
Next-Generation Codes/Portability
Dax Perspective

DOECGF 2012

April 25, 2012

Kenneth Moreland Sandia National Laboratories

Release Marking (e.g. Not Approved for Release, SAND XXXX, etc.)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2012-3234P



What fundamental problem are you trying to 
solve?

Exascale requires fine threaded (billion-way 
parallel) and minimized RAM movement.

Parallel programming is frickin’ hard.



Developer 1: The VTK weak pointer implementation is not 
thread safe because it can be used just like a regular 
pointer, even though the object itself might be deleted by 

a separate thread at any time. [Fix involving locking 
proposed.]

Developer 2: That sounds like a good idea. You have my vote.

Developer 3: How would this impact performance? Would it 
improve it do you think?

Developer 4: I'm skeptical that this code actually provides 
thread safety. Your critical section is only applied within 
a weak pointer. It is not applied within vtkObjectBase
itself. While the critical section is running some other 
thread could call unreference and delete the object after 
the weak pointer checks the reference but before the smart 
pointer increments the reference.

Developer 1: I see your point. Indeed, applying a lock just 
to the WeakPointer doesn't really do anything.



Hybrid Parallel Pipeline

Contour

Clip

Contour

Clip

Contour

Clip

Distributed Memory Parallelism

Shared Memory
Parallel Processing



What are your plans to deal with…
Massive Concurrency?

Build a framework to make the 
implementation easy.



What are your plans to deal with…
Distributed Memory?

Do what we are currently doing.



What are your plans to deal with…
Memory Overhead?

Uhh…

Adaptable templated array iterators.

Incremental algorithms?



What are your plans to deal with…
Fault Tolerance?

Nothing directly…

…but could potentially leverage programming 
models with fault tolerance.



What is your philosophy for dealing with 
ambiguity of the exascale architecture.

The right thing to do is isolate and minimize 
the parallel-specific code.

Also the logical place to isolate the porting.



Execution 
Environment

Cell Operations
Field Operations

Basic Math

Control 
Environment

Map Field
Interpolate Cell
Point Neighbors
Make cells

Device 
Adapter

Allocate
Schedule

Sort
…

W
orklet



How is your technology implemented?

Worklets make it easy to design local 
operations.

Building blocks of communicative operations 
complete the algorithms.



Generate Triangles (Local) Connect Surface (Communicative)

template<class CellType>
DAX_WORKLET void CellGradient(...)
{

dax::Vector3 parametricCellCenter = dax::make_Vector3(0.5, 0.5, 0.5);
CellType cell = work.GetCell();
dax::Vector3 value = dax::exec::cellDerivative(work,

cell,
parametricCellCenter,
points,
point_attribute);

work.SetFieldValue(cell_attribute, value);
}

Templated to adapt 
to different cell 
structures.

Familiar vis structres
(vectors, points, 
cells, coordinates).

Hazard-free 
data access.



Threshold Operation with Unused Point Removal

Dax Framework

Worklet

Worklet

Worklet
S

c
h

e
d

u
le

r

C
o

m
m

u
n

ic
a

ti
v
e

 
C

o
m

m
u

n
ic

a
ti
v
e

 
O

p
e

ra
ti
o

n
s



What is the long-term result for this effort?

Production software.


