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STEM in materials characterization

• Microscope and stable lab space
• Bright gun, probe corrector, efficient detectors

• Quantification requires detector characterization

• Imaging (not really covered here extensively)

• Diffraction (search on Nanomegas)

– OIM, EBSD for TEM/STEM

• Microanalysis (MSA data analysis methods)

– Low end (several m field of view, 10+ nA)

– Medium end (nm to sub-nm, 1-2 nA)

– High end (atomic resolution, 100 pA-500 pA)

– Higher-dimension analyses…3D



Titan ChemiSTEM P (G2 80-200) at Sandia

C3

-Probe corrector

-Objective 
lens/sample/4-SDDs
-Projector lenses

-Diffraction cameraHAADF

GIF-EELS, 2k x 2k CCD 

C2
C1

Accelerator

Gun

2k x 2k CCD 
BF, DF1, DF2

10/18/2011 9/18/2011

Stable room retrofitted from CM-30 (1987) room



Atomic resolution x-ray microanalysis

X-FEG

Super-X

DCOR
(CEOS)

Critical elements for atomic resolution 
x-ray microanalysis

High brightness gun

X-FEG

Probe corrector (CEOS-DCOR)

0.08nm @ 200kV

0.12nm @ 80kV

Efficient x-ray detector(s)

SuperX, SDD array

All of these elements have been 
integrated on the FEI Titan 

ChemiSTEM-P (200kV)
SNL has one of the first

Several Titan 80-300s have gotten some of these advances



New Shottky emitter technology

• New Shottky emitter with the brightness of a cold FEG

• FEI X-FEG brightness increased to ~ 108 A/sr/m2/ V 
•~2 x 109 A/cm2/sr @ 200 kV

• Probe current (w/o corrector)
• 0.5 nA in 0.3 nm diameter 
• Increased by 5x relative to regular Schottky FEG

• Probe current (with DCOR probe corrector)
• 200 kV, 1.3 nA in 0.2 nm diameter probe 
• 80 kV, 0.5 nA in 0.2 nm diameter probe

• Energy-spread = 0.9 eV



Detector Efficiency: Arrays

B. L. Doyle, D. S. Walsh, P. G. Kotula, P. Rossi, T. Schülein and M. Rohde, “An 
annular Si drift detector PIXE system using AXSIA analysis,” X-Ray Spectrom. 
(2005) 34

2005 Ketech/Custom imp.
2nd-3rd generation annular

(1.1 sr)

2005 pnSensor/Roentec
4-5th generation 

conventional
(40 mm2, 0.06 sr)

2007 pnSensor/Bruker 
5th generation annular at 

SNL(60 mm2, 1.1 sr)

4mm

Pole piece

22.5 mm
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SuperXTM: Large solid angle silicon drift detector 
array provides more flexible AEM integration

•4-30mm2 (120mm2) SDDs with large solid angle
• 0.9 sr (Osiris-uncorrected)
• 0.7 sr (Titan-probe corrected)
• State-of-the-art SDDs 
• Windowless & pnWindow…good light-
element performance (C, N, O easily)
• High-throughput…10 sec instantaneous 
dwell times, multiple pass, drift correction

Revolutionary change 
in AEM-EDS

sample

Conceived by FEI with 
collaboration from Bruker and 

pnSensor
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SuperXTM Detector Performance

Note: 1000 nsec
shaping time

136 eV FWHM Mn-K

10% DT
50% DT



Relative x-ray detector performance with the 
same Fe-Ni FIB sample

Corrected for live time/probe current

If Titan w/Super X is nominally 0.7 sr then Tecnai f30-ST is really 0.066 sr and 
JEOL 2010F is really 0.033 sr…don’t necessarily believe the solid angles!

Microscope Accelerating
Voltage [kV]

Figure of merit
Counts/(sec*nA)

Performance 
relative to 200kV 

Tecnai Si(Li)

JEOL 2010F, 0.1 sr Si(Li)-J 200 2000 0.29

JEOL 2010F, 0.1 sr Si(Li)-G 200 2550 0.36

Tecnai F30-ST, 0.1 sr Si(Li) 300 5100 0.72

Tecnai F30-ST, 0.1 sr Si(Li) 200 7000 1.00

Titan ChemiSTEM, Gatan 200 57000 8.14

Titan ChemiSTEM, FEI 
High visibility holder

200 74000 10.57



Chemi-STEM, x-ray collection efficiency
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Better way to measure relative detector efficiency is with a sample like the 
Egerton test sample, thin NiO. Both total and energy-dependent efficiency.

Linear regime

Soft x-rays absorbed
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Implies that 
a 1 nm NiO
sample 
would 
produce ~80 
cps/nA Ni-K 



200 kV Si [112]

80 kV Si [110]

Imaging with the AC-STEM at SNL, 5 
months in

200kV with a 5mm 
objective lens pole 
piece gap



Au-MoS2 solid-film lubricant proposed for replacement of current MoS2 lubricant in 
various electromechanical devices

Materials from Somuri Prasad (1831) and Ron Goeke (1832)

Atomic resolution AC-
STEM image shows the 
morphology of the solid-
film lubricant

Au

Au

MoS2

S
Mo

Mo

SAu

MoS2

MoS2

MoS2

Au

Au

MoS2 terminates on a S-
plane which likely bonds to 
Au and keeps the S from 
reacting with moisture

Characterization of solid-film lubricants



Data analysis primer
What is a spectral image?

• A series of complete spectra resolved in

2- or higher dimensions
– Conventional spectral images-2D*

• Demonstrated in 1979 and first product by PGT in 1995

– Tomographic spectral images-3D**
• Direct-FIB**, Metallography

• Computed-Tilt series of spectral images

• Confocal

– Resolved in other dimensions
• Time, process condition, projection, etc.

• As far as MSA is concerned these can all be treated the same

voxel

z

energy

*e.g., P.G. Kotula et al. Microsc. Microanal. 9 (2003) 1-17.
**e.g., P.G. Kotula et al. Microsc. Microanal. 12 (2006) 36-48.



What are the basic steps of MSA?

• Keenan, M.R., Multivariate analysis of spectral images 
composed of count data, in Techniques and applications of 
hyperspectral image analysis, H. Grahn and P. Geladi, Editors. 
2007, John Wiley & Sons: Chinchester.

• Scale data for non-uniform noise*
– Down-weights large variations in intense spectral or image 

features which are due to noise
– Rank 1 approximation to the noise

• In the image domain divide by the square-root of the mean image
• In the spectral domain divide by the square-root of the mean spectrum
• Essentially the same answer as maximum likelihood methods with but 

far less computational complexity**

• Factor analysis (PCA, factor rotation, MCR)
– Analysis goal: compact and readily interpreted factors

• Inverse noise scaling

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212
**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750 



We have several options in our 
multivariate “Toolbox”

• Principal Component Analysis (PCA)
– Factors are orthogonal

– Factors serially maximize variance

– Provides best LS fit to data

– Non-physical constraints

– Factors are abstract

• PCA + factor rotation (VARIMAX)*
– Rotate factors to “simple structure”

• MCR-ALS**
– A refinement of Rotated PCA

– Non-negativity of C and/or S

– Equality, closure and others 

– Constraints may not be effective

– Bias due to error in variables

Analysis goal: Obtain an 
easily interpretable 

representation of the data

D STC x

m
p

ix
e
ls

n channels p factors

Unfolded
spectral

image cube

Spatial
components

Spectral
components

p
nm

*M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**P.G. Kotula, et al. Microsc. Microanal. 9 (2003) 1-17.



Spectral Domain Simplicity*

Often the elemental/correlated elemental viewpoint 

• D = CST (Goal: Factor raw data into C and S…linear model)
D is an m-pixel  n-channel raw spectral-data matrix 

S is an n  p matrix containing the p pure-component spectra shapes

C is an m  p matrix containing their spatial distributions/abundances

• Data is scaled to account for non-uniform (Poisson) noise**

• Number of factors to retain is chosen (Eigenanalysis)

• PCA is performed on the scaled data such the spatial components are orthogonal and 
the spectral components are orthonormal

• Rotate the orthonormal spectral components to maximize their mutual simplicity 
with the VARIMAX procedure

• Apply the inverse rotation to the spatial components which relaxes orthogonally in 
this domain

• Optionally: Impose non-negativity (e.g. via MCR-ALS)***

• Inversely scale the components for Poisson noise

*M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212.
***P.G. Kotula et al. Microsc. Microanal. 9 (2003) 1-17.
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Low end spatially, high end for sensitivity
Raw spectrum from the CMOS spectral image
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Paliney 7, electrical 
contact material 
nanometer-scale 

spinodal decomposition. 
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7 minutes at 
0.5nm/pixel with the 

new AC-STEM

120 minutes at 
2nm/pixel Tecnai.

Materials from Don Susan (1831) and Zahra Ghanbari (1831)

The analytical power of the AC-STEM is at least 70x better than 

the older analytical microscope at Sandia.

Confirms predictions from the 1970s.

Medium end analysis
Sub-nm microanalysis of electrical contact materials
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Materials from David Robinson (8651) and Patrick Cappillino (8651). Collaboration with Josh Sugar (8656).
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Medium end, characterization of hydrogen isotope storage materials

Materials from David Robinson (8651) and Patrick Cappillino (8651). Collaboration with Josh Sugar (8656).

HAADF image

AXSIA results
Red = Pd-rich 
core
Green = Rh- and 
O-rich shell

Quantification

Core

Shell



High-end atomic resolution, SrTiO3 [100]
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Y2Ti2O7 Pyrochlore [011]
128x128 Spectral image, 16x compression, Spectral domain simplicity
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Pushing quantification

350 ppm

1400 ppm P
1250 ppm N

Data courtesy Dmitri Klenov, FEI



Quantitation: 0.1 wt.% Mn-Cu
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Tomographic Spectral Imaging and 
Multivariate Statistical Analysis
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Advanced statistical analysisAdvanced statistical analysis

Reconstruction of component 
images into 3D model (Inspect 3D)

Rendering Tip of the Fischione 
Model 2050 on-axis 
tomography holder Atom-probe tip

SEM image of the 
prepared needle

P.G. Kotula, et al. Microsc. Microanal. 13 (Suppl2), 2007 1324CD-1325CD



MSA of the entire projection series

0°

-90°

Region of spectral 
images 2000nm x 400nm

Drift-correction region

Color overlays of component images

19 hours (over 3 days) of data acquisition
30 min on the Titan if automated!

P.G. Kotula, et al. Microsc. Microanal. 13 
(Suppl2), 2007 1324CD-1325CD

FEI Tecnai F30-ST, 0.1sr

Then, reconstruct component projection 
images into 3D model (Inspect 3D)



Reconstructed isosurfaces

Needle sample, Al2O3 component
FEI Tecnai F30-ST, 0.1sr



Conclusions

• AEM is undergoing a renaissance with correctors, SDDs, novel 
diffraction techniques, and better sources.

• Atomic resolution EDS will become more common than EELS. Easier, 
more elements accessible, esp. heavy ones, more readily quantified

• Novel detector geometries for AEM improve sensitivity and throughput.
– Pushing to larger solid angles possible but collimation the challenge

• MSA methods are very useful for simplifying the analysis of large, 
complex data sets (only very simple ones shown today!)
– Importance of Poisson normalization
– Factor rotation, spatially or spectrally simple viewpoints
– Unbiased analysis powerful for materials science, etc. Needle in the 

haystack….single atoms….

• Quantitative analysis pushed to smaller volumes
– Understanding the spectrum is critical…every bump matters!
– Potential for 1000 ppm sensitivity at 0.2 nm?
– 100 ppm sensitivity at 1 nm?

• Practical computed tomographic spectral imaging

• SNL has one of the first Titan ChemiSTEM-P X-FEG (200kV)


