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Peridynamics is a continuum mechanical model that unifies the mechanics of 

continuous and discontinuous media within a single, consistent set of equations 

WHAT IS PERIDYNAMICS? 

HOW DOES PERIDYNAMICS WORK? 

S.A. Silling.  Reformulation of elasticity theory for discontinuities and long-range forces.   

Journal of the Mechanics and Physics of Solids, 48:175-209, 2000. 

Silling, S.A. and Lehoucq, R. B.  Peridynamic Theory of Solid Mechanics.   

Advances in Applied Mechanics 44:73-168, 2010. 

 Peridynamics is a nonlocal extension of continuum mechanics 

 Replace PDEs with integral equations 

 Peridynamic equation of motion (integral, nonlocal) 

 

 

 No obstacle to integrating nonsmooth functions 

 Remains valid in presence of discontinuities, including cracks 

 Impact: larger solution space (fracture), length scales (multiscale material model)  

Peridynamics 

Point x interacts 

directly with all points 

x’ within H 

WHY NOT USE CLASSICAL OF SOLID MECHANICS? 

 Can’t differentiate at a crack; Cracks treated as pathological solution. 

 Must apply special techniques at discrete level to support desired fracture solutions 

       u(x,t) ( u(x,t)) b(x,t)

x

x

H

u(x,t) f(x ,x,t)dV b(x,t)
  




x

x

xH
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Demonstration Computation:  Fragmenting Cylinder 

PERIDYNAMIC SIMULATION OF FRAGMENTING CYLINDER 

 Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)* 

* D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006. 

After 

(brittle model) 

Before 

Color  

indicates  

damage 

After 

(plastic model) 

Simulation performed 

with Peridigm 

NewQ2Movie.avi
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HORIZON AND FAMILY 

 Point x interacts directly with all points with distance  (horizon) 

 Material within distance  of x is denoted Hx (family of x) 

 

BONDS AND BOND FORCES 

 Vector between x and any point in its family is called a bond:  = x’ - x 

 Each bond has pairwise force density vector applied at both points: f(x’, x, t) 

 This vector is determined jointly by collective deformation of Hx and collective deformation of Hx’ 

 Bond forces are antisymmetric: f(x’, x, t) = - f(x, x’, t) 

 

DEFORMATION STATE 

 Deformation state operator Y maps each bond  into its deformed image 

 

 

 

 

Peridynamics: The Basics 




x

x

xH

  Y y(x ') y(x)
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BONDS AND STATES 

 f(x’, x) has contributions from material models at both x and x’ 

 

 

 T[x] is the force state – it maps bonds onto bond force densities 

 T[x] is determined by the constitutive model                , where    maps deformation state to force 

state 

 

 

PERIDYNAMICS VS. CLASSICAL THEORY 

 If displacement smooth, convergence to classical equation in limit as   0  

 

 

 

 

 

 

 Peridynamics can be viewed as nonlocal extension of classical theory  

 Classical theory is a special case of peridynamics 

 

 

 

 

Peridynamics: The Basics 

     f(x ',x) T[x,t] x x T[x ,t] x x

 ˆT T(Y) T̂

  x
0

H

u(x,t) lim T[x,t] x x T[x ,t] x x dV b(x,t)

P(x,t) b(x,t)




       

   



Piola-Kirchhoff stress tensor 

S.A. Silling, R.B. Lehoucq, Convergence of Peridynamics to Classical Elasticity Theory.   

J. Elasticity, 93:1, pp. 13-37, 2008. 
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PERIDYNAMICS VS. STANDARD EQUATIONS 

 Peridynamic operators and relationships between them are nonlocal analogues of standard theory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peridynamics: The Basics 

Kinematics 

Constitutive model 

Linear momentum  

balance 

Angular momentum  

balance 

Peridynamic theory Standard theory Relation 

Elasticity 
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Peridynamics: The Basics 

MECHANICAL PROPERTIES OF PERIDYNAMICS 

 Conserves energy (in absence of fracture, plastic deformation, etc.) 

 Conserves linear & angular momentum (always) 

 Basis in statistical mechanics* 

 Obeys the laws of thermodynamics (restrictions on constitutive models) 

 

EXAMPLE: CONSERVATION OF MOMENTUM 

 Rate of change of momentum of material within  equals force of body outside  acting  

      upon  plus external body force upon : 

 

 

 

  No self-interaction: 

 

 

 

 

  

    

          x x x x

/

d
u(x,t)dV T[x,t] x x T[x ,t] x x dV dV b(x,t)dV

dt

  

 

       x xT[x,t] x x T[x ,t] x x dV dV 0

 


*R.B. Lehoucq and M. Sears. Statistical mechanical foundation of the peridynamic nonlocal 

continuum theory: Energy and momentum conservation laws. Phys. Rev. E 84, 031112 (2011). 
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Peridynamics: The Basics 

ENERGY BALANCE 

 T is work conjugate to Y: 

 This leads to energy balance (first law of thermodynamics) 

 

 

     where 

  = internal energy density 

 q = rate of heat transport 

 r = energy source rate 

 

THERMODYNAMIC ADMISSIBILITY FOR CONSTITUTIVE MODELS 

 Second law of thermodynamics (Clausius-Duhem inequality): 

 

where 

  = absolute temperature 

  = entropy density 

 Combining with first law gives thermodynamic admissibility condition for constitutive models: 

 

where 

  =  -   is free energy density 

T Y q r    

Peridynamic equivalent 

of stress power F 

q r  

T Y 0    
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 
c

f     
y' - y

y' - y,x' - x y' - y x' - x
x' - x y' - y

 
1 c

2


2
  y' - y,x' - x y' - y x' - x

x' - x

Peridynamic Material Modeling 

PROPORTIONAL MICROELASTIC BRITTLE (PMB) MATERIAL MODEL* 

 

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of 

solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005. 

x

y'(x ,t)y(x,t)

y  current position 

x  initial position 

x

Hooke’s Law 

    
1

T[x,t] x x f
2
y' - y,x' - x
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Peridynamic Material Modeling 

PROPORTIONAL MICROELASTIC BRITTLE (PMB) MATERIAL MODEL* 

 

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, 

Computers and Structures, 83, pp. 1526-1535, 2005. 

y  current position 

x  initial position 

bond                                               
force  

elastic  failure 

tension compression 

critical stretch s* 

bond stretch 

Bond fails when 

stretch too large 

x
x

y'(x ,t)y(x,t)

Broken bonds  

do not heal 

s



y' - y x' - x

x' - x
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Peridynamic Material Modeling 
ENERGY BALANCE FOR GROWING CRACK 

 If work to break bond  is w0(), then energy release rate found by summing this work per unit 

crack area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Can then get the critical strain s* for bond breakage in terms of G. 

 Alternatives: 

 Could use peridynamic J-integral as bond breakage criterion 

 For composites, could use macroscale criteria such as Hashin 

Crack 

Bond strain 
𝑠∗ 





   0

0 R

G w ( )dV ds
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Peridynamic Material Modeling 

*S.A. Silling, M. Epton, O. Weckner, J. Xu, & E. Askari, Peridynamic States and Constitutive Modeling,  

J. Elasticity, 88, pp. 151-184, 2007. 

LINEAR PERIDYNAMIC SOLID (LPS)* 

 Nonlocal analogue to linear isotropic elastic solid 

 k is bulk modulus,  is shear modulus 

 

 

 

 

 

 

 

 Many other peridynamic material models available: elastic-plastic, viscoelastic, etc. 

 

 

 Can wrap classical material models (e.g., LAME material library) in a peridynamic 

“skin” (more on this later!) 

  x

H

u(x,t) T[x,t] x x T[x ,t] x x dV b(x,t) 
      

d3k 15 y' y
T[x,t] x x x e

m m y' y

   
      

 
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Peridynamic Material Modeling 

ELASTIC-PLASTIC MODEL* 

*J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, 

SAND2011-3166, 2011. 

 Nonlocal analogue to perfect plasticity model 

 Relevant to ductile materials and ductile failure 

 

 

 Additive decomposition of extension state: ed = ede + edp 

 Elastic force state relations:  

 

 

 

 Elastic force state domain defined by yield surface/function that depends upon 

deviatoric force state: 

 f(td) = (td) − 0  0, where (td) = ½ || td|| 2  

 Flow rule describing rate of plastic deformation:  

 Loading/un-loading conditions (Kuhn-Tucker constraints): 

  > 0,   f(td)  0,    f(td) = 0 

 Consistency condition:  

 

  dp de

 df(t ) 0

RATE EQUATIONS AND CONSTRAINTS 

 d dP3k y' y
T[x,t] x x x e e

m y' y

  
       

 
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Peridynamic Material Modeling 

VISCOELASTIC MODEL* 

*J. Mitchell, A Non-local, Ordinary-State-Based Viscoelasticity Model for Peridynamics,  

SAND2011-8064, 2011. 

 Nonlocal analog to standard linear solid 

 Applicable where rate effects may be important 

 Adds viscous terms to deviatoric portion of 

extension state; bulk response remains elastic 

 Logical intermediate step between fluid and solid 

 viscous fluid: little or no elastic resistance to 

shear (fluids flow) but resists compressive 

volumetric deformations 

 elastic solid: elastic resistance to both shear 

and volumetric deformations 

 

 

 Scalar deviatoric force: 

 

 

 

 Evolution equation: 

 

  

d db

i

d db

i

t e

(e e )

 


db d db

b

1
e (e e )

GOVERNING EQUATIONS 
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Analytical Results 

 Weak form of linear peridynamic solid (LPS) model is well-posed.a 

 

 Weak form of nonlocal diffusion equation is well-posed.b  

 

 Weak form of nonlocal wave equation is well-posed.b  

 

 Finite element error bounds established for bond-based models on 2D plate.c 

 

 

 

 

 

a Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Application of a nonlocal vector calculus to the 

analysis of linear peridynamic materials. Technical report SAND 2011-3870J. 
 

b
 Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion 

problems with volume constraints. SIREV (to appear).  
 

c K. Zhou and Q. Du. Mathematical and numerical analysis of linear peridynamic models with 

nonlocal boundary conditions. SIAM Journal on Numerical Analysis, 48(5):1759 - 1780. 
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Discretizing Peridynamics 
SPATIAL DISCRETIZATION* 

 Approximate integral with sum 

 Midpoint quadrature 

 Piecewise constant approximation 

 

 

 

 

 

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, 

Computers and Structures, 83, pp. 1526-1535, 2005. 

H

f(u(x ,t) u(x,t),x x)dV   

H

x

Continuum 
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Discretizing Peridynamics 
SPATIAL DISCRETIZATION* 

 Approximate integral with sum 

 Midpoint quadrature 

 Piecewise constant approximation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Peridynamics is a continuum theory; Discretize it how you want 

 Finite element; finite volume, etc.  

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, 

Computers and Structures, 83, pp. 1526-1535, 2005. 

p i p i p

p

f(u(x ,t) u(x ,t),x x ) V  

H

 
 
 
 
 
 
 
 
 

pV

x

Discrete 

TEMPORAL DISCRETIZATION* 

 Explicit central difference in time  

 

 

 

 

  Velocity-Verlet 

 

 

 

 

 

 

 

 

 Must satisfy nonlocal CFL condition 

 Larger timesteps allowed than in local models 

n 1 n n 1
n i i i
i 2

u 2u u
u(x,t) u

t

  
 



 

n+1/2 n n

i i i

n+1 n n+1/2

i i i

n+1 n+1/2 n+1

i i i

t
v v f

2m

u u t v

t
v v f

2m

 
   

 

  

 
   

 
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Peridynamic Codes 
PERIDYNAMICS  IN SIERRA/SOLIDMECHANICS (Export controlled, C++) 

 Developer: Littlewood 

 Sandia engineering analysis code 

 

PERIDIGM (Open source, C++) 

 Developers: Parks, Littlewood, Mitchell, Silling 

 Sandia’s primary open-source PD code 

 Built upon Sandia’s Trilinos Project (trilinos.sandia.gov) 

 

PDLAMMPS (Peridynamics-in-LAMMPS) (Open source, C++) 

 Developers: Parks, Seleson, Plimpton, Silling, Lehoucq 

 Particular discretization of PD has computational structure of molecular dynamics (MD) 

 LAMMPS: Sandia’s open-source massively parallel MD code (lammps.sandia.gov)  

 First open-source PD code 

 More info & user guide: www.sandia.gov/~mlparks   

 

EMU (Export Controlled, F90) 

 Developer: Silling (www.sandia.gov/emu/emu.htm) 

 Research code 

 

Peridynamics is a capability that can be added to (almost) any analysis code! 

http://trilinos.sandia.gov/
http://lammps.sandia.gov/
http://www.sandia.gov/~mlparks
http://www.sandia.gov/~mlparks
http://www.sandia.gov/emu/emu.htm
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Peridynamics is available in Sierra/SolidMechanics 

for the modeling of material failure 

Peridynamics in Sierra/SolidMechanics 

• Available for explicit dynamics 

• Current work:  quasi-statics and implicit dynamics 

• Material models 

– Linear peridynamic solid material model 

– Interface to full set of Sierra/SM classical material models (LAME library) 

• User defined peridynamic horizon and influence function 

• Bond failure laws 

– Critical stretch bond failure rule 

– Bond failure based on element variables (e.g. material model data) 

• Contact algorithm 

• Full set of pre- and post-processing tools 

– Meshing, visualization, initialization of peridynamic bonds 
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APPROACH:   NON-ORDINARY STATE-BASED PERIDYNAMICS 

Key feature:  Interface to LAME material library 

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari.  Peridynamic states and constitutive modeling.  

Journal of Elasticity, 88(2):151-184, 2007. 

Full set of classical material models is available via 

peridynamics in Sierra/SolidMechanics 

① Compute regularized deformation gradient 

② Classical material model computes stress based on regularized deformation gradient 

③ Convert stress to peridynamic force densities 

④ Apply peridynamic hourglass forces as required to stabilize simulation (optional) 

MATERIAL MODELS:   LIBRARY OF ADVANCED MATERIALS FOR ENGINEERING (LAME) 

• Traditional models:  Elastic, Thermo-elastic, Elastic-plastic, others… 

• Advanced models:  Johnson-Cook, BCJ, K&C Concrete, others… 

• Suitable for geo modeling:  Soil and Crushable Foam, Orthotropic Crush, others… 
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Peridigm 
 Developers: Parks, Littlewood, Mitchell, Silling 

 Sandia’s primary open-source PD code 

 Component based -- Built upon Sandia’s Trilinos Project (trilinos.sandia.gov) 

 Notable features: Massively parallel, Exodus mesh input/output multiple material blocks, explicit, 

implicit time integration, state-based linear elastic, elastic-plastic, viscoelastic models 

 DAKOTA interface for UQ/optimization/calibration, etc.  (dakota.sandia.gov) 

Software Quality Tools 

Mailing Lists 

Version Control 

Build System 

Testing (CTest) 

Project Management 

Issue Tracking 

Wiki 

UQ 

Optimization 

Error Estimation 

Calibration 

Load Balancing (Zoltan) 

Parallelization Tools 

Data Structures (Epetra) 

Solver Tools 

Iterative Solvers (Belos) 

Direct Solvers (Amesos) 

Eigensolvers (Anasazi) 

Preconditioners (IFPack) 

Multilevel (ML) 

Nonlinear Solvers (NOX) Analysis Tools 

UQ (Stokhos) 

Optimization (MOOCHO) 

Services 

Interfaces (Thyra) 

Tools (Teuchos, TriUtils) 

Field Manager (Phalanx) 

DAKOTA Interface (TriKota) 

Model Evaluator(EpetraExt) 

Visualization 

Service Tools 

http://trilinos.sandia.gov/
http://dakota.sandia.gov/
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PDLAMMPS 
GOALS 

 First open source peridynamic code (distributed with LAMMPS; lammps.sandia.gov) 

 Provide (nonlocal) continuum mechanics simulation capability within MD code 

 Leverage portability, fast parallel implementation of LAMMPS 

  (Stand on the shoulders of LAMMPS developers) 

CAPABILITY 

 Prototype microelastic brittle (PMB), Linear peridynamic solid (LPS) models 

 General boundary conditions 

 Material inhomogenity 

 LAMMPS highly extensible; easy to introduce new potentials and features 

 More information & user’s guide at www.sandia.gov/~mlparks (Click on “software”) 

PAPERS 

 M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, and S.A. Silling, Peridynamics with 

LAMMPS: A User Guide, Sandia Tech Report SAND 2010-5549. 

 M.L. Parks, R.B. Lehoucq, S.J. Plimpton, and S.A. Silling, Implementing Peridynamics within a 

molecular dynamics code, Computer Physics Communications 179(11)  pp. 777-783, 2008. 

A PERSONAL OBSERVATION 

 Time from starting implementation to running first experiment: Two weeks 

 Time for same using XFEM, other approaches: ???? 

 Peridynamics is an expedient approach for fracture modeling 

 

http://lammps.sandia.gov/
http://www.sandia.gov/~mlparks
http://www.sandia.gov/~mlparks
http://www.sandia.gov/~mlparks
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Parallel Performance 
 Dawn (LLNL): IBM BG/P System 

 500 teraflops; 147,456 cores 

 Part of Sequoia procurement  

 20 petaflops; 1.6 million cores 

 Large-scale simulation 

 Mesh spacing: 35 microns 

 Approx. 82 million mesh points 

 Time: 50 microseconds (20k timesteps) 

 6 hours on 65k cores 

 

 Largest peridynamic simulations in history 

# Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512) 

512 262,144 4096 14.417 1.000 

4,096 2,097,152  4096 14.708 0.980 

32,768 16,777,216  4096 15.275  0.963 

Weak Scaling Results (PDLAMMPS) 

Dawn at LLNL 



28  

I. Peridynamics 

 

II. Numerics and Codes 

 

III. Applications 

 

IV. Current & Future Work 



29  

 

 

Model discretization 

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and 

Sunwoo, A.  Fragmentation of materials in expanding tube experiments.  International Journal of Impact 

Engineering, 29:735-746, 2003. 

D. Littlewood.  2010.  Simulation of dynamic fracture using peridynamics, finite element modeling, and contact.  

Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, British 

Columbia, Canada. 

 

Experimental setup [Vogler et. Al] 

Experimental Setup 

• Tube expansion via collision of Lexan projectile 

and plug within AerMet tube 

• Accurate recording of velocity and displacement 

on tube surface 
 

Modeling Approach 

• AerMet tube modeled with peridynamics, elastic-

plastic material model with linear hardening 

• Lexan plugs modeled with classical FEM, 

equation-of-state Johnson-Cook material model 

• Interaction via contact algorithm 

Application:  Expanding tube experiment 
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Application:  Expanding tube experiment 

Parameter Value 

Density 7.87 g/cm3 

Young’s Modulus 194.4 GPa 

Poisson’s Ratio 0.3 

Yield Stress 1.72 GPa 

Hardening Modulus 1.94 GPa 

Critical Stretch 0.02 

AerMet Tube 
 

• Peridynamics 

• Elastic-plastic constitutive model 

• 73,676 sphere elements 

• Horizon set to five times element radius 
Parameter Value 

Density 1.19 g/cm3 

Young’s Modulus 2.54 GPa 

Poisson’s Ratio 0.344 

Yield Stress 75.8 MPa 

Hardening Constant B 68.9 MPa 

Rate Constant C 0.0 

Hardening Exponent N 1.0 

Thermal Exponent M 1.85 

Reference Temperature 70.0 °F 

Melting Temperature 500.0 °F 

Lexan Projectile/Plug 
 

• Classical FEM 

• Johnson-Cook constitutive model 

• 53,214 hexahedron elements 
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Predicted damage profiles 

Simulation at 15.4 microseconds 

Simulation at 23.4 microseconds 

Experimental image at 15.4 

microseconds [Vogler et. al] 

Experimental image at 23.4 

microseconds [Vogler et. al] 

Simulation performed with 

Sierra/SolidMechanics 
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Predicted displacement and velocity on tube surface 
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Fragmentation pattern 

Simulation at 84.8 microseconds 

Qualitative Comparison of 

Fragmentation Results 
 

• Vogler et. al reported significant uncertainty 

in results at late time 
 

• Approximately half the tube remained intact 
 

• Vogler et. al recovered 14 fragments with 

mass greater than one gram 
 

 

Simulation performed with 

Sierra/SolidMechanics 
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Capability demonstration: Kalthoff-Winkler experiment 

PERIDYNAMIC MODELING OF THE KALTHOFF-WINKLER EXPERIMENT  

* S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and 

Solid Mechanics 2003, K.J. Bathe, ed., Elsevier, pp. 641-644. 

 Dynamic fracture in steel (Kalthoff & Winkler, 1988) 

 Mode-II loading at notch tips results in mode-I cracks at 70 angle 

 Peridynamic model reproduces 70 crack angle* 

Experimental  

Results Peridynamic Model 

Simulation performed with 

EMU 
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Capability demonstration: Mesh independent plastic zone 

Coarse 

mesh 

Component of plastic deformation 

gradient in loading direction 

Medium 

mesh 

Fine 

mesh 

Pre-cracked specimen 

loaded in tension 

• Peridynamic horizon introduces length 

scale independent of mesh size 

• Localization in peridynamics function of 

horizon (parameter of continuum model) 

• Localization in classical FEM function of 

mesh (parameter of discrete model) 

• Ongoing work: Investigation of 

convergence rates 

• Example:  Mesh independent plastic zone 

in the vicinity of crack 

• Similar phenomena occur in necking and 

shear banding  

Simulation performed with 

Sierra/SolidMechanics 
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Capability demonstration: Composite failure 

FAILURE IN FIBER-REINFORCED COMPOSITE LAMINATE  

Typical crack growth in notched 

laminate (photo courtesy Boeing) 

Peridynamic Model 
* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O.Weckner, Peridynamics for 

multiscale materials modeling, in SciDAC 2008, Seattle, Washington, vol. 125 of Journal of 

Physics: Conference Series, (012078) 2008. 

 Splitting and fracture mode changes in fiber-reinforced composites* 

 Fiber orientation between plies strongly influences crack growth 

45 angle of fibers within ply  

dictate failure direction 

Reproduce in peridynamic 

simulation by controlling bond 

strength orientation 

Simulation performed with 

EMU 
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I. Peridynamics 

 

II. Numerics and Codes 

 

III. Applications 

 

IV. Current & Future Work 
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Current & Future Work 

 Multiscale dynamic fracture modeling 

 

 Advanced solvers; nonlocal domain 

decomposition;  

 Condition number bounds for peridynamic 

models; nonlocal preconditioners 

 

 Develop peridynamic viscoplastic model 

 

 Local/nonlocal coupling,  

     (to enable FEM/PD coupling) 

 

 Continued error/convergence/verification studies 

 

 Continued mathematical and numerical analyses 
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Summary 

 Peridynamics Overview 

 

 Numerics and Codes 

 

 Applications 

 

 Current & Future Work 

 

 

 

 

 Some Current Customers… 

 Army Research Labs (ARL): Munitions fragmentation, penetration 

 Boeing: Failure in composite laminates 

 ExxonMobil: Driven fracture in shale 

 Orica: Bench-blasting (mining) 

 X-Prize: Predictive failure modeling 


