
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

X-Caliber & XGC System Software
Research & Development

Kyle Wheeler
SOS16

SAND2012-2034P

Context

•X-Caliber: our UHPC effort
•XGC: Exascale Grand Challenge LDRD

– (Laboratory Directed Research and Development)

•Consistent Challenge: figure out what exascale system
software looks like
–Collaborate with the level above and the level below
–Leverage technology trends
–Rethink application space (what will be important in a decade?)
–Be metric-focused!

–Picojoules, Picojoules, Picojoules ... and time too!

X-Caliber Software Team

•Sandia
–Brian Barrett, Kyle Wheeler

•LSU
–Thomas Sterling, Dylan Stark,

Hartmut Kaiser, Chirag Dekate
•University of Illinois

–William Gropp, Marc Snir
•USC/ISI

–Pedro Diniz

XGC Software Team

•Sandia
–Brian Barrett, Ron Brightwell, Kevin Pedretti,

Dylan Stark, and Kyle Wheeler

•University of Illinois
–Vikram Adve, Bill Gropp, Marc Snir

•RENCI
–Allan Porterfield

XGC Thrust Areas
(1

)
B

as
el

in
e

-
w

h
at

 h
ap

p
en

s
if

 w
e

d
o

 n
o

th
in

g
?

(2) Microsystems - Key Data Movement Enabling Technologies

Photonic	
 LayerFiber
Interface

MPUBond	
 Pad
DRAM
Heat	
 Sink

(3) Architecture - Coping with Concurrency and Data Movement
Vault Vault Vault•••

MC

VAU

DAU

•
•
•

Mem Network
Interface
(SerDes)

DAU

Logic
Layer

 B
an

k

DRAM
Layer 1

DRAM
Layer 2

DRAM
Layer 3

DRAM
Layer N

 B
an

k

MC

VAU

MC

VAU

On-Chip Network
(Topology, Type, etc. TBD)

Figure 3.2: EMP High-Level Architecture

11

cores in the cluster and has several options in how the cores are used. First, the cores can be used

to operate on completely independent data. Second, the cores can be ganged together to operate in

lockstep to allow multiple identical operations to proceed with much lower synchronization over-

head. Third, tasks can be allocated in a producer/consumer model using hardware mailboxes to

stream data through the cores. This flexibility allows the processing to adaptively adjust to the

requirements of different applications. The functionality of the hardware thread manager is a key

research component of X-caliber.

Core Cluster

CoreCore

FP Vector x4

Local Memory
(Cache and/or Scratchpad)

Multithreaded
Register File

Thr 0

Thr 1

Thr 2

Thr n

M
a

ilb
o

x
e

s

Multithreaded
Register File

Thr 0

Thr 1

Thr 2

Thr n

M
a

ilb
o

x
e

s

••••

Thread
Manager

NoC

FP Vector x4

L1 L1

Figure 8: Notional core cluster for the com-

pute intensive processor.

It is anticipated that the performance of CIP

will need to be artificially limited in order to reach

thermal and power requirements for the module.

Due to this, normal operating frequency will be

1.5 GHz, but maximum frequency will be closer

to 2.5 GHz. X-caliber will take advantage of this

by using aggressive thermal monitoring and man-

agement to enable two forms of sprint modes. The

first form, which can be sustained indefinitely, is

to pair cores and allow one of those cores to run

at 2.5 GHz as long as the other is turned off. This

maintains a constant peak power output, but may

result in thermal hotspots. To alleviate this, we will

investigate ways to ping-pong compute between

the paired cores. In this way, each core would op-

erate for a time before moving thread state to the

paired core, which would then continue computa-

tion. This mode would allow applications which

cannot take advantage of the available the paral-

lelism to achieve higher performance. This mode could be specified by the compiler, and/or auto-

matically enabled when only a small number of threads are present.

The second form of sprinting would allow any core to accelerate to 2.5 GHz for very short

periods of time. This would increase instantaneous power draw and would rely on thermal inertia

to keep from overheating. The thermal state would be closely monitored and sprint mode would

be turned off as thermal limits were met. This sprint state is useful for moving through Amdahl

regions of code, which could be marked by the compiler. The extreme of this mode is to sprint

whenever allowed by the thermal state.

2.4.1.3 Network The network is built from a single integrated component referred to as Merlin.

For energy efficiency, Merlin consists of an integrated network interface controller (NIC) and 21

port router. The Merlin component benefits from the advances in 3D stacking and silicon photonics

and consists of one or more logic layers coupled to a photonics carrier using 3D integration. The

relatively small number of ports in the router allows a more energy efficient implementation com-

pared to a separate larger router, by reducing the on-chip interconnect lengths (and thus power).

Each module contains two Merlin components, which serves to increase interconnect bandwidth,

24

(4) System Software - enabling a new model of computation

(5) Application Drivers

Safety and
Security

Reentry Circuitry Graph Stream

Printed	
 Circuit	
 Board

Hardware Challenges

•Exponential increase in node-level parallelism
•Lower memory capacity per core

–Weak scaling will be insufficient
•Significantly lower network to memory bandwidth ratios
•Need for system software to have finer control of
hardware resources

Fig 1.2 shows the top level diagram of ELVIS core.

Trap Unit(TU)

F
lo

at
in

g
 P

o
in

t
U

n
it

(F
P

U
)

In
te

g
er

 E
x

ec
u

ti
o

U
n

it
 (

IE
U

)

In
b

o
u

n
d

 T
h

re
ad

 U
n

it
(I

T
U

)

R
u
n
n
ab

le T
h
read

 U
n
it(R

T
U

)

D
eferred

 T
h
read

 U
n
it(D

T
U

)

Data Cache Unit(DCU)

Instruction Fetch Unit(IFU)

Pipe Unit(PU)

R
eg

is
te

r
F

il
e1

5

R
eg

is
te

r
F

il
e0

Thread Assignment Unit

Incoming
Transaction
Unit

I/O Unit

From Service
Processor(SP)

To CCX

An ELVIS Core
Supports 16 Threads

From DFRU

To CCX

3

1

2

4
bus 1: FORK/SPAWN
request from I/O.

bus 2: Thread is assigned to
an available thread slot

bus 3: Thread is deferred
and placed in DTUQ.

bus 4: A FORK/SPAWN
command enqueing a thread
assignment request in RTUQ

Figure 1.2: ELVIS Core Structure

14

7DOE Arch Workshop Aug. 2, 2011

Bytes per Flop (Peak)

Systems are getting less memory rich

!"!#

!"#!

#"!!

#!"!!

#$
#$
#%
%&

#$
#$
#%
%'

#$
#$
&!
!!

#$
#$
&!
!(

#$
#$
&!
!)

#$
#$
&!
#&

!"
#$
%&
'(
)*

+,-
*$

./
0

*+,-./+0123 40123/+0123 *+3+561+7+689

Memory Capacity Trend

Application Challenges

What
industry
cares
about

Informatics
Applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traditional (FP) Sandia Applications

Emerging (Integer) Sandia Applications

SPEC FP

SPEC Int

RandomAccess

LINPACK

STREAM

Temporal Locality

S
p

a
ti
a

l
L

o
c
a

lit
y

Benchmark Suite Mean Temporal vs. Spatial Locality

From: Murphy and Kogge, On The Memory Access Patterns of
Supercomputer Applications: Benchmark Selection and Its
Implications, IEEE T. on Computers, July 2007

•Huge variety in programming models and run-times
emerging
–Evolutionary BSP-originated applications
–Revolutionary programming models

•Everyone’s got one, and they’re all the best
•101+ actively developed parallel programming languages

–Flexibility key
–Lots of new application varieties

•Multiple optimization points
–Time to solution
–Energy to solution
–Money to solution
–Total system efficiency

What we
traditionally care
about

Foundational Knowledge

•Distributed systems scaling determined by:
–Ability to move data
–Synchronization

•Lightweight System Software WORKS
–ASCI Red, ASC Red Storm, BG/{L,P,Q}
–Low perturbation of applications

•Synchronization Costs
–Local and remote
–Explicit and implicit

Research Questions

•How will threads evolve to be more lightweight and match
hardware semantics?
–What will hardware threading semantics be?

•What synchronization primitives are necessary for highly
asynchronous applications?
–Free, Fast, Infinite

•What memory consistency models are necessary?
–... or even useful?

•What communication primitives are necessary for evolving
applications?
–Probably not six-function MPI

Necessity is the Mother of Invention

•Need insight into:
–Trade-offs between different data/work movement strategies
–Cost of synchronization/protection mechanisms with real applications
–How much automaticity/adaptivity is necessary in large scale

applications?

•Research is slowed by lack of experimental platform

•Use both clusters and simulation as foundational
experimental platforms!

•Combine Kitten, Portals, and Qthreads to build a multi-
node multi-threaded runtime for experimentation (SPR)

Scalable Parallel Runtime (SPR)

•Qthreads: Lightweight threading interface
–Scalable, lightweight scheduling on NUMA platforms
–Supports a variety of synchronization mechanisms, including Full/

Empty bits and atomic operations
–Potential for direct hardware mapping

•Portals 4: Lightweight networking API
–Semantics for supporting both one-sided and tagged message passing
–Small set of primitives, allows offload from main CPU
–Supports direct hardware mapping

•Kitten: Lightweight OS kernel
–Builds on lessons from ASCI Red, Cplant, Red Storm
–Utilizes scalable parts of Linux environment
–Primarily supports direct hardware mapping

Runtime Architecture /
Experimental Platform

Scalable Parallel Runtime (SPR)

Portals4
KittenOS
SH

M
EM

M
PI

U
PC

K
EU

G
A

EC
L

Ch
ap

el

M
A

ES
TR

O
O

pe
nM

P

In
te

l T
BB

/
Ci

lk
++

H
ab

añ
er

o-
C

Runtime Architecture /
Experimental Platform

Scalable Parallel Runtime (SPR)

Portals4
KittenOS
SH

M
EM

M
PI

U
PCK

EU
G

A

EC
L

Ch
ap

el

M
A

ES
TR

O
O

pe
nM

P

In
te

l T
BB

/
Ci

lk
++

H
ab

añ
er

o-
C

Scalable Programming Interface
(SPI)

Kitten Lightweight Kernel

•Simple compute node OS
– Tool for OS+runtime research
– Looks like Linux to applications and

tools
•Current R&D

– Job launch via OpenMPI ORTE /
mpirun

– Support for Intel MIC, Arthur cluster at
Sandia

– System-call forwarding
– Low-overhead task migration

Operating System
Round-Trip Task Migration Time

(task on core A migrates to core B,
then back to A

Linux 2.6.35.7 4435 ns

Kitten 1.3 2630 ns

Core-switching performance between two cores in the same Intel X5570 2.93
GHz processor. Kitten achieves a speedup of 1.7 compared to Linux, due to

simpler implementation.

Kitten LWK supports running native
applications alongside guest OSes.

Weak scaling performance of Catamount guest OS is
within 5% of Catamount native OS at 4096 nodes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d

s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging

Portals4 Lightweight Comm.

•Simple low-level
communication layer
–Tool for communication+runtime

research
–Thread-safe by design
–Supports legacy and next-gen

applications and tools
–Common substrate to allow

efficient use and sharing of
resources among higher-level
protocols

•Current R&D
–Support for InfiniBand and efficient

shared memory multi-core
–Efficient blocking/waiting

mechanisms

Much of the potential complexity gets out of
the way for basic operations.

0E+00

2E+06

4E+06

6E+06

8E+06

8 16 32 64 128

6-peer Shared-Memory Message Rate

M
es

sa
ge

s/
se

c

Message Size in Bytes

MPICH2 MPICH2 ThreadSafe
Portals4 ME/EQ (MPI-like) Portals4 LE/CT (UPC-like)

Message rates for small messages match MPICH2 performance under
MPI-like conditions, and can even beat it for UPC-like conditions.

Qthreads Lightweight Threading

• Simple task-based runtime
– Tool for programming model research
– Supports both OpenMP-like models

and more complex Chapel-like models
– Presents simplified model of system to

the application
– High-performance scheduler

• Current Qthreads R&D
– Task team and eureka support
– Efficient, flexible collective operations
– Remote task launch

Shep 0 Shep 1

Shep 0 Shep 1 Worker

Thief

Benefactor

Work queue

Task migration path

Task in/out

High performance
“sherwood” work-stealing

scheduler effectively
balances cache efficiency

with load balancing.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

!('"

'"

'!"

'!!"

!" #$" $&")#" *%" '#!" '$$" '%&" '*#"

+,
--
./

,"

01
-2
/3

45
"6
78

-"
9:
-2
:;
"

!"#$%&

'()*&+,-$$.%&'$./012#3&45678&9:;;<&

<==" >?@A-B.:" <=="+,--./," >?@A-B.:"+,--./,"

0.1

1

10

100

1 2 4 8 16 32

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Cores

Unbalanced Tree Search Benchmark

Qthreads Intel TBB Intel OpenMP

GCC OpenMP Cilk

More scalable, and more
performant OpenMP
runtime than GCC!

Competitive load-balancing scheduler
(flexibility is the overhead).

•Research slowed by lack of applications
–Apps need programming environment vision
–...and an API, if possible

•Experiment-driven SPI (Scalable Programming Interface)
design-points:
–Environmental description (local vs global topology)
–Naming needs (GIDs vs handles vs ?)
–How much detail is necessary from the application to specify performant

data/work movement?
–How much detail from the runtime is necessary to enable specification of

performant data/work movement?
–What synchronization semantics are needed and/or useful? (Futures vs

mutexes vs FEBs vs ?)
•Use both experimental results and application programming
effort to guide API development

The Lime in the Coconut

Current Status

•Download Today!
–Kitten: http://code.google.com/p/kitten/
–Portals4: http://code.google.com/p/portal4/
–Qthreads: http://code.google.com/p/qthreads/

•Stacked components work
–Portals4 on Kitten (with InfiniBand)
–Qthreads on Kitten
–Qthreads on Portals4

•Multinode Threading Environment
–Remote spawn/sync
–Multinode UTS, without work-stealing

http://code.google.com/p/qthreads/
http://code.google.com/p/qthreads/
http://code.google.com/p/qthreads/
http://code.google.com/p/qthreads/
http://code.google.com/p/qthreads/
http://code.google.com/p/qthreads/

Thank You!

