75
RT 10.87
C,HgO
My 73
OR...
C,HO, CsHg0, carbon monoxide
My 86 Myy 100 oxygen
RT 1225 RT 1241  RT12.97

2-propenal
C3H,0
My 56
RT 9.59

/\/\/
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CeHin
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RT 11.92
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C,HgO
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ethyl acetate
C,4HgO,
My, 88

RT 13.62

1-chloro-butane
C,HoCl

My, 92

RT 14.03

7?
RT 16.3 to 26

benzene C,Hyy CgHyg
CeHg My 98 My 112
My 78 RT 1537 RT 16.17
RT 14.37

water (18)

carbon monoxide (28)
oxygen (32)

carbon dioxide (44)

RT 20 to 51 & spike at 27

CgHyg
My 112
RT 16.8




Outgassing Study, 60 Days

6
50x10° —g¢
b 40_ — 138C
g) fiset = +29E6
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As the aging temperature increases, more degradation
species are formed and the concentration of the products increases.



TIC Intensity, au

Outgassing Study

40 Days

—65C
— 80C
— 109C

123C
— 138C

\W A yoffset = +29E6

yoffset = +15E6
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yoffset = +15E6

yoffset = +4.5E6

60 Days
A

yoffset = +2.5E6
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t, min

As the aging time and temperature increases, more degradation
species are formed and the concentration of the products increases.
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Outgassing Study — Aging Time Comparison

—— 40 days, 138 C
—— 60 days, 138 C

TIC Intensity, au
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Outgassing Study —/i=ing Time Comparison

C,Hg CsHgO
C6H14 C3H80
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Outgassing Study — Aging Time Comparison

o —— 40 days, 123 C
N —— 60 days, 123 C
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Outgassing Study — Aging Time Comparison
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Outgassing Study — Aging Time Comparison

— 40 days, 138 C
—— 60 days, 138 C

yoffset = +15E6

ne ‘Ajisusju| O|L




Yellowing Study

* Yellowing of organic materials which age under thermal-
oxidative conditions can often be correlated to physical
properties

 EVA specimens aged at varying temperatures are
photographed as a function of time. Pulling samples
from ovens affords the opportunity to acquire DSC and
FTIR samples at the same aging times. We have
collected these specimens for future analysis at 33 and
61 days of aging. The current samples have aged to 68

days.



Yellowing Study

40 °C

EVA yellows and then turns brown with increasing aging time and temperature




Conclusions

* As the aging time and temperature increases, more
degradation species are formed and the concentration of the
products increases—the degradation chemistries seem to
remain constant from 40 °C to 138 °C. Mass spectral analysis
at longer aging times will confirm this.

« Several degradation species have been identified, including
water, carbon monoxide, benzene, and acetic acid. Future
work will include correlating the products formed to changes
In physical properties

 EVAyellows and then turns brown with increasing aging time

and temperature



Deception!

Conclusions derived from initial high temperature, short duration (even out to 1
year) accelerated aging can be misleading.

Chemistry / mechanisms must be understood.

Results must be critically analyzed to identify and understand mechanism changes
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Time-Temperature Superposition

Does mechanism change as a function of temperature?

If same mechanism:

e same shape (log graph)
* should be constant acceleration (multiple)

1. Pick a reference temperature

2. Multiply the time at each temperature by the constant that gives the best overlap
with the reference temperature data

Define that multiple as ‘a;’ (a;=1 for ref. temp.)

4. Find a; for each temperature

w

Plot log(a;) vs 1/T linear if Arrhenius

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erroneous? 1997, 5, 250-257.

Arrhenius equation: Empirical equation

k =AeEa/RT In(k) = In(A) — Ea/RT




Thermal-oxidative Aging: Nylon
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Thermal-oxidative Aging: Nylon Shifted

Data

100 Ogp 0 o°% <%

g’ 90 —
£

© 80 —

€

)

- 70 —
=

(o)} Shift Factor

s 60 ® 138°C 8.5
- o 138 °C 2nd Spool 9.0

3 50 — M 124 °C 3.25
= X 124 °C 2nd Run 2.75

2 404 M 124 °C 2nd Spool 3.0
[ A 109°C 1.0

- + 99°C 0.45
s 30 @ 95°C 0.75

. @ 95 °C 2nd Run 0.65

@ 20 ® 80°C 0.25

o ® 64°C 0.20
X 104 | ® 48°cC 0.12

o 37°C 0.08 A
0 1 1 1 1 1 LI I 1 1 1 1 1 LI I 1 1 1 1 1 LI I 1 1
10 100 1000

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: Il. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.

Shifted time to 109 °C, days




Thermal-oxidative Aging: Nylon Shift

Shift factor, a;

Factor Graph
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Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: Il. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.




Hypalon (CSPE) Shift Factor Plot
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Gillen, K. T.; Bernstein, R.; Celina, M. Polymer Degradation and Stability, Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials 2005, 87, 335-346.



Thermal Exposure

Thermal-Oxidation

Polymer + O, > Oxidized Polymer

Quantify amount of oxygen consumed

eSimple in theory
eDifficult in practice
e Amazingly sensitive
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Schematic of Oxuptake
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Oxygen Consumption
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Normalized Measured Property

Enhanced Extrapolation ‘Good’

Measured Property
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Normalized Measured Property

Enhanced Extrapolation ‘Bad’
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DLO, Need to Know

Diffusion Limited Oxidation (DLO) effects if oxygen dissolved in material used up
faster by reaction than it can be replenished by diffusion from surrounding air
atmosphere

Race between:
the oxygen consumption rate versus the oxygen diffusion rate

Therefore we need estimates of:

1. O, permeability versus aging temperature
2. 0O, consumption versus aging temperature




Diffusion-Limited Oxidation (DLO)

O, O,
02 O 02 02 O 02
2 —— > S R ——— 2
0, O, 0, O,
rxn rate > diffusion rate rxn rate < diffusion rate

Heterogeneous Homogeneous




Modulus Profiling

Indentation technique ca. Mod

_ us vs. Shore A
50um resolution

Measure of Inverse tensile
compliance

10

Modulus, MPa

Closely related to tensile modulus

1

L1l L1 L1l L1 L1l L1 | L1
20 30 40 50 60 70 80 90 100
Shore A hardness

Excellent to examine ‘geneity’ of aging (heteo- or
homo-) (DLO issues)

(m)



Schematic of Modulus Profile Experiment

Probe tip, sample and mass Mass is applied in two steps
My
M | |
M
Mc
0
YA R @
; ] / d
SAMPLE e() ] @
0 &
0 t 2t

Gillen, K. T.; Clough, R. L.; Quintana, C. A. Polym. Degrad. Stab., Modulus profiling of polymers 1987, 17, 31-47




Modulus Profiler




Modulus Profiler Sample




Homogeneous Aging

Aging of a nitrile rubber at temperatures Modulus profiles of samples aged at 65°C
ranging from 65°C to 125°C indicate the presence of homogeneous

aging
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Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers 1995, 49, 403-418.




Heterogeneous Aging

Modulus profiles for samples aged at 95°C show that diffusion-limited oxidation (DLO) is
becoming important; at 125°C, DLO effects are very significant
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Neoprene Cable Jacket
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Gillen, K. T.; Bernstein, R.; Celina, M. Polym. Degrad. Stab., Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials 2005, 87, 335-346.



Tensile elongation, %

Neoprene Cable Jacket

Extrapolated (assuming 96 kJ/mol) to 25°C, years
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Validation,

Using Oxygen
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Tensile elongation, %
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a_*t (shifted aging time), years at 50°C

1

Neoprene Cable Jacket
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Prediction using the oxygen
consumption data:

50% elongation predicted
~230 years

Approximately % the
prediction from just the
elongation




Neoprene (polychloroprene) Aging
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Empirical a
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Validation

Chloroprene rubber insulation:
Prediction versus 24 year old sample
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50% predicted to be ~93 years versus 37 years
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Tensile elongation, %

Similar results for three additional hypalons

Samuel Moore jacket

Extrapolated aging time at 50°C, years

Eaton Dekoron jacket

Extrapolated aging time at 50°C, years

Anaconda Flameguard
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Predict 160 years at 50°C to
reach 50% elongation

Predict 170 years at 50°C to
reach 50% elongation

Predict 200 years at 50°C to
reach 50% elongation

Results indicate generic behavior may hold for hypalon materials

Gillen, K. T.; Bernstein, R.; Celina, M. Polymer Degradation and Stability, Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials 2005, 87, 335-346.




