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Rate equation description of light-matter interaction
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Linewidth and photon statistics
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2nd_order correlation function
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How to generate nonclassical light

Single emitter: atom, molecule, quantum dot

Excitation Radiative

time lifetime
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Limitation of operating under rate equation condition

Steady state:

dn Bu(w)n,
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Intense excitation:
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Coherent transient in light-matter interaction

a(t)e™ [a)+b(t)e™ [b)
da i . [ ®E,
d I E:_£S<)Eob a(t)—Sln( - tj
iy @) =Hly®) g - o
— = pEqa b(t):cos( Otj
p2 dt h h
—+V — - E, cos|ot .
o ‘80 0 ( 1)/ Rabi
y f
Electric dipole requency
Interaction Rabi flopping
1_
la) :
2
W, — W, ‘a(t)‘ —
!
1) O . . . ,
0 4 3



Quantum optics with semiconductors
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Quantum optics with semiconductors
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Many-body effects in semiconductors

Quantum statistics

|dentical particles, antisymmetric wavefunctions and the exclusion principle

2 Fermions:  Y(ry,12) = ¢a(r1)Pp(r2) - Pp(r1) (1)
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Many-body effects in semiconductors

Quantum statistics

|dentical particles, antisymmetric wavefunctions and the exclusion principle

2 Fermions:  Y(ry,12) = ¢a(r1)Pp(r2) - Pp(r1) (1)
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(Slater determinant) 1,79, ...y ) =
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Quantum optics with semiconductors

Microcavity
QD Photons
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Mean Field Approximation
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Mean Field Approximation

g h (AW, — Eak — Eck) <b;[,,bclkcak>

19 () — (e Gt

8 () (1~ {ehe) = BN, = BV

1.2 F
9
S g 0.8
7)) %
8 = 04 -
= o /*— Mean-field
g 8_ 0 1 1 1 1
n 0 \_/ 30 60
0.4 F t (ps)



Beyond Mean Field Approximation Baer, Gies, Wiersig and Jahnke, Eur. Phys. J. B

50, 411 (2006)
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Cluster expansion
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Semiconductor luminescence theory
Semiconductor microcavity-QED

What about higher order correlations?

How to get them
How high is needed



Berlin/Sandia:

lSingle—transition In quantum dot + photon mode
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Quantum-dot cavity-quantum-electrodynamics (QD-CQED)
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Complete problem description with
dressed (photon-assisted) electronic
operator combinations
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Excited state population

Single particles Correlated pairs
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Berlin/Sandia:

lSingle—transition In quantum dot + photon mode’+ phonon bath

|
Quantum-dot cavity-quantum-electrodynamics (QD-CQED)

Complete problem description with
dressed (photon- and phonon-assisted)
electronic operator combinations
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GPs, = (ala,cPcsbi™p™) Goo S G, BN -
3 =T
ERs. = (alactPcsb™b™) \ f (7 (Joz
T > @
Tg:fn — <aLaCCTPCSbT’nbm> \ ‘\ifo/ ;\'\.I—.;g/
G.. Gio LEip]| -eeeee
0,Ghs, = —li(m—n)wro +i(p — s)w — (p+ 5)K] GE3,
+IMTERLS — M (T50P)" +isMTES
—ipM* (T5EY)" |+ ing, G2 1, — imgiGES,
OTE,, = —i [wew — (P — 8)w + (M — n)wro] 5,
—(p+ 8)kThm — T s — T m
—iM*(pE? »>° + ERott — GPot)
+ing"T" o, —img. T
O Ebs, = —[ilm—n)wro +i(p—s)w+ (p+s)k| ER5,

—i MTPE +4 M (TaP)
+ing.Ey°, , —im g B

¢~ nm-—1




Exercise #1: Strongly interacting quantum-dot/photon/phonon-bath

To arbitrary order in
cluster expansion

Photons

Quantum )
dot

I =
Phonons \

Strong coupling limit :
beyond 2nd Born approx.




Exercise #1: Strongly interacting quantum-dot/photon/phonon-bath

To arbitrary order in
cluster expansion

Photons:

Qu:alr;ttum mmm)| o) Fock state
b) Thermal state

I =
Phonons: \

Strong coupling limit :
3K
% beyond 2nd Born approx.

b) 300K

| Look at photon statistics




Normalized intensity
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2nd_order correlation function
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Normalized intensity
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Thermal state

Phonon bath temperature = 3K
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Thermal state
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Dephasing rate > Rabi frequency -- Rate equation limit

|~ 09—~ (sin” ¢)
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Dephasing rate < Rabi frequency -- Strong coupling limit




Warning sign that QW technigues may not work for QD
laser theory

Rate for carrier-phonon scattering (2nd Born approx.)

1 1
afq th{[( n)nq +n ( + 1y )]”Y—’i(sa—éiﬁzlzﬁwLO)_'_ }

Phonon bottleneck problem

o {I_> QD levels

But indications of phonon bottleneck were not found in present devices



Active region Quantum dots
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Active region Quantum dots

Y
: Quantum well
Wetting layer ———

Dot-Well Hamiltonian discrete for QD
continuous for QW
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Polarization equation of motion
dp . :
dta = —lWaPao — Zﬂa (nea + Nha — 1)
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Extra care with quantum dots

dpq . .
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Photon count

Photocurrent

Rabi oscillations with dephasing
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Detuned Rabi oscillation in a strongly-interacting
QD-photon-phonon system
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Phonon statistics
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Self-cooled optoelectronics
Self-cooling by anti-Stokes (o > Q) phonon-assisted strong coupling
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Summary

Microcavity
Im (E) - | |
Electric field oD
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Complete problem description with
dressed (photon- and phonon-assisted) Er, = (alacctPcsbI™p™)
electronic operator combinations
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Summary

Dephasing in semiconductors
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Quantum dots Memory and beyond 2" Born approximation

QD cavity-QED  Memory, beyond 2"d Born approximation and polaritons
LO phonon-assisted strong coupling

C: High-temperature photon antibunching

Tracking of phonon statistics
Substrate cooling with light emission




Summary

Dephasing in semiconductors
Ap

Reservoir theory —
At

—Yp

Carrier-carrier scattering 7 = VPx + > y"p,,
kr

Quantum dots Memory and beyond 2" Born approximation

QD cavity-QED  Memory, beyond 2"d Born approximation and polaritons
LO phonon-assisted strong coupling

C: High-temperature photon antibunching

Tracking of phonon statistics
Substrate cooling with light emission

a>\>9[g\/

e.g.: Si quantum optics and coherences M
Effective phonon assisted Mg |b)

light-matter coupling @, 6 /e\ |c)

The future: ‘putin the continuum?







Experiments to date
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Mid-IR emitter using inter-conduction-state transition in InAs quantum dots
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Spontaneous emission from quantum-dot ensemble in
presence of field in plasmon mode
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Schroédinger Equation
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Normalized emission
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Experimentally demonstrated and theoretically verified:
Strong-light-matter interaction in electrically-excited,
Inter-conduction-state guantum-dot transitions

Quantum-coherent

electrical excitation!
Advantage of 1intersubband/Level

platform for coherent transient and E g Quantum-dot
quantum coherence phenomena Layer
4 Interband Intersubband ) ~
or level K
© ple <lnm 10nm \mi
T,, T, | 10%%,108s1 | 1013s1, 101357 I \
\4_A J —

\ @ for quantum-coherence devices
when random will Llead

@) for population-based devices to a mixed state (9 —‘l

) = ala) + be'®|b)

2-d to 0-d excitation
gives robust pure state (&) =—>> |1/)) = ala)



Quantum dot contributions to electroluminescence
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Solution QD vacuum Spontaneous

/ / '/ emission
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Summary of past results

1) Photon antibunching in strongly-coupled QD-photon-phonon system
Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010)
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* Nonclassical (better than laser) intensity correlation

« Potential Application : Room temperature single-
photon sources

o 11 2 3
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2) Using quantum coherence to control of strong coupling
Kabuss, Carmele, Richter, Chow and Knorr, physica status solidi B 248, 872 (2011)
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Exercise #2: Coherence induced control of spontaneous emssion
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Exercise #2: Coherence induced control of spontaneous emssion
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Kabuss, Carmele, Richter, Chow and Knorr, physica status solidi B 248, 872, 2011



Exercise #3: Phonon-assisted strong light-matter coupling
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Cluster expansion

Correlated 3-particle
clusters

)= 9% * ( 89 -
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Single particles Correlated pairs



Cluster expansion

Correlated 3-particle
clusters
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Single particles Correlated pairs

Cluster expansion

Correlated 3-particle
clusters
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Quantum-dot cavity-quantum-electrodynamics (QD-CQED)

Approach to solving to arbitrary accuracy, quantum dot under strong
photon-electron and phonon-electron coupling conditions

Antibunching of thermal radiation by room-temperature phonon bath

Collaborators
Technical University, Berlin: Alexander Carmele, Martin Richter and Andreas Knorr

For more information
Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010)

Control of spontaneous emission




Solution

(—Photon number

lw(t))=al(t)a)n)+b(t)|b)n+1)

a(t)]® -

0 2 T 41

Jn+10t



SUMMARY Photon antibunching with 300K phonon bath
* Ph.D. dissertation: Alexander Carmele, TU-Berlin, 2010

QD-CQED * PRL 104, 156801 (2010): Carmele, Richter, Chow, Knorr,
» Submitted J. Modern Optics: Carmele, Kabuss, Richter, Knorr,
Microcavity Chow | |
) * single-photon, multi-QD problem (dot-dot correlations)
f |

* the continuum

Coherence-induced control of photon statistics
and electronic populations

QD “ Photon * physica status solidi B 248, 872, 2011: Kabuss, Carmele,
Richter, Chow, Knorr
* Ph.D. dissertation: Julia Kabuss, TU- Berlin, <1 year
I Phonon-assisted strong light-matter coupling

« Submitted Optics Express: Carmele, Kabuss, and Chow
Phonons

* Indirect gap quantum optics (Si, Ge)
QD physics
» Accepted IEEE Select.Topics Quant. Electron. Chow & Jahnke

1) Strong QD-photon COUplmg * Invited review article, Progress in Quantum Electronics:

2) Strong QD-phonon coupling  chow and Jahnke, 'On the physics of semiconductor
3) Electronic-photon-phonon quantum dots for applications in lasers and quantum

correlations to arbitrary order °PU¢s- _
Deutsche Forschungsgemeinschaft (DFG)

Deutsche Sonderforschungbereich (SFB 787)
(WWC travel expenses)



Observation of Rabi Splitting from Surface Plasmon Coupled
Conduction State Transitions in Electrically Excited InAs Quantum Dots

Mid-IR emitter

Numerical device model: current in —» light out

Stronq field — stronqg coupling

Physics of transition from semiclassical to fully guantum regime

Multi-QD/single-photon source (typical: single-QD/single-photon source)






Berlin /Sandia collaboration

Technical University, Berlin (SFB 787 funding) Sandia National Labs

Alexander Carmele — Student/Posdoc (EFRC strong-coupling subtask)

Ph.D. dissertation (2010) research related to _ _
EFRC strong coupling task MICI’Of:aVIty

Carl-Ramsauer Prize for outstanding physics

Ph.D. dissertation Photons
Julia Kabuss — Student RN N VN
Ph.D. expected completion Fall, 2012 K “if‘“. : L:)
Research on quantum coherence and —

phonon physics in strongly coupled systems

Andreas Knorr — Professor of Theoretical Physics

Collaborator since 1990
Collaborated on first GaN gain theory paper

Constrain: Single-transition in QD

(APL, 1995)
Ep78 — <aiacchcs>
Complete description with dressed GP® = <alavCTpCS>
(photon-assisted) electronic operator
combinations 1P5 = <alacchcs>

Carmele, Kabuss, Richter, Knorr, Chow (J. Modern Optics 58, 1951 (2011)



Atomic, molecular, and optical physics is
the study of matter-matter and light-matter
interactions on the scale of single atoms or
structures containing a few atoms.


http://en.wikipedia.org/wiki/Matter
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Atom

Fundamental Optical Processes in Semiconductors (FOPS)
Aug. 1-5, 2011 — Lake Junaluska, North Carolina

Sessions:

Quantum dots |, Il & I
Graphene and Carbon

Spins | & Il

Excitons and Polaritons I, Il & IlI
Photonic Resonators

Novel Light Sources

Tutorial: Photonic metamaterials and transformation optics



AMO physics

Atomic, molecular and optical

|

Replace with electrons in semiconductor

|

Semiconductor quantum optics




Classical field

}

EO

Strong-field interaction

w(t))=sin(Qgt)e™™ |a)+cos(Qgt)e™ |b) Q =

a)|a)+cos(Qgt)e™™ |b)|a)

w(t))=sin(Qgt)e™™

=| sin(Qt)e ™

a)+cos(Q;t)e Tt b) ]‘ mmp Factorizable
i
o0 n
Coherent state: Z%eaz/z ‘ n>

n=0

Strong coupling

Polariton state: [y/(t))=sin(Q,t)e " |a)|n—1)+cos(Q,t)e™ |b)[n)
-’ y _—
50(%\/80) 2 \/ﬁ Photon number state

%_I
‘Electric field per photon’



