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The Need for Removable Encapsulation

 Encapsulation of Printed Circuit 
Boards (PCB) provides mechanical 
integrity, voltage isolation, and 
isolation from moisture, dust, …

 Traditional encapsulation cannot be 
removed without damaging PCBs

 Reworking/upgrading components is not 
cost effective

 In-service evaluation of components for 
lifetime assessment is not feasible

 A removable encapsulation material 
is needed
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Removable Encapsulation Is Used at Sandia 
to Support Stockpile Stewardship

 Basic characterization and simple 
experimental demonstrations exist at 
Sandia and in the literature. 

 Design/use is driven by experiment

 The effects of removability on the 
mechanical behavior of such 
materials during their service 
lifetimes have not been evaluated.
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Mcelhanon, et al. App. Polymer Sci., 2002

A foam fully encapsulating a PCB is non-
destructively removed in the presence of a 

solvent at 40 Celcius.



Removable Network Polymer Basics

“Removability” arises from the cleavage 
and reformation of function groups 
along the polymer chain.

At Sandia, the thermally-activated 
Diels-Alder (DA) reaction is used to 
break and reform cross-links or chains.

When a sufficient number of cross-links 
break, the material behaves as a liquid 
(and can be removed)

As cross-links break and reform, the 
network relaxes  the permanent 
shape of the material changes in time…

*Mcelhanon, Russick, Aubert, Science Matters SAND 2010
**Kloxin, et al. Macromolecules, 2010 d

Diels-Alder Thermal Chemistry*

Network Scission/Reformation Mechanism
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Network Architecture**
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Current Technology Gaps

 No theoretical/computational description of the effects of 
reversible chemistry on the performance of removable 
encapsulation in service

 Reversible chemistry effects on cure shrinkage stresses 
during encapsulation cure have not been studied

 No capability to predict behavior during removal
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Pros vs. Cons



Our Approach And Goals

Develop a capability to predict the thermal-chemical-mechanical behavior 
of removable encapsulation to support Sandia’s NW mission

Phase I: Multi-Physics Model Development 

 Diels-Alder Thermal Chemistry 

 Thermodynamics consistent constitutive equation

Phase II: Investigate the Effects of Network Evolution in Encapsulation 
Scenarios

 Compare the behaviors of removable vs. standard thermosets in weapon 
applications

 Improve the technology

 Optimize the current design to take advantage of the removable chemistry

 Provide input/direction for future designs
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Diels Alder Thermal-Chemistry: 
Equilibrium

 The DA equilibrium reaction 
constant is temperature 
dependent and is set by the 
associated Gibbs free energy  

 The transition solid to liquid 
polymer behavior is set by 
[F], [M], and [F]/[M]
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*Mcelhanon, Russick, Aubert, Science Matters SAND 2010
**Adzima, et al. Macromolecules, 2008
***Vitrification prevents reaching eq. extent of reaction

Diels-Alder Thermal Chemistry*
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Extent of Reaction ([A]/[A]max)



Diels Alder Thermal-Chemistry: Kinetics

 Assume second order thermal 
chemical kinetics

 Conservation statement of 
chemical species

 Thermally activated forward and 
reverse reaction rates
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DA Kinetics Model Summary



Constitutive Model: Free Energy
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 Focus on rubbery (elastomeric) state: 

 Equilibrium Helmholtz free energy 
associated with elastic deformation

 Shear modulus dependence on       and 

 Equilibrium bulk modulus assumed 
constant

 H,T, x, 

T x

  0 x  xgel kBoltzmannT

Logarithmic Strain

Absolute Temperature

Stress-Free Strain

Extent of Reaction

Thermodynamic Variables

H
T



x

Tglass  T  Tgel

Shear modulus/free 
energy depend linearly on 

the cross-link density



Constitutive Model: Internal State 
Variable Evolution Rules

 Evolution of the stress-free shape:

 Forward reaction increases the shear modulus:

 Reverse reaction decreases the shear modulus:
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 



Hdev dev 

 
0Kkr

2
[Amax ] 1 x 2

if x  xgel

  0kr x if x  xgel

Adding/removing cross-links 
changes the permanent shape 



Current Results: Demonstration of 
Isothermal Stress Relaxation
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Normalized Axial Stress Permanent Axial Deformation

 t 

T        

T       permanent 

Adding/removing cross-links changes 
the permanent shape 



Current Results: Validation Against Dynamic 
Mechanical Analysis Data

Storage Modulus

Onset of 
Viscoelasticity

Chemical 
Relaxation Regime 
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 Examine the dissipation 
behavior of cyclically loaded 
specimens

No Fitting Parameters in 
the Model

 t   0 sin t 

Apply an oscillating strain

Estorage

ELoss 

Record the complex modulus

Experimental data from Adzima, et al. Macromolecules, 2008



Current Results: Effects of Permanent Shape 
Evolution During a Thermal Cycle

Thermal-Mechanical Cycle
 Specify temperature history
 Fix deformation in 1 direction
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“To Flow, or Not to Flow…?”
Reversible Chemistry Reduces Peak Stresses
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Future Work

Phase I: Multi-Physics Model Development 

 Currently adding Sandia’s non-linear viscoelastic model for 
amorphous thermosets to capture the glassy behavior

 Currently augmenting the permanent deformation tensor 
evolution to account for the Loss of Cross-links

 Ensure updated model consistency with the Second Law of 
Thermodynamics
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 



Hdev dev  fun , ,,Hdev,dev 



Future Work
Phase II

 Examine/optimize the effects of cross-link evolution and the 
role of confinement, voids, free surfaces in real encapsulation 
scenarios

 Simulate the process of removing the polymer and the effects 
of surface tension via coupling with in house fluids codes
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Summary

 A multi-physics constitutive framework was developed to 
represent removable encapsulation
 Adding/removing cross-links relaxes the state of stress and causes 

permanent shape change

 The kinetics of adding/removing cross-links can be slowed, but it 
cannot be shutoff

 Model implemented in the Sierra Mechanics Code Suite

 The effects of reversible chemistry may beneficially mitigate 
stresses developed during thermal cycling of encapsulation 
materials.

***The Early Career Laboratory Directed Research and Development 
Program supports this work and has connected me with materials science 
colleagues well outside of the Engineering Sciences Center
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SUPPLEMENTARY MATERIAL
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Equilibrium And Chemical Kinetics
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kr  Ar exp 
Ea

RT







Assuming equal concentrations of [F],[M]

K 
[A]

[M ][F]


x

c0 1 x 2

At the reaction equilibrium: 0 
d[F]

dt
 k f [F][M ] kr[A] K 

k f

kr
Adzima, et al. Macromolecules, 2008



Equilibrium Helmholtz Free Energy Per Unit Mass

 Focus on Tglass < T < Tgel

 Equilibrium Helmholtz Free Energy expanded via a functional Taylor 
series about a reference state:

 Thermodynamic Variables
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 H,T, x,   ref  I I1H T T Tref  x x  xref  ...

...
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
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 xx x  xref 
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 ...

...KBULK volI1H T Tref   xT x  xref  T Tref   ...

... Hdev   : Hdev   xH x  xref  I1H HOTs

0th and 1rst 
Order

2nd Order

Cross-
Terms

Hencky Strain Extent of Reaction
Temperature Stress-Free Strain

H
T 

x

 H,T, x, 



Thermodynamic Considerations

Principal Inequality of Rational Mechanics (PIRM) on 
combining:

 Energy Balance

 Helmholtz Free Energy Sensitivity

 Second Law (Total Entropy Production Clausius-Duhem)
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Coleman and Gurtin, J. Chem. Phys., 1967



Thermodynamic Considerations

PIRM Constrains Time Evolution of Internal State Variables 
and Identifies Work Conjugate Variable Pairs
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Separate Considerations of Different 
Thermodynamic State Variables

Second PK Stress

Entropy

Internal State Variables

Heat FluxColeman and Noll, Arch. Rat. Mech., 1964 



Hencky Stress and Simplifications
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SH H,T, x,   ref



H







T ,x,

 2 Hdev   ...

...1  I  KBULK I1H  KBULK vol T Tref  xH x  xref   HOTs

The work conjugate Hencky Stress:

Assume that:  I  xH  HOTs  0

SH H,T, x,   2 Hdev  1 KBULK I1H  KBULK vol T Tref  



Equilibrium Model Inputs
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Material Properties

xgel Gel Point Adduct Extent of 
Reaction

c0
Net [F],[M],[A] concentrations 
normalized to [Amax]

K T  Equilibrium constant vs. 
Temperature  for [F],[M], and [A]

Ar
rDA reaction pre-factor

Ea rDA reaction activation energy

0 Reference Equilibrium Shear 
Modulus

Kbulk
Equilibrium Bulk 
Modulus

H  Standard Enthalpy 
of the DA Reaction

S Standard entropy of 
the DA Reaction



Model Inputs and Calibration

 Reference state chosen at 
T0=75C
 Eyoung ~ 0.1 Mpa

 Assume:

 All thermal-chemical 
constants extracted 
directly from Adzima et al. 
2008
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Initial Conditions

T0
Reference State 
Temperature

x0
Reference State 
Adduct reaction 
extent

0
Reference State 
Stress Free 
Configuration

Kbulk / 0 ~ 104



Dynamic Mechanical Analysis: Load 
Cases
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