

Post for 30 days

Title: Partnership Opportunity – Field-dependent aberration correction Licensing

NAICS code: 333314 Optical Instrument and Lens Manufacturing

Classification code: 66 Instruments and Laboratory Equipment

Body:

Sandia National Laboratories (Sandia) seeks interested parties for commercializing patented technology for field-dependent aberration correction for imaging and beam propagation systems. The technology is described in two US patents: US 6,421,185 and US 6,473,241. Potential applications may include microscopes, endoscopes, ophthalmoscopes, beam propagation, and surveillance.

Sandia seeks to license technologies for the benefit of the US industry. It is anticipated that commercial licenses may grant rights on a competitive basis to qualified interested parties for appropriate consideration. Licensing options may include grants for defined fields of use, non-exclusive rights, exclusive, or sublicensing rights. Partnerships to commercialize this technology may also take the form of Cooperative Research and Development Agreements (CRADAs).

Sandia will evaluate responses and select prospective parties with which to engage in further discussions based on the following criteria, pursuant to Sandia's technology transfer mission. 1) What are the respondent's specific research and development, prototyping and deployment capabilities and resources relative to this technology? 2) How will the respondent deploy the technology for the benefit of national security and the US public good? 3) How will the respondent's deployment of the technology benefit US economic competitiveness?

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. SAND# 2011-8915P

For further information, contact David Wick at Sandia National Laboratories by email, dvwick@sandia.gov, phone 505-844-2517.

Keywords: aberration correction, MEMS mirror, spatial light modulator, foveated imaging