

Enabling Extreme-Scale Computation for Emerging Discretizations

Michael Parks
Sandia National Laboratories

SAND2012-????P

Collaborators

- **Burak Aksoylu** (One-year sabbatical at Sandia Labs)
 - Mathematical analysis, domain decomposition, peridynamics
- **Laurie Frink** (Colder Insights, Inc.)
 - Computational modeling of inhomogeneous fluids
- **Deaglan Halligan** (Ph.D. Student, Purdue, supervised by Ahmed Sameh)
 - Multiprecision computation
- **Mike Heroux** (Sandia Labs)
 - Scalable computation, numerical linear algebra, preconditioners
- **Dave Littlewood** (Sandia Labs)
 - Peridynamics, computational solid mechanics, material failure modeling
- **Mike Parks** (Sandia Labs)
 - PI
 - peridynamics, domain decomposition, numerical linear algebra, solvers, preconditioners

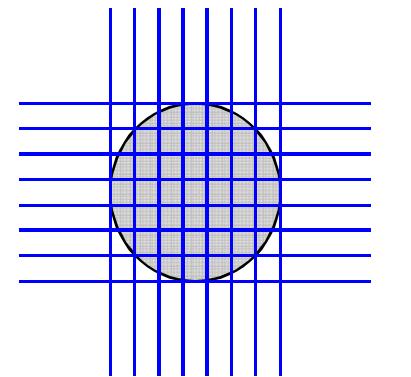
Part I Enabling Science

Part II Summary of Previous Work

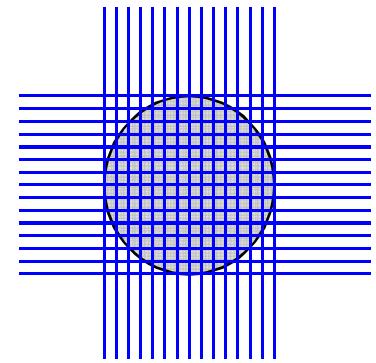
Part III Proposed Work

Background

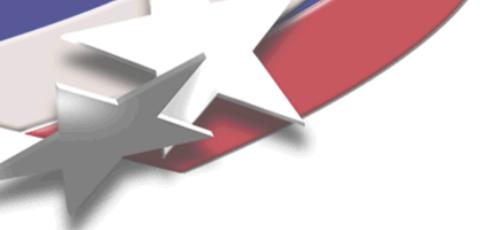
- Descriptive Modeling: Partial Differential Equations vs. Integral Equations
 - PDEs not suitable for everything (fundamentally local)
 - **Integral equations (IEs) more descriptive in many cases (fundamentally nonlocal)**
- IEs have different linear system properties
- PDEs - Matrix density independent of system size
- **IEs - Matrix density dependent upon system size**
- PDEs - Inter-nodal coupling dominates
- **IEs - Inter-physics coupling dominates**
- PDE - Stencils based on nearest neighbors (mesh & geometry)
- **IEs - Stencils based on physical constants (physics)**
- PDEs - Usually a few DOFs per node
- **IEs - May have large numbers of DOF per node**
- Two Important Applications of IEs
 - **Modeling Fracture & Failure**
 - **Modeling Nanostructured Fluids**



Coarse Mesh
(Few nonzero per row)



Fine Mesh
(Many nonzero per row)



Fracture & Failure Modeling

- Equation for classical elastodynamics

$$\rho \ddot{\mathbf{u}}(\mathbf{x}, t) = \nabla \cdot \boldsymbol{\sigma} + \mathbf{b}(\mathbf{x}, t) \quad \boldsymbol{\sigma} = \boldsymbol{\sigma}(\nabla \mathbf{u})$$

- Fracture solutions treated as a pathology
- Special techniques (XFEM, cohesive zone) needed at discrete level to support desired solutions

Fracture & Failure Modeling

- Equation for classical elastodynamics

$$\rho \ddot{u}(x, t) = \nabla \cdot \sigma + b(x, t) \quad \sigma = \sigma(\nabla u)$$

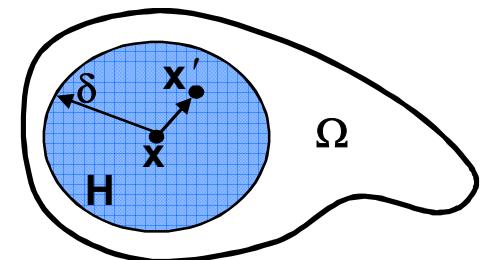
- Fracture solutions treated as a pathology
- Special techniques (XFEM, cohesive zone) needed at discrete level to support desired solutions

- **Peridynamics is a nonlocal extension of classical solid mechanics that permits discontinuous solutions**

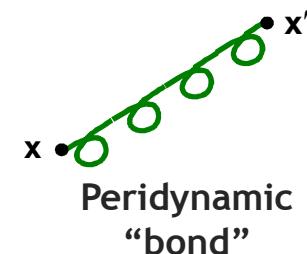
- **Peridynamic equation of motion (integral, nonlocal)**

$$\rho \ddot{u}(x, t) = \int_H f(u' - u, x' - x) dV' + b(x, t)$$

- Replace PDEs with integral equations
- No obstacle to integrating nonsmooth functions (fracture)
- Utilize same equation everywhere; cracks not “special”
- **When bonds stretch too much, they break**
- $f(\cdot, \cdot)$ is “force” function; contains constitutive model
- $f = 0$ for particles x, x' more than δ apart
(analogous to cutoff radius in molecular dynamics!)
- Peridynamics is “continuum form of molecular dynamics”



Peridynamic Domain

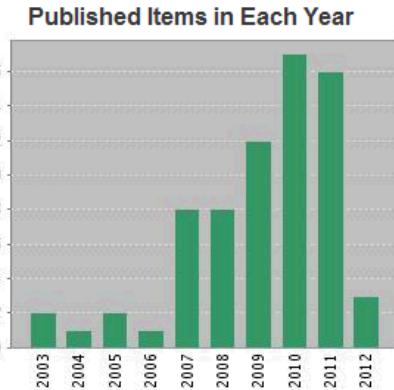


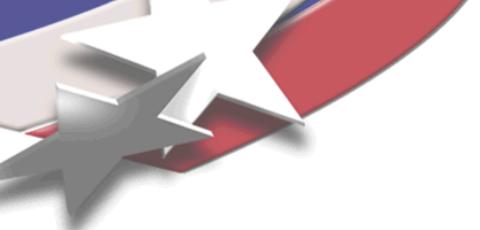
Peridynamic
“bond”

Fracture & Failure Modeling

- ❑ Increasing adoption of peridynamics by academia, labs, industry
- ❑ Applications: Aerospace, mining, natural gas, etc.
- ❑ Several Ph.D. dissertations on peridynamics

- ❑ Use Sandia's ***Peridigm*** package for peridynamics
 - ❑ Sandia's primary open-source peridynamics code
 - ❑ Built upon Sandia's ***Trilinos Project***, algorithms and enabling technologies for the solution of large-scale, complex multi-physics engineering and scientific problems.
[\(trilinos.sandia.gov\)](http://trilinos.sandia.gov)
 - ❑ Notable features: Massively parallel, Exodus input/output, multiple material blocks, explicit & implicit time integration linear elastic, elastic-plastic, viscoelastic models,
 - ❑ DAKOTA interface for UQ/optimization/calibration, etc.
[\(dakota.sandia.gov\)](http://dakota.sandia.gov)



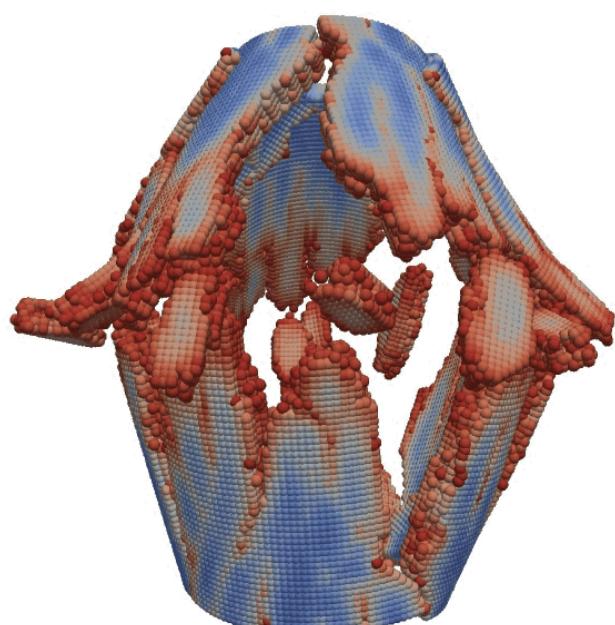


Fracture & Failure Modeling

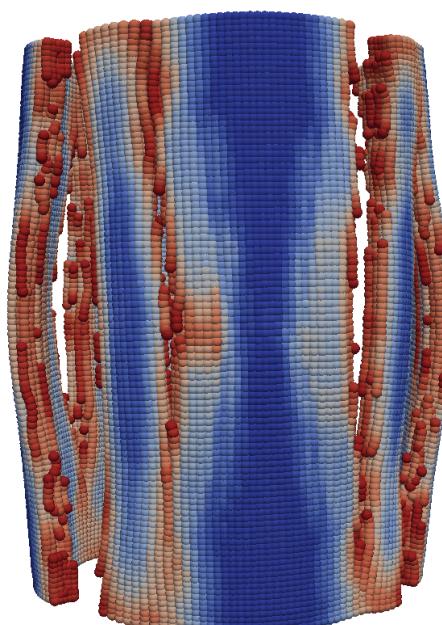
□ Fragmenting Brittle Cylinder

□ Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)*

Before



After
(brittle model)



After
(plastic model)

*Color
indicates
damage*

Fracture & Failure Modeling

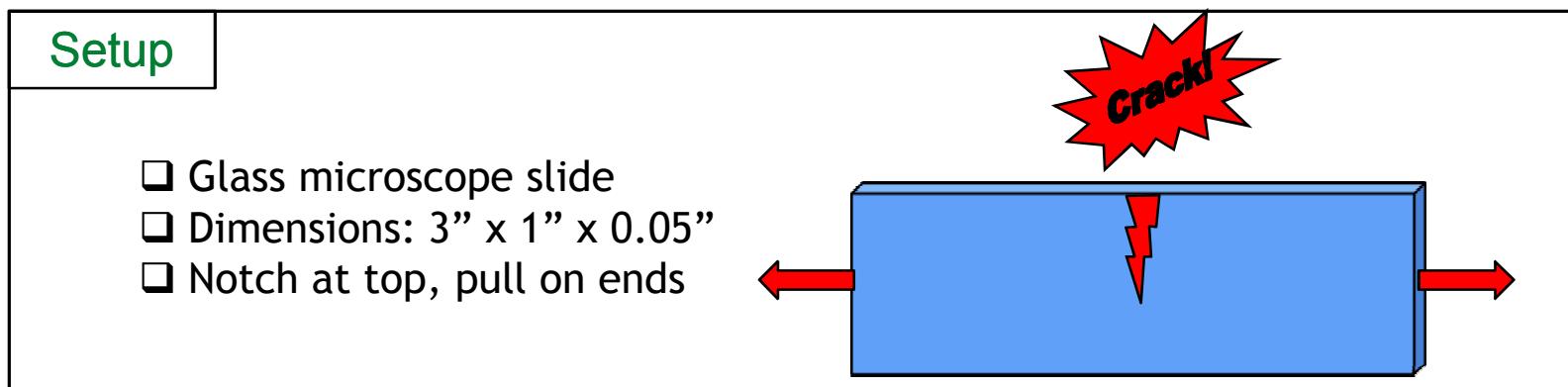
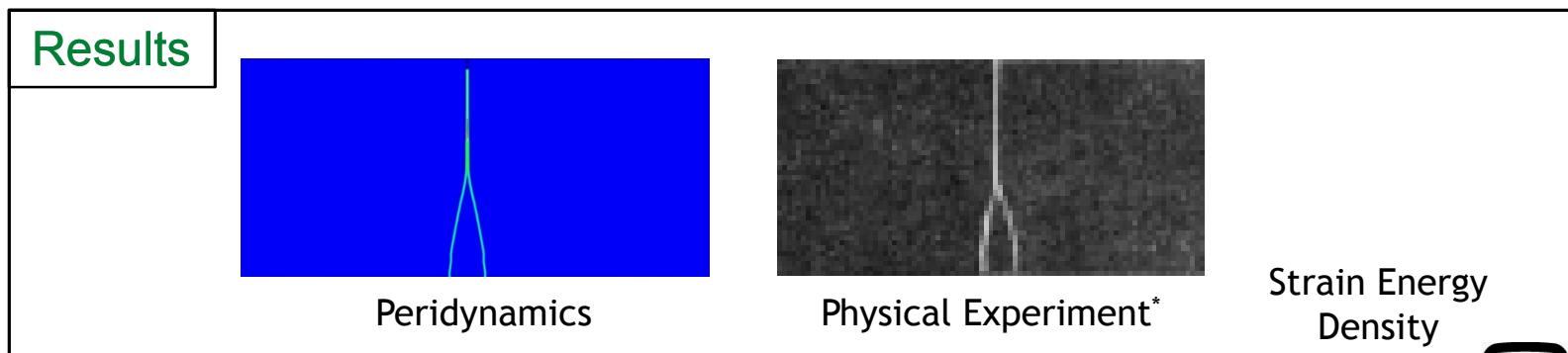
- Example simulation: **Dynamic brittle fracture in glass**
 - Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL)

- **Soda-lime glass plate (microscope slide)**

- Dimensions: 3" x 1" x 0.05"
 - Density: 2.44 g/cm³
 - Elastic Modulus: 79.0 Gpa

- **Discretization (finest)**

- Mesh spacing: 35 microns
 - Approx. 82 million particles
 - Time: 50 microseconds (20k timesteps)



Fracture & Failure Modeling

- ❑ Dawn (LLNL): IBM BG/P System
 - ❑ 500 teraflops; 147,456 cores
- ❑ Part of Sequoia procurement
 - ❑ 20 petaflops; 1.6 million cores
- ❑ Discretization (finest)
 - ❑ Mesh spacing: 35 microns
 - ❑ Approx. 82 million particles
 - ❑ Time: 50 microseconds (20k timesteps)
 - ❑ 6 hours on 65k cores
- ❑ Largest peridynamic simulations in history

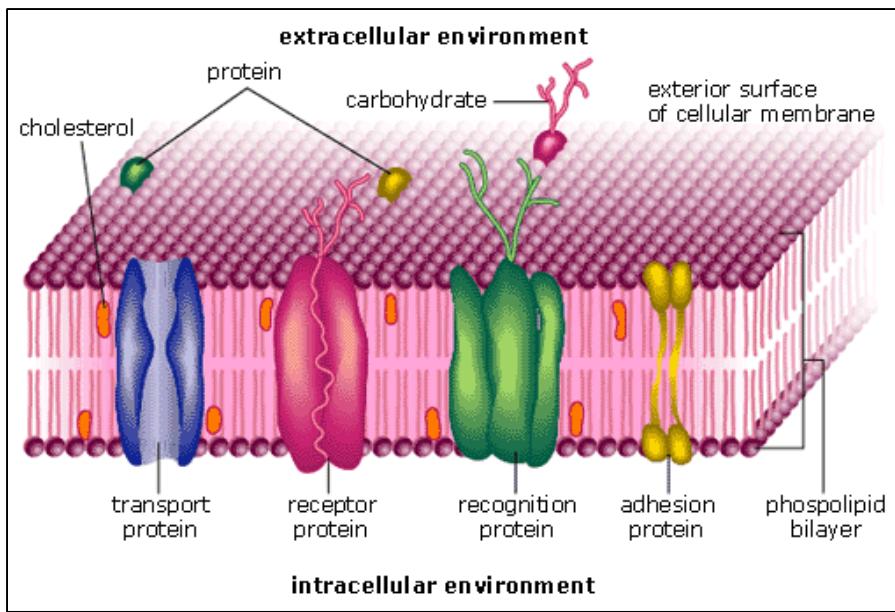
Dawn at LLNL

Weak Scaling Results

# Cores	# Particles	Particles/Core	Runtime (sec)	T(P)/T(P=512)
512	262,144	4096	14.417	1.000
4,096	2,097,152	4096	14.708	0.980
32,768	16,777,216	4096	15.275	0.963

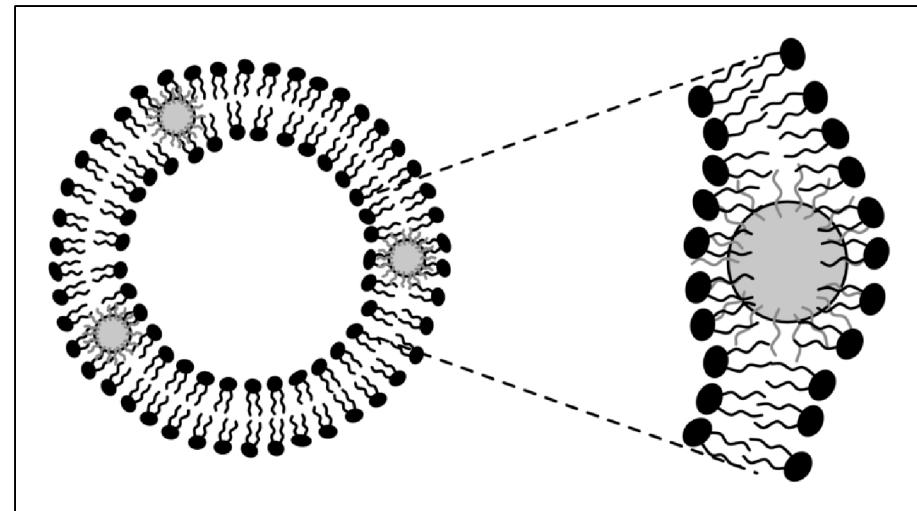
Nanostructured Fluids

- ❑ Structure arises from surfaces, fields, self-assembly
- ❑ Density, diffusion, and viscosity different from bulk fluid properties
- ❑ Rich phase behavior: wetting, capillary condensation, layering



Biological Membranes
Self-assembled fluid bilayer packed
with proteins, peptides, etc.

Engineered Systems
Lipid vesicle/nanoparticle
assemblies for drug delivery)



* G.D. Bothun, Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties, *J. Nanobiotechnology*, 6, (2008).

Density Functional Theory for Fluids

- Enable modeling and simulation of a wide range of applications, including fluids at interfaces, colloidal fluids, wetting, porous media, and biological mechanisms at the cellular level
- Given external field $\mathbf{V}(\mathbf{r})$, determine structure of inhomogeneous fluid as captured by density distribution $\rho(\mathbf{r})$ via minimization of free energy functional $\Omega(\rho(\mathbf{r}))$

$$\Omega[\rho(\mathbf{r})] = F_{\text{id}} + F_{\text{hs}} + F_{\text{vdW}} + F_c + F_{\text{assoc}} + \int \rho(\mathbf{r}) [\mathbf{V}(\mathbf{r}) - \mu]$$

Coulomb
interactions Associations
(H-bonding) [Applied field]

Ideal Hard Dispersion
gas sphere attractions

Legendre transform from Canonical
to Grand Canonical ensemble

- Solve $\left(\frac{\delta \Omega}{\delta \rho(\mathbf{r})} \right)_{T,\mu} = \mathbf{0}$ with Newton-Krylov.
- Use Sandia's **Tramonto** package for complex fluid systems
 - Built upon **Trilinos** software components: trilinos.sandia.gov
 - Open source: software.sandia.gov/tramonto/

Part I

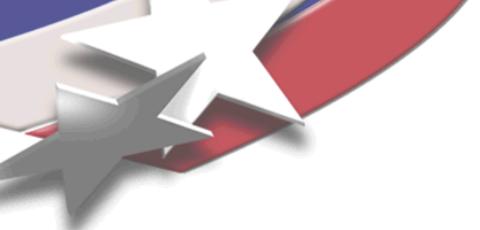
Enabling Science

Part II

Summary of Previous Work

Part III

Proposed Work



Summary of Previous Work

- ❑ Deployed and matured in Trilinos several new algorithmic capabilities consumed by the Tramonto Fluid DFT code
 - ❑ Reduce node-level memory bandwidth and size usage
- ❑ Ability to solve fluid-DFT governing equations in 3D and at large scales crucial to continued scientific progress
- ❑ Schur-complement solvers are state-of-the-art in Fluid DFTs
- ❑ Mixed-precision and precision-neutral algorithms
 - ❑ Leverage Trilinos/Tpetra (templated C++) solver stack
 - ❑ Performance and storage advantage of float over double
 - ❑ Utilize high-precision arithmetic if double inadequate
- ❑ Least-squares methods (LSQR)
 - ❑ Achieve robustness by dynamically adapting precision
 - ❑ Shield user from details of mixed-precision computation
- ❑ Block Krylov recycling methods
 - ❑ Recycling subspace information from previous solves to reduce iteration count
 - ❑ Block methods have superior convergence properties and computation to bandwidth requirements, improving processor utilization

Segregated Schur Complement Solvers*

- Resulting linear systems take the form

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

Each \mathbf{A}_{ij} has own
physics-based
block structure

- Careful ordering of unknowns makes it advantageous to solve Schur complement

$$\mathbf{Sx}_2 = \mathbf{f}$$

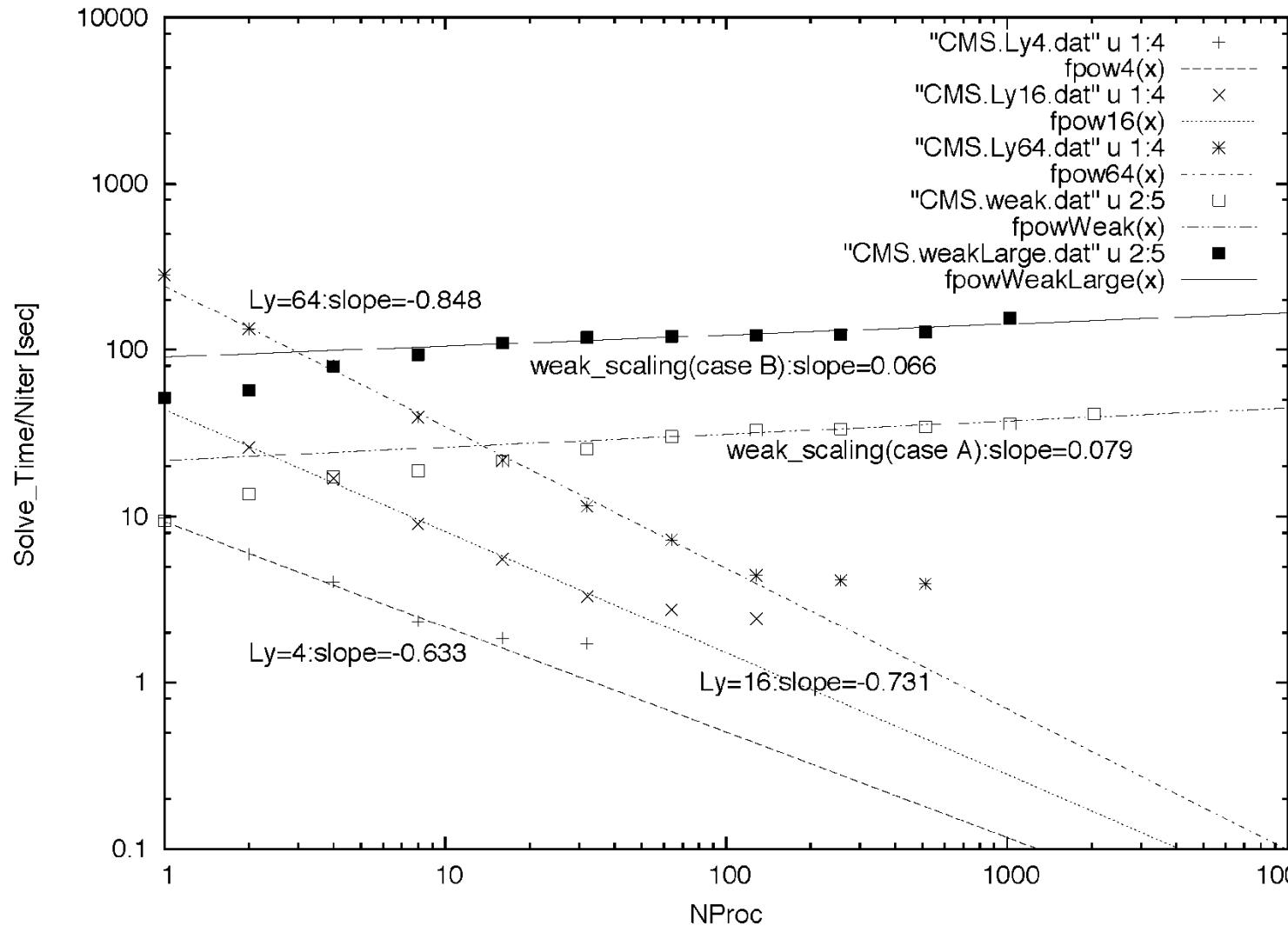
where

$$\mathbf{S} = \mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12} \quad \mathbf{f} = \mathbf{b}_2 - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{b}_1$$

- **Schur system may have up to 80% fewer dofs**
- Big win for hard sphere systems: \mathbf{A}_{11} is diagonal!
- Similar favorable structure to \mathbf{A}_{11} for polymer problems using Chandler-McCoy-Singer (CMS) DFT
- More complex structure for WJDC (Werthim, Jain, Dominik, and Chapman) DFT

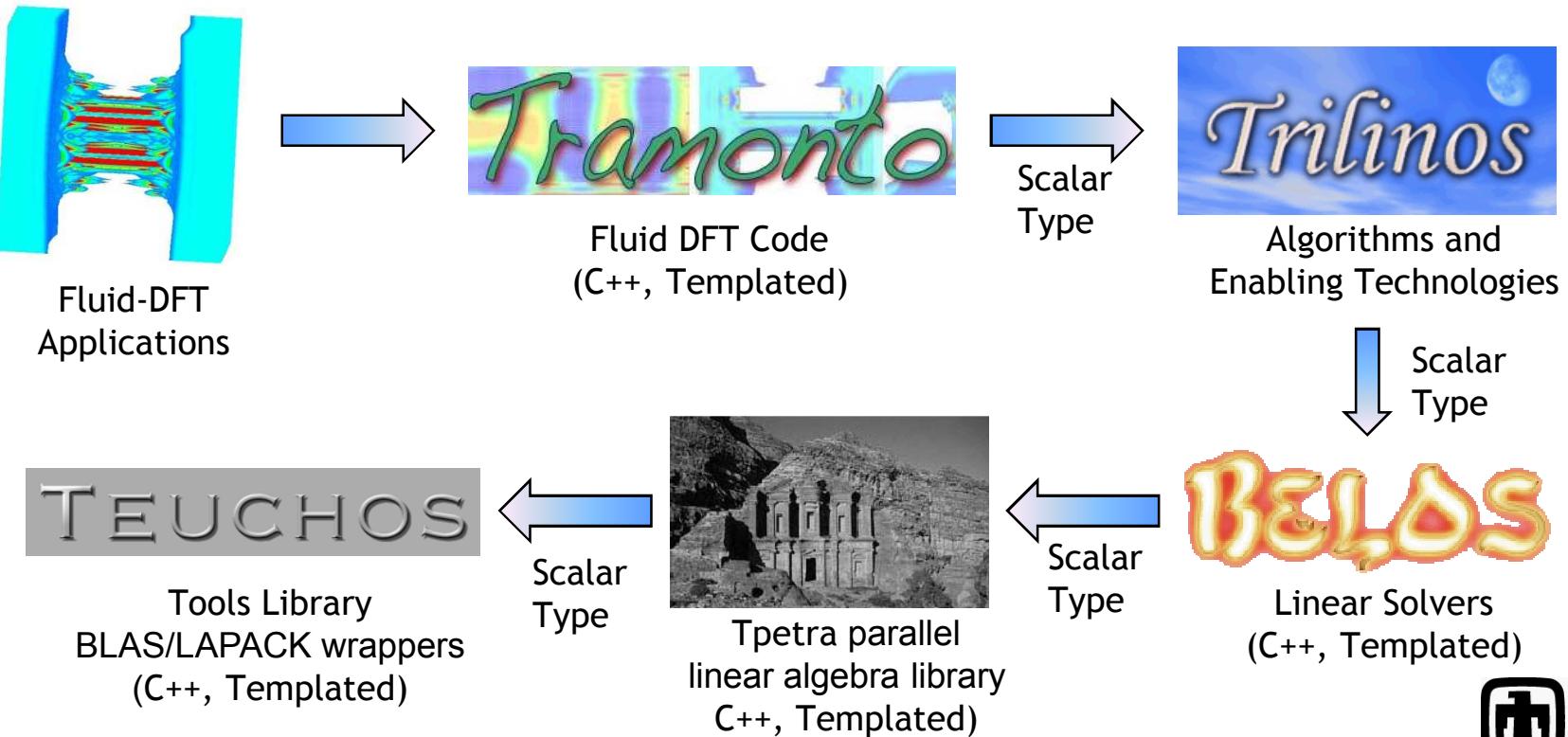
Segregated Schur Complement Solvers*

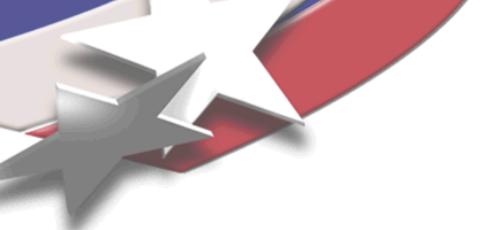
- Parallel scaling study for CMS polymer systems obtained on Jaguar (ORNL) through INCITE award



Enabling Mixed-Precision and Precision Neutral Computation

- ❑ Rewrite Tramonto solver managers to template scalar, local ordinal, and global ordinal types (templated C++)
 - ❑ Arbitrary scalar types: float, complex, dd_real, qd_real (**high precision**)
 - ❑ Utilize high-precision arithmetic if double precision inadequate
 - ❑ Avoid 4GB limit of int - **allow arbitrarily large problems** (exascale necessity)
 - ❑ Enhance performance while maintaining solution accuracy
- ❑ **Template scalar type through solver stack**





Precision Neutral Computation

- ❑ Reduce node-level memory bandwidth and size usage
 - ❑ Replace double with float
- ❑ Example polymer problem from *Tramonto* (8 linear solves inside Newton loop)

NCore	Float	Double	Speedup
1	3.753	10.970	2.923
2	1.766	4.195	2.375
3	1.203	2.086	1.734
4	1.380	2.643	1.915
5	1.211	2.460	2.031
6	1.056	2.313	2.190
7	1.036	2.057	1.986
8	1.524	2.387	1.566

LSQR

- LSQR*

- Implemented in Trilinos/Belos package (C++, templated) New!

- Krylov method for $\mathbf{Ax} = \mathbf{b}$ based upon Golub-Kahan bidiagonalization process

- Algebraically equivalent to MINRES applied to normal equations $\mathbf{A}^H \mathbf{A} \mathbf{x} = \mathbf{b}$, but with better numerical properties (especially if \mathbf{A} ill-conditioned)

- Governing equations

$$\mathbf{A}^H \mathbf{U}_k = \mathbf{V}_k \mathbf{B}_k^H \quad \text{span}(\mathbf{U}_k) = \text{K}(\mathbf{A} \mathbf{A}^H, \mathbf{b})$$

$$\mathbf{A} \mathbf{V}_k = \mathbf{U}_{k+1} \bar{\mathbf{B}}_k \quad \text{span}(\mathbf{V}_k) = \text{K}(\mathbf{A}^H \mathbf{A}, \mathbf{A}^H \mathbf{b})$$

$$\|\mathbf{b} - \mathbf{A} \mathbf{x}_k\| = \min_{\mathbf{y}} \|\mathbf{b} - \mathbf{A} \mathbf{V}_k \mathbf{y}\| = \min_{\mathbf{y}} \|\mathbf{e}_1 \beta - \bar{\mathbf{B}}_k \mathbf{y}\|$$

- Short-term recurrence; Fixed memory-footprint

- Sharp estimates of $\|\mathbf{A}\|$, $\|\mathbf{A}^{-1}\|$ -> estimate of $\text{cond}(\mathbf{A})$

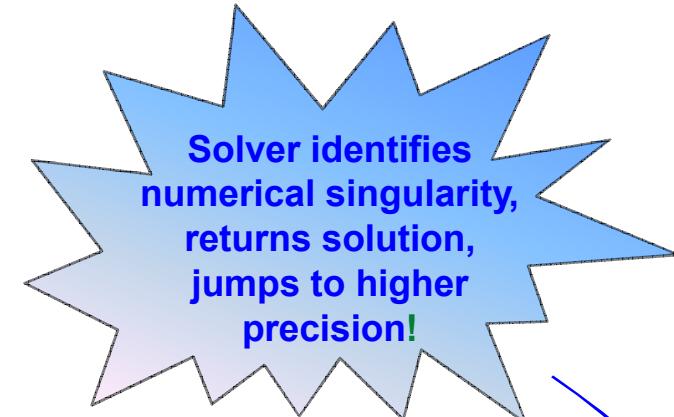
- Robustness under reduced precision

- Return least-squares solution to $\mathbf{Ax} = \mathbf{b}$ even if \mathbf{A} is numerically singular due to use of lower precision

LSQR

- Balance speed and solution accuracy by dynamically adapting solver precision

- (1) Solve $Ax=b$ in float
- (2) If $\text{condest}(A) < \text{machEpsSingle}$ return
- (3) Else solve $Ax=b$ in double
- (4) If $\text{condest}(A) < \text{machEpsDouble}$ return
- (5) Else solve $Ax=b$ in double-double
- (6) If $\text{condest}(A) < \text{machEpsDouble-Double}$ return
- (7) ...



- Shield end user from details of adaptive precision!

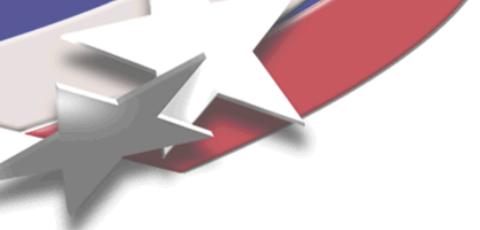
- Adaptive precision example with LSQR

- Case #1: Well-conditioned matrix (nonsingular in float)
 - Requested relative residual tolerance = $5e-4$

Scalar Type	Solve Time (s)	# Iters	CondTest	Residual Norm	Outcome
float	1.049	826	Nonsingular	4.98e-4	Success

- Case #2: Ill-conditioned matrix (singular in float, nonsingular in double)
 - Requested relative residual tolerance = $1e-6$

Scalar Type	Solve Time (s)	# Iters	CondTest	Residual Norm	Outcome
float	8.155	528	Singular	9.80e-6	Failure
double	107.568	4658	Nonsingular	9.99e-7	Success



Block Recycling Linear Solvers

- ❑ Leverage two important algorithmic techniques: **Krylov recycling + block methods**
- ❑ **Krylov subspace recycling**
 - ❑ In Krylov subspace methods, building search space is dominant cost
 - ❑ For sequences of systems, get fast convergence rate and good initial guess immediately by recycling selected search spaces from previous systems
 - ❑ Family of recycling methods: Recycling GMRES (GCRODR), recycling CG (RCG), recycling MINRES (RMINRES), recycling BiCG (RBiCG).
- ❑ **Block methods**
 - ❑ Performance advantages over single-vector methods (BLAS 1 → BLAS3, SpMV → SpMM)
 - ❑ Reduce per-core bandwidth usage
 - ❑ Introduce fictitious right-hand-sides to enhance search space

Block Recycling GMRES (BGCRODR)

Block Recycling GMRES New!

Implemented in Trilinos/Belos package (C++, templated)

(1) Solve $\mathbf{A}_1 \mathbf{X}_1 = \mathbf{B}_1$

(2) Compute k recycle vectors \mathbf{U}_k (for example, harmonic Ritz vectors)

(3) Solve next linear system $\mathbf{A}_2 \mathbf{X}_2 = \mathbf{B}_2$ by iterating orthogonally to image of \mathbf{U}_k :

$$\mathbf{A}_2 [\mathbf{U}_k \quad \mathbf{W}_m] = [\mathbf{C}_k \quad \mathbf{W}_{m+1}] \begin{bmatrix} \mathbf{I}_k & \mathbf{B}_k \\ \mathbf{0} & \mathbf{H}_m \end{bmatrix}$$

$$\mathbf{B}_k = \mathbf{C}_k^H \mathbf{A} \mathbf{W}_m \quad \mathbf{C}_k = \mathbf{A}_2 \mathbf{U}_k \quad \mathbf{C}_k^H \mathbf{C}_k = \mathbf{I}_k$$

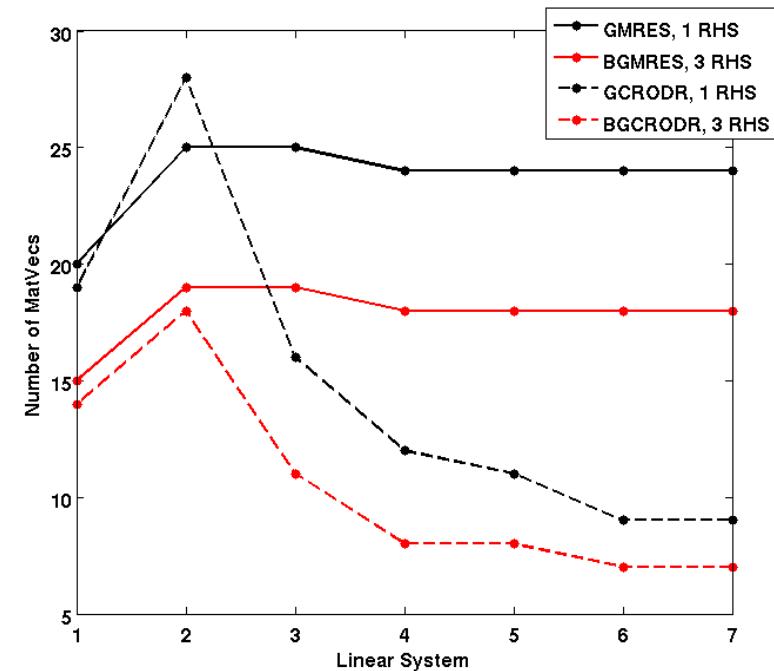
(4) Repeat

Example hard sphere problem from Tramonto

(electrostatics + attractions)

7 linear solves in from Newton loop

Savings: 60 matvecs / 36% (1 RHS),
50 matvecs / 40%, (3 RHS)



BGCRODR on
Tramonto Polymer Example

Part I

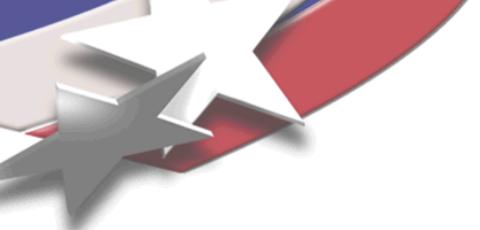
Enabling Science

Part II

Summary of Previous Work

Part III

Proposed Work



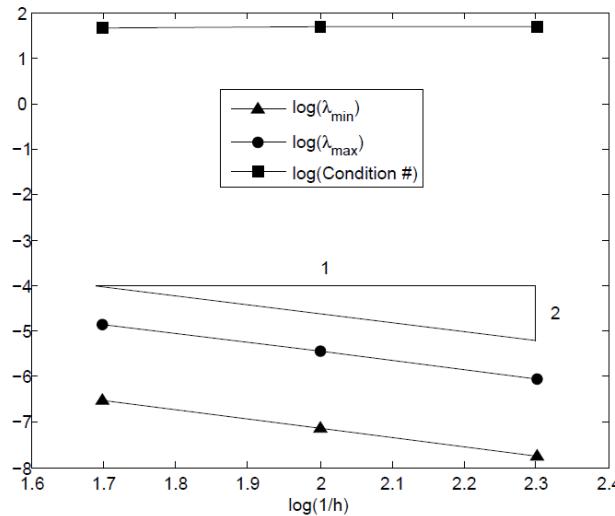
Overview of Proposed Work

- ❑ Develop new modeling capabilities for peridynamics and fluid-DFTs
 - ❑ Capability development driven by leading edge large scale application science
- ❑ Use Trilinos-based codes *Peridigm* and *Tramonto* as development vehicles
- ❑ Deploy new contributions in Trilinos

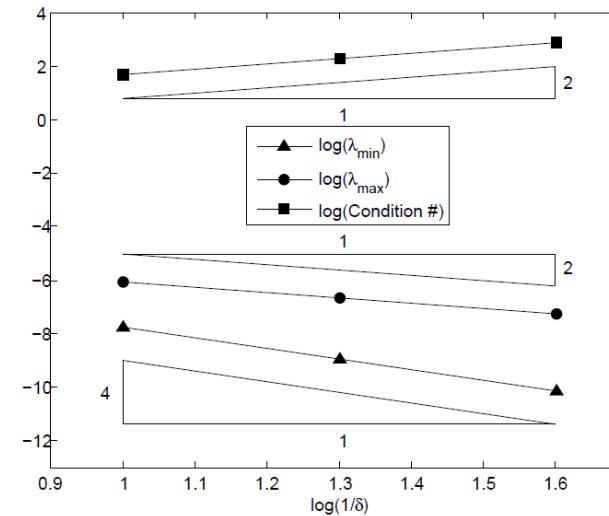
- ❑ Communication-avoiding and communication-eliminating capabilities
 - ❑ Preconditioning communication-avoiding methods
 - ❑ Communication-eliminating methods (via inexact Krylov)
 - ❑ Avoiding communication with dense operators (for Schur complements)
- ❑ Nonlocal domain decomposition
 - ❑ Develop nonlocal extension of workhorse solvers
 - ❑ Enable scalable solution of implicit, quasistatic models
- ❑ Scalable preconditioners for fluid-DFT WJDC functionals
 - ❑ Enable scalable performance for important new class of fluid-DFT functional
- ❑ Reformulate linear systems for modern hardware
 - ❑ Reformulate linear system structure to reduce memory movement and size usage

Nonlocal Domain Decomposition

- DD methods are workhorse solvers in classical computational solid mechanics
- **Goal: Extend these methods to nonlocal setting; Enable extreme scale PD**
- **Nonlocal models have different numerical properties than their local counterparts!**
 - Let δ be the maximum nonlocal interaction distance. Then*,
$$\text{cond}(K) \leq \delta^2$$
- At most weak h -dependence; No preconditioner!



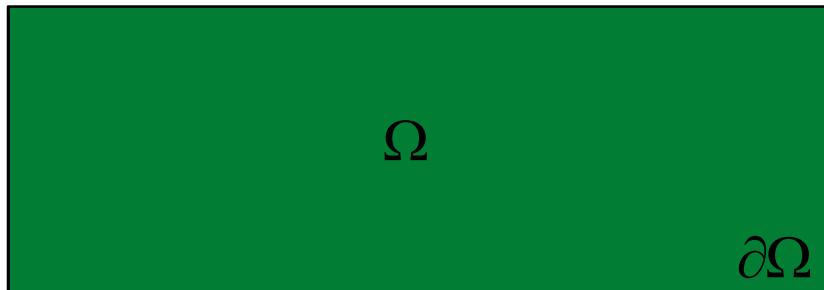
(a) Constant δ , vary h .



(b) Constant h , vary δ .

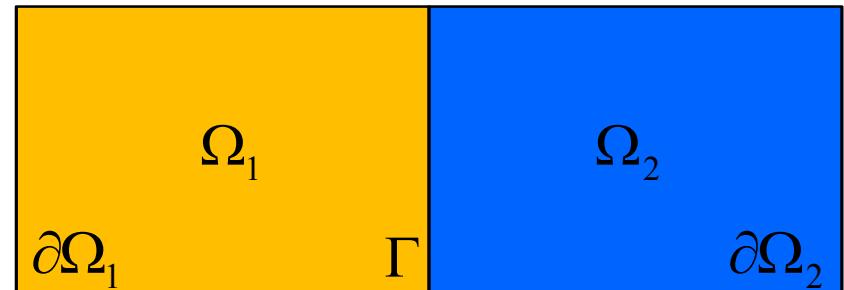
Review: Classical Substructuring

- One, two domain strong formulations



$$-\nabla^2 u(x) = f \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial\Omega$$



$$-\nabla^2 u_1(x) = f \quad \text{in } \Omega_1 \quad -\nabla^2 u_2(x) = f \quad \text{in } \Omega_2$$

$$u_1 = 0 \quad \text{on } \partial\Omega_1$$

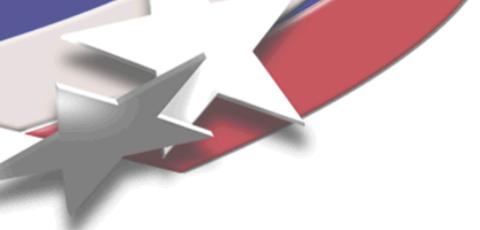
$$u_2 = 0 \quad \text{on } \partial\Omega_2$$

One domain and two domain
formulations equivalent

(assuming f sufficiently regular)

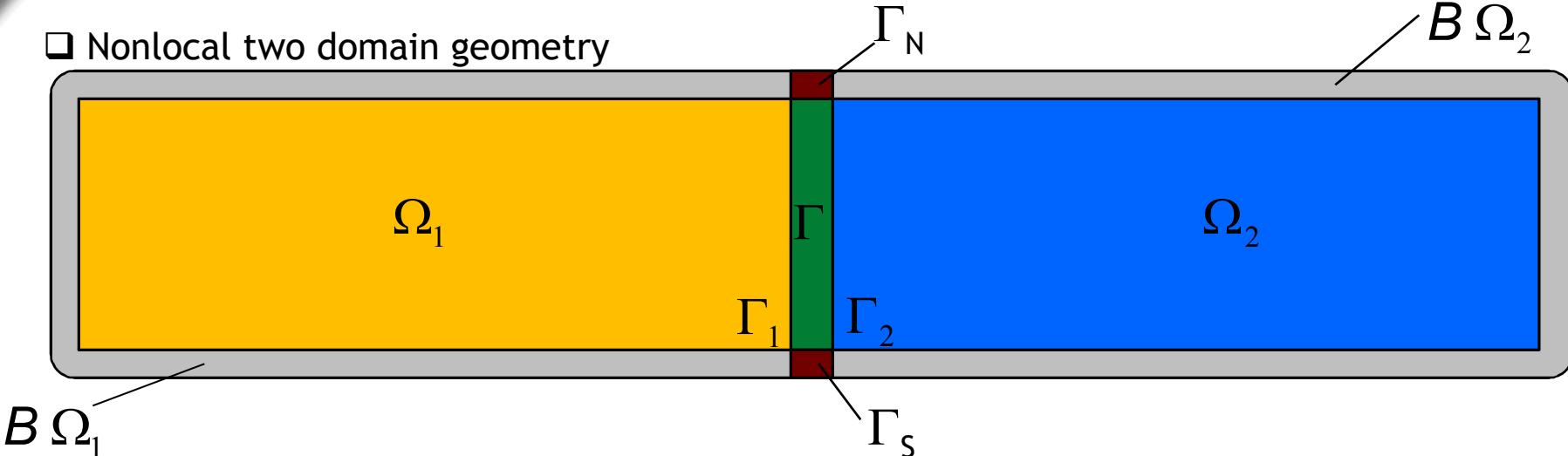
$$\begin{aligned} u_1 &= u_2 \quad \text{on } \Gamma \\ \frac{\partial u_1}{\partial n} &= -\frac{\partial u_2}{\partial n} \quad \text{on } \Gamma \end{aligned}$$

Transmission Conditions



Nonlocal Domain Decomposition

- ❑ Nonlocal two domain geometry



- ❑ Differences from classical (local) DD

- ❑ Interface region is volumetric (of width δ) to decompose domains
- ❑ Flux balance transmission condition also contains governing equation for interface region

- ❑ Extend preliminary work to 3D solids; Implement & deploy in *Peridigm/Trilinos*

- ❑ Hardware-aware hybrid solvers (MPI+threads)

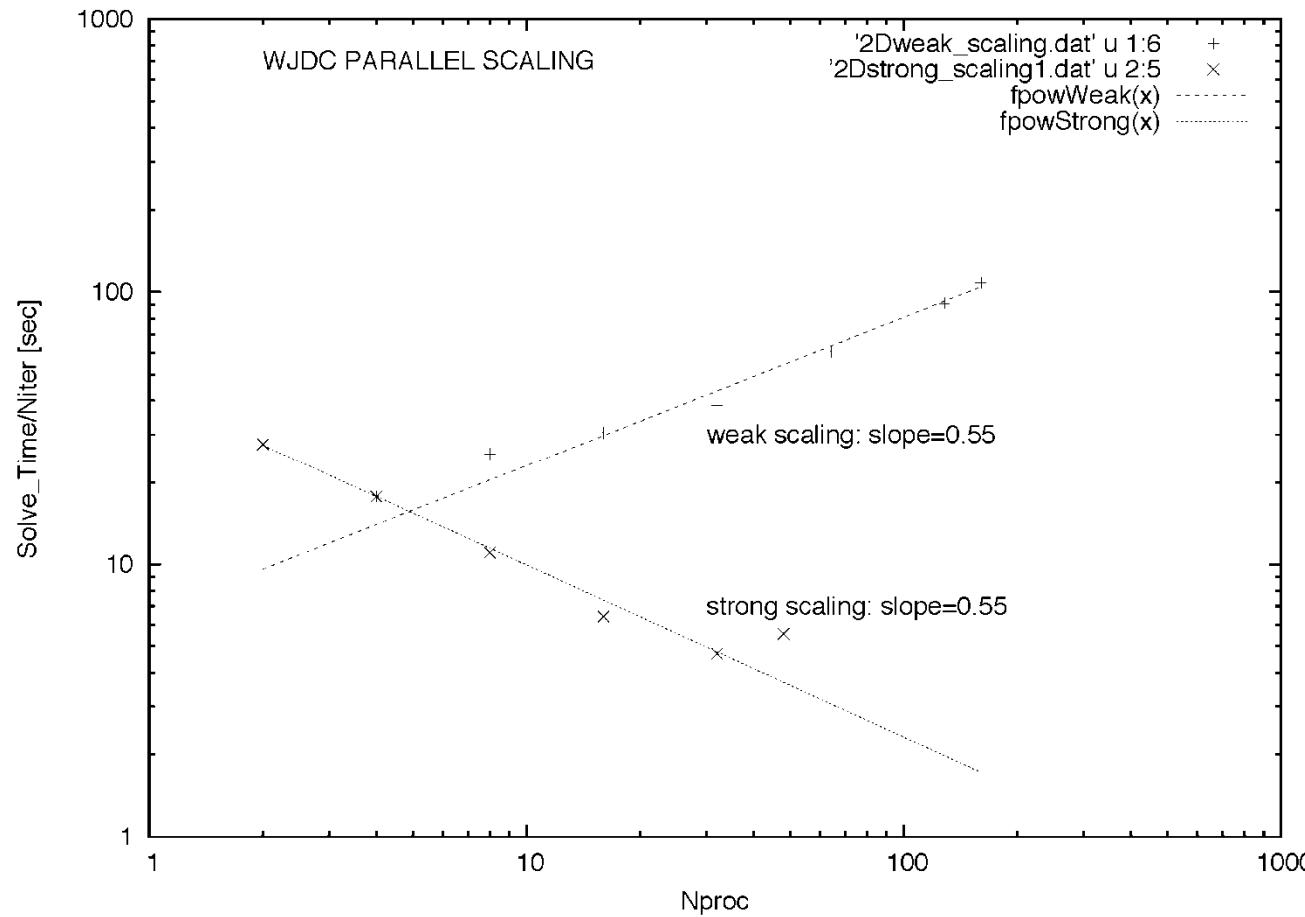
- ❑ For scalable preconditioner, $\text{cond}(K) \approx O((1+\log(H/h))^2)$
- ❑ As # cores increases, subdomain size H decreases
- ❑ Make subdomain size H scale with # nodes, not # cores!
- ❑ At node level, use (for example) multithreaded direct solver

Avoiding & Eliminating Communication

- ❑ Theory for communication-avoiding (CA) Krylov methods understood
- ❑ Production implementations in progress
- ❑ Open questions:
 - ❑ How to precondition CA methods?
 - ❑ Apply techniques of CA matvecs to preconditioner (must know structure of PC)
 - ❑ Must interleave applications of matrix and PC
 - ❑ How to improve upon CA methods? Eliminate Communication!
 - ❑ CA Krylov methods minimize communication. How to improve?
 - ❑ Eliminate some communication entirely; matvecs become inexact
 - ❑ Theory for inexact Krylov methods tells us we can drop exactness of matvecs as iteration proceeds without harming convergence of accuracy!
 - ❑ Do CA methods make sense with dense operators?
 - ❑ Schur-complement methods central to large-scale PD and Fluid-DFT solvers
 - ❑ CA methods less effective on dense operators (low surface-to-volume ratio)
 - ❑ Again exploit inexact-Krylov methods to drop communication

Scalable Preconditioners

- ❑ Polymer “WJDC” DFT functional of main interest
 - ❑ WJDC scaling study on RedSky (Sandia)
 - ❑ Current performance unacceptable
 - ❑ Improve by addressing data structure needs, physics specific-preconditioner needs



Improved Linear System Formulations

- Reformulate linear systems to reduce memory size usage and bandwidth
 - Introduce additional first-order parameters
 - Increase #DOFs, decrease #NZ, bandwidth
- Example: Rewrite linear system with peridynamic dilatation θ as first-order variable

	$[\mathbf{K}][\mathbf{x}] = [\mathbf{r}]$	$\begin{bmatrix} \mathbf{K}_x & \mathbf{K}_{x\theta} \\ \mathbf{K}_{\theta x} & \mathbf{K}_\theta \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \theta \end{bmatrix} = \begin{bmatrix} \mathbf{r}_x \\ \mathbf{r}_\theta \end{bmatrix}$
□ # DOF	N	$4/3 N$
□ Bandwidth ($\sim \delta$)	k	$5/6 k$
□ # Non-zeros	r	$7/9 r$
(all values normalized)		

Results of Efforts

- ❑ **New foundational capabilities for fracture/failure modeling and fluid-DFTs**
 - ❑ Capability development driven by leading edge large scale application science
 - ❑ Use Trilinos-based codes *Peridigm* and *Tramonto* as development vehicles
 - ❑ Deploy new contributions in Trilinos
- ❑ **Communication-avoiding and communication-eliminating capabilities**
 - ❑ Preconditioning communication-avoiding methods
 - ❑ Communication-eliminating methods (via inexact Krylov)
 - ❑ Avoiding communication with dense operators (i.e., Schur complements)
- ❑ **Nonlocal domain decomposition**
 - ❑ Develop nonlocal extension of workhorse solvers
 - ❑ Enable scalable solution of implicit, quasistatic models
- ❑ **Scalable preconditioners for fluid-DFT WJDC functionals**
 - ❑ Enable scalable performance for important new class of fluid-DFT functional
- ❑ **Reformulate linear systems for modern hardware**
 - ❑ Reformulate linear system structure to reduce memory movement and size usage