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Using the Sandia Z Machine to Perform Extreme
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* Overview of magnetic compression
 Experimental load designs
—Co-axial
—Stripline

 Magneto-hydrodynamic modeling and
optimization

 Integrated experimental design
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2, Fully self-consistent, 2-D MHD simulations required
to accurately predict experimental load performance
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Success requires integration of theoretical

| ) computational, and experimental capabiliti,es
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Isentropic Compression Experiments (ICE)*

Magnetically driven Isentropic Compression
Experiments (ICE) to provide measurement
of continuous compression curves to ~4 Mbar

- previously unavailable at Mbar pressures

* Developed with LLNL

Magnetically launched flyer plates

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to > 40 km/s
- exceeds gas gun velocities by > 5X and

pressures by > 10X with comparable accuracy
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Tentative sample EOS & Load Design

-

QMD

\ 1-D Alegra MHD with Dakota optimization

Magnetic Field B(t) in AK Gap Behind Sample

k \ 2-D Alegra MHD, strip-line approximate method

Load Current | ,,,(t) Including 2D/3D Effects

Unfold MITL Current |, (t) Including Losses

analysis

\ Bertha circuit model

Machine Settings

MITL Current Data

Quasi-lsentrope («—— Velocity Data

NV

Actual Shot

W

\Need accurate time-dependent loss model !
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* Overview of magnetic compression
 Experimental load designs
—Co-axial
—Stripline

 Magneto-hydrodynamic modeling and
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* Field non-uniformity manifests as significant apparent time shifts

* 1% density accuracy requires 5 um gap uniformity over 40 mm height
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, Accuracy of multi-megabar isentrope deduced from

< | velomty data depends strongly on timing
. Thickness Difference Ax = 300 ym o Very h|gh Lagrangian sound speeds
e — Ta (3520) in-situ at high stresses result in small transit
‘q'; 60 . — Cu (3336) in-situ i i .
£ A (3700) in-situ times, placing very stringent
= 40 — Al (3700) free-surface demands on timing accuracy.
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. amples mounted opposite each other on the anode and the
cathode are driven by exactly the same magnetic field waveform

A single AK gap can produce stronger magnetic field (hence
higher pressure) for the same driving current

* The open geometry makes in-situ alignment easier
* Results are much less sensitive to misalignment

 Amenable to 1-D approximate analysis of dynamic deformation
effects

Several disadvantages had to be overcome:

* Diagnostics exposed to unconfined MGauss-level magnetic
fields, MV-level voltages, and MA-level currents

 Very high initial load inductance (~10.3 nH inside convolute)

« Large deformation effects as electrodes fly apart, significantly
reducing peak drive pressure for given peak current () Sonia NetionlLabratoris



:"4’\ . 2D deformation effects are significantly reduced for
< wied B the stripline compared to the coaxial geometry

2D deformation effects are much more
significant for coaxial geometry. Stripline
geometry provides much better lateral
uniformity
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Current Fraction in AK-gap for Various Gaps
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conservation equations
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+  Self-consistent coupling of power flow to load (circuit model).

+ Resistive MHD: self-consistent coupling of EQOS, conductivity, Joule heating,
hydrodynamics, and magnetic diffusion.

e Simulation methodology:

+ Measurements provide the basis for model development and validation: current
and flyerimaterial velocity serve as benchmarks.

+  Semi-emperical circuit model: requires models of time dependent current loss
(Za0 IMpedance) and short circuit (crowbar).

+  Zqo @nd crowbar models calibrated for a specific charge voltage (standard &
shaped voltage shots require separate calibration).

+ Apply model to produce existing data; predict future shot performance.

() Sancia National Laboratories
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truly predictive MHD modeling capability has been

eveloped over the last several years

Current & Flyer Velocity vs. Time
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fiw (eV)

The agreement with the Drude model lon cores displayed with iso-surfaces of the
indicates ‘nearly free’ electrons mean valence charge density

At liquid densities just below solid, the optical
conductivity is well fit by the Drude model
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2 3 4
fiw (eV)

The dc conductivity has dropped by a factor

Note th d ti
of 25 for a factor of 4 drop in density ote the pronounced separation

into liquid and void (vapor) regions

At lower density, where phase separation is
pronounced, a gap begins to form at low energy
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Dense solid
(5glcc)

LMD model
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Tentative sample EOS & Load Design
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\ 1-D Alegra MHD with Dakota optimization

Magnetic Field B(t) in AK Gap Behind Sample

k \ 2-D Alegra MHD, strip-line approximate method

Load Current | ,,,(t) Including 2D/3D Effects

Unfold MITL Current |, (t) Including Losses

analysis

\ Bertha circuit model

Machine Settings

MITL Current Data

Quasi-lsentrope («—— Velocity Data
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\Need accurate time-dependent loss model !
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* by » Independently triggerable gas switches provide the
o W “:;-- varlablllty necessary for pulse shaping

VNEe | T

. 18 independently insulator
ge?ln:rI;or |aser-tr|g.gered triggerable groups of 2 stack  magnetically
gas switch transmission lines insulated
transmission

lines
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. Switch times are determined using a 1-D

4| transmission-line circuit model for Z

Machine settings are currently determined through a
manual process — this will eventually be coupled to a
genetic algorithm for optimization
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Bertha model written and maintained by Dave Hinshelwood at NRL
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I The Bertha circuit model enables fairly accurate

" prediction of machine performance
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