
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Enabling ExtremeEnabling Extreme--Scale ComputationScale Computation
for Emerging for Emerging DiscretizationsDiscretizations

Michael ParksMichael Parks
Sandia National LaboratoriesSandia National Laboratories

SAND2012-????P

SAND2012-2253P

 Burak Aksoylu (One-year sabbatical at Sandia Labs)
 Mathematical analysis, domain decomposition, peridynamics

 Laurie Frink (Colder Insights, Inc.)
 Computational modeling of inhomogeneous fluids

 Deaglan Halligan (Ph.D. Student, Purdue, supervised by Ahmed Sameh)
 Multiprecision computation

 Mike Heroux (Sandia Labs)
 Scalable computation, numerical linear algebra, preconditioners

 Dave Littlewood (Sandia Labs)
 Peridynamics, computational solid mechanics, material failure modeling

 Mike Parks (Sandia Labs)
 PI
 peridynamics, domain decomposition, numerical linear algebra, solvers,

preconditioners

CollaboratorsCollaborators

Part I
Enabling Science

 Descriptive Modeling: Partial Differential Equations vs. Integral Equations
 PDEs not suitable for everything (fundamentally local)
 Integral equations (IEs) more descriptive in many cases (fundamentally nonlocal)

 IEs have different linear system properties

 PDEs - Matrix density independent of system size
 IEs – Matrix density dependent upon system size

 PDEs - Inter-nodal coupling dominates
 IEs - Inter-physics coupling dominates

 PDE - Stencils based on nearest neighbors (mesh & geometry)
 IEs - Stencils based on physical constants (physics)

 PDEs - Usually a few DOFs per node
 IEs - May have large numbers of DOF per node

 Two Important Applications of IEs
 Modeling Fracture & Failure
 Modeling Nanostructured Fluids

BackgroundBackground

Coarse Mesh
(Few nonzero per row)

Fine Mesh
(Many nonzero per row)

 Equation for classical elastodynamics

 Fracture solutions treated as a pathology
 Special techniques (XFEM, cohesive zone) needed at discrete level to support desired solutions

Fracture & Failure ModelingFracture & Failure Modeling

   u(x, t)= b(x,t) = (u) 

 Equation for classical elastodynamics

 Fracture solutions treated as a pathology
 Special techniques (XFEM, cohesive zone) needed at discrete level to support desired solutions

 Peridynamics is a nonlocal extension of classical solid mechanics that permits
discontinuous solutions

 Peridynamic equation of motion (integral, nonlocal)

 Replace PDEs with integral equations
 No obstacle to integrating nonsmooth functions (fracture)
 Utilize same equation everywhere; cracks not “special”
 When bonds stretch too much, they break
 f(·, ·) is “force” function; contains constitutive model
 f = 0 for particles x,x’ more than  apart

(analogous to cutoff radius in molecular dynamics!)
 Peridynamics is “continuum form of molecular dynamics”

Fracture & Failure ModelingFracture & Failure Modeling

   u(x, t)= b(x,t) = (u) 




x

x 

H

x

x

Peridynamic Domain

Peridynamic
“bond”

    
H

u(x,t) f(u' u,x x)dV b(x,t)

Fracture & Failure ModelingFracture & Failure Modeling

 Increasing adoption of peridynamics by academia, labs, industry
 Applications: Aerospace, mining, natural gas, etc.
 Several Ph.D. dissertations on peridynamics

 Use Sandia’s Peridigm package for peridynamics
 Sandia’s primary open-source peridynamics code

 Built upon Sandia’s Trilinos Project, algorithms and

enabling technologies for the solution of large-scale,

complex multi-physics engineering and scientific problems.

(trilinos.sandia.gov)

 Notable features: Massively parallel, Exodus input/output,

multiple material blocks, explicit & implicit time integration

linear elastic, elastic-plastic, viscoelastic models,

 DAKOTA interface for UQ/optimization/calibration, etc.

(dakota.sandia.gov)

Fracture & Failure ModelingFracture & Failure Modeling

* D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006.

 Fragmenting Brittle Cylinder
 Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)*

After
(brittle model)

Before

Color
indicates
damage

After
(plastic model)

Fracture & Failure ModelingFracture & Failure Modeling

 Example simulation: Dynamic brittle fracture in glass
 Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL)

 Soda-lime glass plate (microscope slide)
 Dimensions: 3” x 1” x 0.05”
 Density: 2.44 g/cm3
 Elastic Modulus: 79.0 Gpa

 Glass microscope slide
 Dimensions: 3” x 1” x 0.05”
 Notch at top, pull on ends

Peridynamics Physical Experiment*

SetupSetup

ResultsResults

*S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967.

Strain Energy
Density

 Discretization (finest)
 Mesh spacing: 35 microns
 Approx. 82 million particles
 Time: 50 microseconds (20k timesteps)

Fracture & Failure ModelingFracture & Failure Modeling

 Dawn (LLNL): IBM BG/P System

 500 teraflops; 147,456 cores

 Part of Sequoia procurement

 20 petaflops; 1.6 million cores

 Discretization (finest)

 Mesh spacing: 35 microns

 Approx. 82 million particles

 Time: 50 microseconds (20k timesteps)

 6 hours on 65k cores

 Largest peridynamic simulations in history

Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512)

512 262,144 4096 14.417 1.000

4,096 2,097,152 4096 14.708 0.980

32,768 16,777,216 4096 15.275 0.963

DawnDawn at LLNLat LLNL

Weak Scaling ResultsWeak Scaling Results

 Structure arises from surfaces, fields, self-assembly
 Density, diffusion, and viscosity different from bulk fluid properties
 Rich phase behavior: wetting, capillary condensation, layering

NanostructuredNanostructured FluidsFluids

Biological Membranes
Self-assembled fluid bilayer packed

with proteins, peptides, etc.

Engineered Systems
Lipid vesicle/nanoparticle

assemblies for drug delivery)

* G.D. Bothun, Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties, J.
Nanobiotechnology, 6, (2008).

 Enable modeling and simulation of a wide range of applications, including fluids at
interfaces, colloidal fluids, wetting, porous media, and biological mechanisms at the
cellular level

 Given external field V(r), determine structure of inhomogeneous fluid as captured by
density distribution (r) via minimization of free energy functional ((r))

 Solve with Newton-Krylov.

 Use Sandia’s Tramonto package for complex fluid systems
 Built upon Trilinos software components: trilinos.sandia.gov
 Open source: software.sandia.gov/tramonto/

Density Functional Theory for FluidsDensity Functional Theory for Fluids



 
  T,

0
(r)

id hs vdW c assocΩ[ρ(r)]=F + F + F + F + F + ρ(r)[V(r)-μ]
Ideal
gas

Hard
sphere

Dispersion
attractions

Associations
(H-bonding)

Coulomb
interactions

Legendre transform from Canonical
to Grand Canonical ensemble

[Applied field]

Part II
Summary of Previous Work

 Deployed and matured in Trilinos several new algorithmic capabilities consumed by the
Tramonto Fluid DFT code

 Reduce node-level memory bandwidth and size usage

 Ability to solve fluid-DFT governing equations in 3D and at large scales crucial to
continued scientific progress

 Schur-complement solvers are state-of-the-art in Fluid DFTs

 Mixed-precision and precision-neutral algorithms
 Leverage Trilinos/Tpetra (templated C++) solver stack
 Performance and storage advantage of float over double
 Utilize high-precision arithmetic if double inadequate

 Least-squares methods (LSQR)
 Achieve robustness by dynamically adapting precision
 Shield user from details of mixed-precision computation

 Block Krylov recycling methods
 Recycling subspace information from previous solves to reduce iteration count
 Block methods have superior convergence properties and computation to

bandwidth requirements, improving processor utilization

Summary of Previous WorkSummary of Previous Work

 Resulting linear systems take the form

 Careful ordering of unknowns makes it advantageous to solve Schur complement

where

 Schur system may have up to 80% fewer dofs
 Big win for hard sphere systems: A11 is diagonal!
 Similar favorable structure to A11 for polymer problems using

Chandler-McCoy-Singer (CMS) DFT
 More complex structure for WJDC (Werthim, Jain, Dominik, and Chapman) DFT

Segregated Segregated SchurSchur Complement SolversComplement Solvers**

     
     

     

11 12 1 1

21 22 2 2

A A x b

A A x b

Each Aij has own
physics-based
block structure

2Sx f

  1
22 21 11 12S A A A A   1

2 21 11 1f b A A b

* M.A. Heroux, A.G. Salinger, and L.J.D. Frink, Parallel segregated Schur complement methods for fluid density functional theories, SIAM J. Sci.
Comput., 29, (2007). pp. 1526-1535.

 Parallel scaling study for CMS polymer systems obtained on Jaguar (ORNL) through
INCITE award

Segregated Segregated SchurSchur Complement SolversComplement Solvers**

 Rewrite Tramonto solver managers to template scalar, local ordinal, and global
ordinal types (templated C++)

 Arbitrary scalar types: float, complex, dd_real, qd_real (high precision)
 Utilize high-precision arithmetic if double precision inadequate
 Avoid 4GB limit of int – allow arbitrarily large problems (exascale necessity)
 Enhance performance while maintaining solution accuracy

 Template scalar type through solver stack

Enabling MixedEnabling Mixed--Precision and Precision and
Precision Neutral ComputationPrecision Neutral Computation

Fluid-DFT
Applications

Fluid DFT Code
(C++, Templated)

Algorithms and
Enabling Technologies

Linear Solvers
(C++, Templated)Tpetra parallel

linear algebra library
C++, Templated)

Tools Library
BLAS/LAPACK wrappers

(C++, Templated)

Scalar
Type

Scalar
Type

Scalar
Type

Scalar
Type

http://i.cooltext.com/d.php?renderid=575283895&extension=png

 Reduce node-level memory bandwidth and size usage
 Replace double with float

 Example polymer problem from Tramonto (8 linear solves inside Newton loop)

Precision Neutral ComputationPrecision Neutral Computation

NCore Float Double Speedup

1 3.753 10.970 2.923

2 1.766 4.195 2.375

3 1.203 2.086 1.734

4 1.380 2.643 1.915

5 1.211 2.460 2.031

6 1.056 2.313 2.190

7 1.036 2.057 1.986

8 1.524 2.387 1.566

 LSQR*
 Implemented in Trilinos/Belos package (C++, templated)

 Krylov method for Ax=b based upon Golub-Kahan bidiagonalization process
 Algebraically equivalent to MINRES applied to normal equations AHAx=b, but with

better numerical properties (especially if A ill-conditioned)

 Governing equations

 Short-term recurrence; Fixed memory-footprint
 Sharp estimates of �A�, �A-1� -> estimate of cond(A)

 Robustness under reduced precision
 Return least-squares solution to Ax=b even is A numerically singular due to use

of lower precision

LSQRLSQR

H H
k k kA U = V B

kk k+1AV =U B

H
kspan(U)= (AA ,b)K

H H
kspan(V)= (A A,A b)K

 kk k 1
y y

b- Ax =min b- AV y =min e -B y

* C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, TOMS 8(1), 43-71 (1982).

 Balance speed and solution accuracy by dynamically adapting solver precision
(1) Solve Ax=b in float
(2) If condest(A) < machEpsSingle return
(3) Else solve Ax=b in double
(4) If condest(A) < machEpsDouble return
(5) Else solve Ax=b in double-double
(6) If condest(A) < machEpsDouble-Double return
(7) …

 Shield end user from details of adaptive precision!
 Adaptive precision example with LSQR

 Case #1: Well-conditioned matrix (nonsingular in float)
 Requested relative residual tolerance = 5e-4

 Case #2: Ill-conditioned matrix (singular in float, nonsingular in double)
 Requested relative residual tolerance = 1e-6

LSQRLSQR

Scalar Type Solve Time (s) # Iters CondTest Residual Norm Outcome

float 1.049 826 Nonsingular 4.98e-4 Success

Scalar Type Solve Time (s) # Iters CondTest Residual Norm Outcome

float 8.155 528 Singular 9.80e-6 Failure

double 107.568 4658 Nonsingular 9.99e-7 Success

Solver identifies
numerical singularity,

returns solution,
jumps to higher

precision!

 Leverage two important algorithmic techniques: Krylov recycling + block methods

 Krylov subspace recycling
 In Krylov subspace methods, building search space is dominant cost
 For sequences of systems, get fast convergence rate and good initial guess

immediately by recycling selected search spaces from previous systems
 Family of recycling methods: Recycling GMRES (GCRODR), recycling CG (RCG),

recycling MINRES (RMINRES), recycling BiCG (RBiCG).

 Block methods
 Performance advantages over single-vector methods

(BLAS 1  BLAS3, SpMV  SpMM)
 Reduce per-core bandwidth usage
 Introduce fictitious right-hand-sides to enhance search space

Block Recycling Linear SolversBlock Recycling Linear Solvers

 Block Recycling GMRES
 Implemented in Trilinos/Belos package (C++, templated)

(1) Solve A1X1=B1

(2) Compute k recycle vectors Uk (for example, harmonic Ritz vectors)
(3) Solve next linear system A2X2=B2 by iterating orthogonally to image of Uk:

(4) Repeat

 Example hard sphere problem from Tramonto
(electrostatics + attractions)

 7 linear solves in from Newton loop
 Savings: 60 matvecs / 36% (1 RHS),

50 matvecs / 40%, (3 RHS)

Block Recycling GMRES (BGCRODR)Block Recycling GMRES (BGCRODR)

BGCRODR on
Tramonto Polymer Example

   
 
 
 

k k

2 k m k m+1

m

I B
A U W = C W

0 H

H
k k mB =C AW k 2 kC = A U H

k k kC C =I

Part I
Enabling Science

Part II
Summary of Previous Work

Part III
Proposed Work

 Develop new modeling capabilities for peridynamics and fluid-DFTs
 Capability development driven by leading edge large scale application science

 Use Trilinos-based codes Peridigm and Tramonto as development vehicles
 Deploy new contributions in Trilinos

 Communication-avoiding and communication-eliminating capabilities
 Preconditioning communication-avoiding methods
 Communication-eliminating methods (via inexact Krylov)
 Avoiding communication with dense operators (for Schur complements)

 Nonlocal domain decomposition
 Develop nonlocal extension of workhorse solvers
 Enable scalable solution of implicit, quasistatic models

 Scalable preconditioners for fluid-DFT WJDC functionals
 Enable scalable performance for important new class of fluid-DFT functional

 Reformulate linear systems for modern hardware
 Reformulate linear system structure to reduce memory movement

and size usage

Overview of Proposed WorkOverview of Proposed Work

 DD methods are workhorse solvers in classical computational solid mechanics
 Goal: Extend these methods to nonlocal setting; Enable extreme scale PD

 Nonlocal models have different numerical properties than their local counterparts!
 Let  be the maximum nonlocal interaction distance. Then*,

 At most weak h-dependence; No preconditioner!

Nonlocal Domain DecompositionNonlocal Domain Decomposition

2cond(K)  

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and
Computation, 217, pp. 6498-6515, 2011.

 One, two domain strong formulations

Review: Classical Review: Classical SubstructuringSubstructuring

2 



u(x) = f in

u = 0 on

2
1 1

1 1

 



u (x) = f in

u = 0 on

2
2 2

2 2

 



u (x) = f in

u = 0 on





1 2

1 2

1 2

1 2



 
  

 

u = u on

u u
 on

n n

Transmission Conditions

One domain and two domain
formulations equivalent

(assuming f sufficiently regular)

 Nonlocal two domain geometry

 Differences from classical (local) DD
 Interface region is volumetric (of width ) to decompose domains
 Flux balance transmission condition also contains governing equation for interface

region

 Extend preliminary work to 3D solids; Implement & deploy in Peridigm/Trilinos
 Hardware-aware hybrid solvers (MPI+threads)

 For scalable preconditioner, cond(K)  O((1+log(H/h))2)
 As # cores increases, subdomain size H decreases
 Make subdomain size H scale with # nodes, not # cores!
 At node level, use (for example) multithreaded direct solver

Nonlocal Domain DecompositionNonlocal Domain Decomposition

1 2

1B

1

2B

2



N

S

 Theory for communication-avoiding (CA) Krylov methods understood
 Production implementations in progress

 Open questions:

 How to precondition CA methods?
 Apply techniques of CA matvecs to preconditioner (must know structure of PC)
 Must interleave applications of matrix and PC

 How to improve upon CA methods? Eliminate Communication!
 CA Krylov methods minimize communication. How to improve?
 Eliminate some communication entirely; matvecs become inexact
 Theory for inexact Krylov methods tells us we can drop exactness of matvecs as

iteration proceeds without harming convergence of accuracy!

 Do CA methods make sense with dense operators?
 Schur-complement methods central to large-scale PD and Fluid-DFT solvers
 CA methods less effective on dense operators (low surface-to-volume ratio)
 Again exploit inexact-Krylov methods to drop communication

Avoiding & Eliminating CommunicationAvoiding & Eliminating Communication

 Polymer “WJDC” DFT functional of main interest
 WJDC scaling study on RedSky (Sandia)
 Current performance unacceptable
 Improve by addressing data structure needs, physics specific-preconditioner needs

Scalable Scalable PreconditionersPreconditioners

 Reformulate linear systems to reduce memory size usage and bandwidth
 Introduce additional first-order parameters
 Increase #DOFs, decrease #NZ, bandwidth

 Example: Rewrite linear system with peridynamic dilatation  as first-order variable

 # DOF N 4/3 N

 Bandwidth k 5/6 k
(~ )

 # Non-zeros r 7/9 r

(all values normalized)

Improved Linear System FormulationsImproved Linear System Formulations

x x x

x

K K rx

K K r


  

    
        

    K x r

 New foundational capabilities for fracture/failure modeling and fluid-DFTs
 Capability development driven by leading edge large scale application science
 Use Trilinos-based codes Peridigm and Tramonto as development vehicles
 Deploy new contributions in Trilinos

 Communication-avoiding and communication-eliminating capabilities
 Preconditioning communication-avoiding methods
 Communication-eliminating methods (via inexact Krylov)
 Avoiding communication with dense operators (i.e., Schur complements)

 Nonlocal domain decomposition
 Develop nonlocal extension of workhorse solvers
 Enable scalable solution of implicit, quasistatic models

 Scalable preconditioners for fluid-DFT WJDC functionals
 Enable scalable performance for important new class of fluid-DFT functional

 Reformulate linear systems for modern hardware
 Reformulate linear system structure to reduce memory movement and size usage

Results of EffortsResults of Efforts

