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Equation is starting point of Einstein's derivation of 

Planck's blackbody radiation 

Rate equation description of light-matter interaction 

Einstein A 
Einstein B 
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Light energy 
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Linewidth and photon statistics 
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2nd-order correlation function 
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How to generate nonclassical light 

Time 

Excitation 

time 

Radiative 

lifetime 

Single emitter: atom, molecule, quantum dot 



Bleaching 

(the best one can do) 
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Steady state: 

Intense excitation: 

Limitation of operating under rate equation condition 



Coherent transient in light-matter interaction 

Electric dipole 

interaction 
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Quantum optics with semiconductors 
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Many-body effects in semiconductors 

Quantum statistics 

Determines 

separation r

e

B4
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Coulomb interaction 

Identical particles, antisymmetric wavefunctions and the exclusion principle 

2 Fermions: 𝝍 𝒓𝟏, 𝒓𝟐 = 𝝓𝒂 𝒓𝟏 𝝓𝒃 𝒓𝟐  - 𝝓𝒃 𝒓𝟏 𝝓𝒂 𝒓𝟐  



Many-body effects in semiconductors 

Quantum statistics 

Anticommutation relation: 

Determines 

separation r

e

B4

2

r 

1 2 

Coulomb interaction 

Identical particles, antisymmetric wavefunctions and the exclusion principle 

n Fermions 

(Slater determinant) 

2 Fermions: 

2nd quantization for easier bookkeeping 

Electron annihilation and creation operators 

𝝍 𝒓𝟏, 𝒓𝟐 = 𝝓𝒂 𝒓𝟏 𝝓𝒃 𝒓𝟐  - 𝝓𝒃 𝒓𝟏 𝝓𝒂 𝒓𝟐  



Polarization 

Quantum optics with semiconductors 

Hamiltonian 

+ Coulomb interaction 

QD Photons 

Microcavity 



Mean Field Approximation 

Stimulated 

emission 

Spontaneous 

emission 



Mean Field Approximation 

BNeNh BN2 
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Baer, Gies, Wiersig and Jahnke, Eur. Phys. J. B 

50, 411 (2006) 

60 30 
0 

1.2 

0.4 

-0.4 

0.8 

0 

Singlet-doublet 

Mean-field 

E
x
c
it

e
d

 s
ta

te
 

p
o

p
u

la
ti

o
n

 

t (ps) 

Beyond Mean Field Approximation 



Single particles Correlated pairs Correlated 3-particle 

clusters 

+ + + ... 

Cluster expansion 

Semiconductor luminescence theory  

Semiconductor microcavity-QED 
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Mean-field 

What about  higher order correlations? 
How to get them 

How high is needed 



Berlin/Sandia: 

Quantum-dot cavity-quantum-electrodynamics (QD-CQED) 

Single-transition in quantum dot + photon mode 

QD 
Photons 

Microcavity 
Complete problem description with 

dressed (photon-assisted) electronic 

operator combinations 





Single particles Correlated pairs 
Correlated 3-particle 

clusters 

+ + + ... 

Cluster expansion 
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3-particle clusters 

(singlet-doublet) 

Correlated pairs (mean-field) 

p  m  150 

(reproduce Jaynes-Cummings) 



Berlin/Sandia: 

Single-transition in quantum dot + photon mode + phonon bath 

Quantum-dot cavity-quantum-electrodynamics (QD-CQED) 

Complete problem description with 

dressed (photon- and phonon-assisted) 

electronic operator combinations 

QD 
Photons 

Microcavity 

Phonons 
,TLO 

(Beyond typical 2nd Born approx. reservoir theory) 

Carmele, Kabuss, Richter, Richter, Knorr & Chow and Knorr, J. Modern Optics 58, 1951 (2011) 





Exercise #1: Strongly interacting quantum-dot/photon/phonon-bath 

Photons 
Quantum 

dot 

Phonons 

To arbitrary order in 

cluster expansion 

Strong coupling limit : 

beyond 2nd Born approx. 



Photons: 

a) Fock state 

b) Thermal state 

Quantum 

dot 

Phonons: 

a) 3K 

b) 300K 

To arbitrary order in 

cluster expansion 

Strong coupling limit : 

beyond 2nd Born approx. 

Exercise #1: Strongly interacting quantum-dot/photon/phonon-bath 

Look at photon statistics 
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2nd-order correlation function 
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Thermal state 

Phonon bath temperature = 3K Phonon bath temperature = 300K 
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Thermal state 

Phonon bath temperature = 3K Phonon bath temperature = 300K 
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Dephasing rate > Rabi frequency  -- Rate equation limit 
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Dephasing rate < Rabi frequency  -- Strong coupling limit 



Warning sign that QW techniques may not work for QD 

laser theory 

Phonon bottleneck problem 

QD levels 
LO 

Rate for carrier-phonon scattering (2nd Born approx.) 

But indications of phonon bottleneck were not  found in present devices 



Active region 

Quantum well 
Wetting layer 

Quantum dots 



Dot-Well Hamiltonian 

Active region 

Quantum well 
Wetting layer 

Quantum dots 

Single-particle 

Light-matter interaction 

Carrier - carrier Carrier - phonon 

Coulomb matrix element 

discrete for QD 

continuous for QW 



Polarization equation of motion 



’k'-q 

’k' k 

 

(Schneider, et al, PRB 70, 235308, 2004) 

(2) Carrier-carrier scattering 

(1) Phonon bottleneck problem 

QD levels 
LO 

Perturbative (2nd Born) treatment overestimates problem 

Corrected with polaron (nonperturbative) description 

(Inoshita, Sakaki, PRB 56,4355, 1997; Seebeck et al, PRB 71, 

125327, 2005) 

Extra care with quantum dots 



Rabi oscillations with dephasing 

Time or time delay 
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Conventional 

quantum optics 

Only on-resonant anticrossing 

Phonon-assisted strong 

light-matter coupling 

Carmele, Kabuss and Chow 

submitted to Optics Express 

Detuned Rabi oscillation in a strongly-interacting 

QD-photon-phonon system  



Phonon statistics 

Phonon-assisted strong-coupling can change phonon 

population and statistics 

Substrate temperature 

Anticrossings at +/- LO- 

phonon energy  detuning 



Self-cooled optoelectronics 

Self-cooling by anti-Stokes ( > ) phonon-assisted strong coupling 

QD 

Phonons 

𝜔 

Photons 

Heat sink: T0 

𝛀 

Carrier injection 
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Summary 

Re (E) 

Im (E) 

Spontaneous 

emission 

 

  linewidth 
 

Amplitude fluctuation 

Electric field 
QD Photons 

Microcavity 

Phonons 
,TLO 

Complete problem description with 

dressed (photon- and phonon-assisted) 

electronic operator combinations 



Reservoir theory 
Δ𝜌

∆𝑡
= −𝛾𝜌 

Carrier-carrier scattering 
Δ𝜌𝑘
∆𝑡
= −𝛾𝜌𝑘 + 𝛾

𝑛𝑑𝜌𝑘′
𝑘′

 

Dephasing in semiconductors 

Summary 
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Quantum dots Memory and beyond 2nd Born approximation 

QD cavity-QED 

LO phonon-assisted strong coupling 

High-temperature photon antibunching 

Tracking of phonon statistics 

Substrate cooling with light emission 

Memory, beyond 2nd Born approximation and polaritons 

Dephasing in semiconductors 

Summary 
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Quantum dots Memory and beyond 2nd Born approximation 

QD cavity-QED 

LO phonon-assisted strong coupling 

High-temperature photon antibunching 

Tracking of phonon statistics 

Substrate cooling with light emission 

Memory, beyond 2nd Born approximation and polaritons 

The future:  ‘put in the continuum? 

e.g.: Si quantum optics and coherences M
M

g

b

a

cLO

Mg



Effective phonon assisted 

light-matter coupling 

Dephasing in semiconductors 

Summary 
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Photo-

current 
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Pump 

Experiments to date 

Reithmaier et al., Nature 432, 197 (2004) and others 

Electrically pump 

Tsintzos et al., Nature Lett. 453 373 (2008) 

APL 94, 071109 (2009)   
Plasmon 

mediated 

Gomez et al., Nano Lett. 10, 274 (2010) 

Early expts 

Quantum dots 

Kistner et al., APL 96, 221102 (2010) 

QW, 300K 

30K 

Optically pump 



Mid-IR emitter using inter-conduction-state transition in InAs quantum dots 

Growth direction 
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Quantum dot  

Wave vector 

Plasmon-polariton 

Plasmon 

Spontaneous emission 

Quantum dots 

Spontaneous emission from quantum-dot ensemble in 

presence of field in plasmon mode 

Solve exactly Include to 1st order 

Schrödinger Equation 
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Experimentally demonstrated and theoretically verified: 

Strong-light-matter interaction in electrically-excited, 

inter-conduction-state quantum-dot transitions 

when random will lead 
to a mixed state  

2-d to 0-d excitation 
gives robust pure state 

Interband 

/e           <1nm                    10nm 

T1 , T2      109s-1, 1013s-1       1013s-1, 1013s-1 

for population-based devices 

for quantum-coherence devices 

 Intersubband 

or level 

Quantum-dot 
layer E 

k 

Advantage of intersubband/level 
platform for coherent transient and 
quantum coherence phenomena 

Quantum-coherent 
electrical excitation! 



Quantum dot contributions to electroluminescence 

Wavenumber (cm-1) 
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Solution QD vacuum Spontaneous 

emission 

Intensity spectrum 





1) Photon antibunching in strongly-coupled QD-photon-phonon system 

Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010) 
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2) Using quantum coherence to control of strong coupling 

c

a

b

Quantum 

coherence 

Kabuss, Carmele, Richter, Chow and Knorr, physica status solidi B 248, 872 (2011) 

Summary of past results 

• Nonclassical (better than laser) intensity correlation  

 

• Potential Application : Room temperature single-

photon sources 

Photon statistics 

change by drive pulse 

Potential Applications 

• Photon-on-demand sources 

• Fundamental efficiency limit of PVCs 



Exercise #2: Coherence induced control of spontaneous emssion 

Microcavity Drive 

field 

c

Cavity 

photons 

a

b

Quantum 

coherence 



Kabuss, Carmele, Richter, Chow and Knorr, physica status solidi B 248, 872, 2011 

Control of photon statistics 

Low noise light sources 

Contol of carrier populations 

Efficient photovoltaic cells 

(inspired by M.O. Scully) 

Exercise #2: Coherence induced control of spontaneous emssion 



Quantum 

dot 
Photons 

Detuning 

Phonons 

Exercise #3: Phonon-assisted strong light-matter coupling 



Single particles Correlated pairs 
Correlated 3-particle 

clusters 

+ + + ... 

BNeNh BN2 BNe(1-Ne) 

Cluster expansion 
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Correlated pairs (mean-field) 

Single particles Correlated pairs 
Correlated 3-particle 
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Cluster expansion 



60 30 
0 

1.2 

0.4 

-0.4 

0.8 

0 

t (ps) E
x
c
it

e
d

 s
ta

te
 p

o
p

u
la

ti
o

n
 

3-particle clusters 

(singlet-doublet) 

Correlated pairs (mean-field) 

Single particles Correlated pairs 
Correlated 3-particle 

clusters 

+ + + ... 

BNeNh BN2 BNe(1-Ne) 

Cluster expansion 



Single particles Correlated pairs 
Correlated 3-particle 

clusters 

+ + + ... 
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3-particle clusters 
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Cluster expansion 



Approach to solving to arbitrary accuracy, quantum dot under strong 

photon-electron and phonon-electron coupling conditions 

Antibunching of thermal radiation by room-temperature phonon bath 

Quantum-dot cavity-quantum-electrodynamics (QD-CQED) 

Collaborators 

Technical University, Berlin: Alexander Carmele, Martin Richter and Andreas Knorr 

 

For more information 

Carmele, Richter, Chow and Knorr, PRL 104, 156801 (2010) 

 

Control of spontaneous emission 
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1) Strong QD-photon coupling 

2) Strong QD-phonon coupling 

3) Electronic-photon-phonon 

correlations to arbitrary order 

QD-CQED 

QD Photon 

Microcavity 

Phonons 

Photon antibunching with 300K phonon bath 

Coherence-induced control of photon statistics 

and electronic populations 

Phonon-assisted strong light-matter coupling 

• Ph.D. dissertation: Alexander Carmele, TU-Berlin, 2010 
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