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Adult Hippocampal Neurogenesis:
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The dentate gyrus and hippocampus

* First layer of classic L
trisynaptic loop

e Essentially feed-forward
network (EC -> DG -> CA3)
with some local feedback
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Dentate Gyrus
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What does the dentate gyrus do?

Neuroscience 154 (2008) 1155-1172

FOREFRONT REVIEW

WHAT IS THE MAMMALIAN DENTATE GYRUS GOOD FOR?
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The DG as an unsupervised CA3 instructor
Separate storage and retrieval phases
Toward localizing pattern separation in the DG
Evidence for network mechanisms of pattern separation
A need for new models in the spatial domain
The potential value of adult neurogenesis
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Unique properties of young neurons: a critical period?
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Dentate Gyrus

* First layer of classic
trisynaptic loop

* Essentially feed-
forward network (EC
-> DG -> CA3) with
some local feedback

Deng, Aimone, and Gage
Nature Reviews Neuroscience; 2010



What does DG do?

* Pattern separation

— Sparse, orthogonal
representations of
cortical inputs

— Powerful projects drive

encoding in CA3

* Conjunctive Encoding

— Multimodal
representation of
diverse cortical inputs
(spatial, objects,
contextual, etc)

Overlapping EC inputs are encoded separately by the DG
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Associative memories formed in CA3 do not
interfere with one another

Deng, Aimone, and Gage
Nature Reviews Neuroscience; 2010



Readout of model: pattern separation
in DG

Similar EC inputs

DEH"II:EII:E * rus

! |

Separated DG outputs

* Measure pattern separation
in model by comparing
similarity between inputs and
outputs

— Normalized dot product

NDP(x;,x;) =

||x |

Activity Levels and Pattern Separation
Rat-Sized DG, Monosynaptic CAY, and EC
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O’Reilly & McClelland, Hippocampus, 1994




What is pattern separation?

cell 2 cell 1 H
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cell 6 “ cell 5 cell 5 *

Context 1

Animal exposed to
object in one location.

cell 5

Subset of GCs show multiple
place fields in one context.

Context 2

Animal must be
able to discriminate
old location from
nearby foil.

Same subset of GCs show different
place fields in new context.

Sparse set of GCs represent

one context.
Threshold Mossy fiber output only targets

¢ I'IIII """"" sparse set of downstream CA3 neurons

0 0 0 0 ‘ l Sparse set of CA3 neurons
now selected to encode
cortical inputs.

High inhibition in DG limits firing
to only most excited GCs. A

Context 2

Orthogonal set of GCs represent
different context.



What is adult neurogenesis?

* Robust process

— Thousands of new
neurons integrate
into dentate gyrus
monthly




What is adult neurogenesis?

* Robust process
* Highly regulated

o

— Both proliferation
and survival
controlled
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— Activity, enrichment,
stress, diet, aging,
disease...

van Praag et al., 1999



What is adult neurogenesis?

Robust process
Highly regulated
Extended
maturation

— Several weeks to
begin integrating
into circuit

— Still “immature”
several months later
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What is adult neurogenesis?

Robust process
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maturation

Positioned to make |,
an impact

5
E Gyrus
— Dentate gyrus is
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initial stage of i

h | p p oCcCam p us Incremental learning «———» One-shot learning

— Network amplifies
Aimone, Deng and Gage
effect of new neurons Trends in Cog. Sci., 2010


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904863/figure/F5/

Maturation process of new neurons
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Aimone, Deng, and Gage
Trendsin Cog. Sci. 2010



Adult Neurogenesis: Two Big Questions

e What does it do for
cognition?

e Relevant in humans?



Summary of earlier modeling work

° Youngneuronsare ol OIS0 - HI0EIe080
transiently more active

than mature neurons TR 0% 04 MO
— Impair acute pattern e @ OO @

separation?

e Different neurons active
at different time yield
temporal separation

 Maturation of young
neurons allows Flhee
“specialization” of DG
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Aimone et al., Neuron 2009



Spectrum of modeling:
the added value of complexity

e Abstract

— Assumptions in design and dynamics are very clear
— Observed behaviors are easy to attribute to specific
design principals
— Relatively straightforward to do
* High Fidelity
— Incorporates features whose importance is yet unclear
— Highlights where biology data is strong and weak
— Can reveal behaviors that were not a priori considered
— Results can often be directly compared to biology



Limitations of past modeling work

* Between abstract and -
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Modeling considerations

* Neuroanatomy

— Circuit (principal neurons,
interneurons, and how they are
connected)

— Maturation of new neurons

courtesy Chunmei Zhao

25 dpi 49 dpi

* Dynamics
— Every neuron has unique dynamics

— Neurogenesis results in many
different forms of GC dynamics

e Behavior

— In vivo and immediate early gene
studies of neuron behavior

— Behavior studies in lesion or
knockdown animals

uclei (%)

DTR positive ni

Arruda-Carvalho et al., 2011



Immature and mature neurons encode
information differently

A Immature neurons B Mature neurons

A ootm Aa 9 O4m

Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content

Aimone, Deng and Gage
Neuron; 2011



Aimone, Deng and Gage
Neuron; 2011

Mixed coding scheme in DG is
potentially very powerful

Memories encoded by Memories rely on

high and low information neurons: low information neurons:
Okay without neurogenesis

.'time

A 0
___A IR

*.__ T e

e _,.

Maturation of neurons allows
memories to now be encoded
by high information neurons

Impaired without neurogenesis.

Dentate Gyrus performs sparse
coding for episodic memories

Mature neurons are tightly tuned
to specific features
* Not all events will activate
mature neurons

Immature neurons are broadly
tuned
» All events will activate some
immature neurons

Neurons mature to be specialized
to those events later
* Coding range of network gets
more sophisticated over time



Realistic scale model

(a)
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Realistic connectivity and dynamics

mEC o IEC @ septal Ach

L (nicotinic)

e ¢ Physiology data
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Neurogenesis Process
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Activity of network — EC Inputs
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Timestep

Activity of network — GC Outputs
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Timestep
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Lack of neurogenesis in large networks
correlates with much lower activity

Average GC Firing Rate
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Number of GCs

* Neurogenesis networks

show activity to novel
information at much
higher scales

 As we approach human

scales, mature neurons
appear essentially silent
in response to novel
information

Signal (immature) to
noise (mature) is
amplified in larger
networks
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Fraction of Total EC Variance
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Metrics for understanding NG model

Pattern
Separation?
[ 7 TOY SRR * |
L 5L B blyge'y!
(*Ter=r VoL

Distinct sparse code
for similar objects

74

What is the

DG doing?
Conjunctive
Encoding?
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Objects and space
combined code

Pairwize correlation / dot product
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Information Content
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Independent variance
P = Ope X Ky

How to
combine over
observations?

How to
combine over
neurons?



Neurogenesis decreases
compressibility and increases total
representation
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Environmental commitment of
adult-born neurons

Event 1 Event 1 rgmernberer._i
- [ : s
DG[ \x\ f\/\\/.__, \; ¢ 74 / \/ : Q
WAV AV AT AP AT AT / J\/‘v' J
\>\>v\)\/\)\>\> QQ\}
il @ O @0 Q;; 2909 mun @0

Aimone et al., Neuron 2009

Hypothesis: The specialization of young neurons to the environments
present during maturation allows improved encoding of new memories that
relate to previously experienced contexts.



Increasing EC-GC weights impairs
separation without improving coding
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Increased size networks need neurogenesis
for balancing separability and
representations
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Abstract model: scaling neuron sizes
vields neurogenesis effect

Initialize
network

rvvy 11 1 1 1
rvvy 1 1 1 1 1]

100
25

Train to
unique inputs

R

Add synapses to
existing neurons

Add new neurons

tttttt

Present trained and
novel inputs
to final network

Fvve 11111/
rvvy 1 1 1 1 1

5000 100
1250 25

Li, Aimone et al., PNAS 2012



Neurons maturing to large number of synapses
contain high information about maturation cues

Novel Inputs Trained Inputs
100 05 100 g 05
80 0.4 80 0.4
E— 60 0.3 E’ 60 0.3
3 k=
o 40 02 E 40 0.2
= o
L
20 Only immature neurons o0 20§  Mature neurons can - 0.1
0 encode novel mformatlon encode familiar information
0 0 — g
100 2000 4000 5000 5000 S000 100 2000 4000 S000 5000 5000
Number of Excitatory Synapses Number of Excitatory Synapses

Li, Aimone et al., PNAS 2012



High synapse neurons have higher
information content

Information content
(bits / spike)

u 2 & ™ o M
0 1000 2000 3000 4000 5000
Number of Excitatory Synapses

Li, Aimone et al., PNAS 2012



Simple example of
scaling dimensionality

* Simple binary
threshold neuron

* Input are many
different synapses

* Cell “fires” if inputs
surpass a threshold

— Threshold is typically
many inputs active at
the same time

YV Y VE
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L]
a
L
14

Output

Threshold

Silent

Spike

Input



Noise affects lower
dimensional neurons

200 synapses
25% (50) active 1

required to fire
20% (40) active on

005

average 8% of
£5
25
a2 005
&
2000 synapses o
25% (500) active
required to fire . - o . . oy
20% (400) active on Time step

average
Li, Aimone, et al., PNAS 2012



Some biological evidence

a b -

Rangel et al., submitted




Non-neurogenesis animals have more
selective neurons
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What about timing?

When neurons fire is often as
important as how often they fire

* Sensory systems
* Synchrony in responses

* Motor systems
e Dynamical representation of
cognitive state

* Hippocampal phase precession
 “When” within an oscillation
corresponds to “where” within
the place field

(a) (b) Rate code

Stimulus e i | Il
FEILL 0l l 11

Encading window . i EERIIE ' |

[ | | NRINY | Lr, L il L
Time
(c) Temporal code: latency code (d) Temporal code: interspike intervals
[ [ [ [l
| I 111 In
| | [N 11
U I 1 IIPY L

Temperal code: phase of firing

(&)

TRENDS in Newrosclences

Panzeri et al., TINS, 2010




Tight tuning of GCs yields tight

temporal tuning?

LA A

0.5 1 0 piz  pi iz 0 piz  pi spiiz 0
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population activity cycle



Broad tuning of GCs yields broad
temporal tuning?
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Rangel et al., submitted



Some preliminary evidence

TMZ and control rats with in vivo DG
recordings

Compare spikes of isolated GCs to
local theta rhythm
* Prediction: young GCs would be
phase incoherent; mature GCs
would be phase coherent

TMZ animals show higher density of

phase coherent (putative mature)
neurons

Control animals show mix of phase
coherent (putative mature) and
incoherent (putative young)
neurons.

Proportion of Cells

All
n=58

Local Field Potential Reference

Control

™Z

of Cells

Proportion

Rangel et al., submitted



What temporal new neuron coding
could mean

W

¥

Potential Impacts

Young neurons “prime” subset
of CA3 population to entrain to
inputs

Synchronization of mature
neurons to improve CA3
attractor formation

Young neurons increase
separation by activating feed-
forward (in CA3) and feedback
inhibition (in DG)

o—. o——7 : 7
'S \\// \\// i
>
Time
= IR
A
A
e A
A A A A

Rangel et al., submitted



Back to humans...

A% 1998 Nature America Inc. - http://medicine.nature.com

ARTICLES

Neurogenesis in the adult human hippocampus

Dentate GCL
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“Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla,
California 92037, USA
C dence should be addi dtoF.H.G.

Are there enough?

Model data suggests that fewer are
necessary as networks get progressively
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Looking at neurogenesis in humans

* Only a few correlative
methods

— CBV MRI measurements E‘; i T
— Other MRI signatures ; d d u

— Postmortem histology

* Conditions with likely
neurogenesis decreases

b~ s‘ ‘
' -
— Aging

— Depression

-
5 -
w
Hippocampa

— Chemotherapy Pereira et al., PNAS 2007



What human tasks would be affected?
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Yassa et al., PNAS 2011



Conclusions

e Computational models are
increasingly able to overcome
scaling challenges

* Human neurogenesis is likely
relevant, question is now
what tasks are best to
examine it

e “Memory resolution” lens is
useful for describing DG and
neurogenesis function

These kids today! They think
everything is worth responding to.
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