SAND2012- 3209P

Design Space Exploration and Co-design

Sudip Dosanjh

Extreme Scale Computing
Sandia National Laboratories

Exascale Research Conference
April 16, 2012
Portland, OR

Sandia
!11 National

Laboratories

Goal

Provide guidance/feedback to architects and
algorithms/application researchers as we
explore options for exascale and potential

tradeoffs

Sandia
!11 National

Laboratories

A Mantevo™ Project

* Greek: augur, guess, predict, presage

» Multi-faceted application performance project.
- Started 4 years ago.
« Two types of packages:
= Miniapps: Small, self-contained programs.
« MiniFE/HPCCG: unstructured implicit FEM/FVM.
- phdMesh: explicit FEM, contact detection.
« MiniMD: MD Force computations.
« MiniXyce: Circuit RC ladder.
-« CTH-Comm: Data exchange pattern of CTH.
= Minidrivers: Wrappers around Trilinos packages.
- Beam: Intrepid+FEI+Trilinos solvers.
- Epetra Benchmark Tests: Core Epetra kernels.
- Dana Knoll working on new one.

* Open Source (LGPL)
 Staffing: Application & Library developers.

Sandia
National
Laboratories

Can we trust mini-applications?

FY12 L2: Characterize the
role of mini-applications in
predicting key performance
CharaCteriStiCS Of real ASC miniapp measurements {A} = A, A,, ..., A,
applications. Then

For diagnostics {D} = D, D,, ..., D,

baseline observations {B} = B,, B,, ..., B, and

X =|B.=A |, foralli
Does information from
o)] pass, for T, < X < T?,
miniapp exploration result in v.= caution, for 2 <X < T
code changes? SO
for thresholds T.

Are they static?

Sandia
National
Laboratories

Potential O(1000) reduction in complexity

miniMD as predictor
time X, = || B, —

for LAMMPS?
Al /B,

400
—_— 358
208]
%— % 308
Q Q .
% 150 - 32k@toms?l § 250 —_ - —
5 . -]16k@rtomsa RS
B Total time 3 200
S Jom Skilrtom s g ~-32K@itomsE)
N 10B i,
E == 4k@rtomsEl g 158 FO rce -= 1 6k@tomsel
§ S 109 skmtoms?
e ~“<4kititomsP
5B
[0} (0]
ol le) 27 30 4R 50 60 8Bl (0] 1@ 2P 3a 4P 5B 60 80
NumberfProcessoriores
50m 350
—- 32kimitomsh
450 Cat Nainht — 32k@itomstl
- 16kRitomsP be[lVelgnDOrS 3008 A -.-16k®t0m57
408 giartomsE Inter-process
= = 2508 : : Sk@itoms?
= 4=]
3 3508 4kaitoms E —<=4ki@itomskl
<
g 30m S 200
& / . s
3 258 - B
S / g 150
N 200 S
£ // £ 100
5 150 g
2
10m 50
5 ' /% —
-\{/' M 0 T T T T T] —
orl \’\ g T T
] orl 1R 20 30 41 5@ 601 8@l
0 1 2P 30 4P 5 6 8P
NumberfProcessorioresP! Numberf#rocessoriores es

40

30

N
(=

% difference
~
S

An

% difference

Charon and miniFE: strong scaling MPI bytes sent per core

~—1 DOF:BiCGStab+ILU(0)
=3 DOF:BiCGStab+ILU(0)

miniFE as predictor for Charon?

X =B —All/B

Execution on Cielo, Cray XE6

3 DOF:GMRes()+ILU(2)
Weak scaling: Charon and miniFE, msgs per core
32 256 2048 16384 45
: A " 35
20 ——1 DOF:BiCGStab+ILU(0)
=3 DOF:BiCGStab+ILU(0)
o 25
- 3 DOF:GMRes()+ILU(2
miniFE and Charon: S 20 3 DOF GMReS() ML{ d
o —— .
cache HR, XE6 Magny-Cours(8) = 15 ’ esl)+
70.00 ::
1
60.00 ~-L1HR 0
=2 HR
50.00 13 HR
40.00 5 32 256 2048 16384
30.00 -10
Number of processor cores
20.00
10.00
0.00 -
-10.00 matrix assembly preconditioner solver
-20.00
-30.00 _
Sandia
National
Laboratories

Facets of Co-design

Measurement

Miniapplications studies on testbeds/prototypes
provides feedback to both architects and
application developers

Experiments

Emulation
- Xstack (ParalleX, HPX, qthreads)
Detuning studies

Prediction
Simulation/modeling, AMMs, miniapps

Sandia
rl1 National

Laboratories

Measurement

Sandia
National
Laboratories

—

oL

o Intel Many Integrated Core
(MIC) testbed with Knights
Ferry co-processors

o Cray XK6 with Nvidia GPUs

o Convey HC-1ex

o AMD Fusion cluster: a
heterogeneous CPU/GPU
node with common memory
address space

o Tilera TILE-Gx36 Processors

YA =g
MY A

Amrnad A s iy, by o

Recent Testbeds

DDR3 Contraller

2 UART, 2 USB
ITAG, I'C, SPI

PCle 2.0 - 8 Lanes

PCle 2.0 - 4 Lanes

PCle 2.0 -4 Lanes

Flexible 1/0 36 Cores

MiCA DDR3 Controller

-
“miniFE” is a Finite-Element mini-application

Implements algorithms from an implicit finite-element application

1. Assemble a sparse linear-
system from the steady-state

conduction equation on a / _ b - dx, \
domain of hexahedral HooRt .
elements Pi=To
else r [T
n] - r r
2. Solve the linear-system using ik _ ’;“’”:lﬂ .
the Conjugate Gradient e
. Ay =y !/ P, AP
algorithm .
X = X T O Py

Per iteration: y P =T, — 0, Ap,
2 dot-products K

3 axpys
1 sparse matrix-vector product

Sandia
!11 National

Laboratories

Performance Results

GPU vs. CPU Speedup

m GenStructure

®m Assembly

E Solve

m Qverall

—_—

™ I I
™ A I
™ A I
™ I I
™ A I

-1l

I I GPU: M2090
r CPU: Xeon E5-
20 30 40 50 60 70 80 90 00 110 120 130 140 150 2680@2.7 Ghz
(8 cores)

N1/3

Sandia
m National

Laboratories

MiniFE/GPU Studies®

Mantevo/MiniFE = FE construction + assembly + solve

Activities: Take-away messages:

* Port & refactor MiniFE. - (Nvidia) Increase max registers
« Study bottlenecks. per thread:

Findings: - More shared memory per thread.

« Simple lock-based assembly Better register spilling.

sufficient (<1%). - Smarter compilers.
- Faster register spilling.

- Larger L1/L2 caches per thread.
. Requires a lot of state * (Sandia) Reduce thread-state size:

- Leads to large amounts of register - Stripmine FE construction.
spilling. - Explore other thread-to-work

mappings.

* FLOP-rich construction
performance is suboptimal:

- Operation is bandwidth bound
due to register spilling.

*Luitjens, Williams, Heroux, Optimizing miniFE an Implicit Finite Element
Application on GPUs, SIAM PP12, Savannah, GA, Feb, 2012.

Sandia
!11 National

Laboratories

e

for (i = 0; i < nlocal; i++) {
neighs = neighbor.firstneighli];
numneigh = neighbor.numneighli];
xtmp = x[i][0];

MiniMD on Testbeds

ytmp = x[i][1]: * High proportion of time spent in
ztmp = x[i][2]; force loop
for (k = 0: k < numneigh: k++) { - Does not vectorize automatically

= Needs manual vectorization

* Threading is an even greater
challenge

» Opportunity for gather/scatter
if (rsq < cutforcesq) { memory operations — feedback
sr2 = 1.0/rsq; from Intel

Sr6 = sr2*sr2*sr2; . .

force = sr6*(sr6-0.5)*sr2; Opportunity t.O emplo){ ma_Sked
vector operations to simplify code

f[i][0] += delx*force; and improve vector code

flij[1] += dely*force;
flil[2] += delz*force; performance
f[jl[0] -= delx*force;
f[j][1] -= dely*force;
flil[2] -= delz*force;

j = neighs[K]; &=
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely ##delz*delz;

Sandia
National
Laboratories

Experiments
and Emulation

Network / Compute Balance Experiments
on Red Storm and Cray XT5 Platforms

Compute Node Diagram GOAL: Gather data to guide network
bandwidth requirements for future
Coherent systems
Opteron | MYPerTiansker | opteron + Modified Cray BIOS to allow setting
Socket 1 = wermeomea™ Socket 2 network injection bandwidth to speeds
(6 Cores) (6 Cores) listed in table below

« Result is platform with configurable

Non-Coherent injection bandwidth

HyperTransport . L .
(modified) = Tool for analyzing application sensitivity
to system balance
= Run full-scale experiments in real-time
SeaStar P
Network Link F
Interf in requency
terface 8 Width 8 bits wide 16 bits wide
200 MHz 400 MB/s 800 MB/s
400 MHz 800 MB/s 1600 MB/s
800 MHz 1600 MB/s 3200 MB/s

Links to 6 Neighbors

Sandia
National
Laboratories

Theoretical Peak Bandwidths per—dlrect/on‘,?_
15 HyperTransport is full-duplex iy

16

Performance Relative to Full Bandwidth

Performance Relative to Full Bandwidth

2.25

1.75

1.5

1.25

0.75

2.25

1.75

1.5

1.25

0.75

Application Results

CTH + Sage most impacted;
XNOBEL jumps suddenly with Eighth BW Degradatlon

BW Deqradatlon
Half m—

fffffffffff CTH

L] Quarter bmmmm |
Eighth s

192 384 768 1536 1920
Cores

xNOBEL

12 24 48 96

BW Deqrédatioﬁ
Half I

|| Quarter mmmmm
Eighth m.

192 384 768 1536
Cores

12 24 48 96

Performance Relative to Full Bandwidth

Performance Relative to Full Bandwidth

2.25

1.75

1.5

1.25

0.75

2.25

1.75

1.5

1.25

0.75

BW Deqradatlon

Half —

Quarter =
Eighth s

'SAGE

12 24 48 96 192 384 768 1536 1920
Cores
BW Deqradation
Half -
Quarter Charon
Eighth .

S ata Red Storm Network / Compute
Balance Experiments

« CTH 2048 nodes, 4096 cores:

Network Speed Runtime (s) %RI::;?;? %:Ennc;':;;e
Full 1519 -- --
Half 1671 10 % (7 %)
Quarter 1975 30 % 1%
Eighth 2127 40 % 4 %

« AMG2006 2048 nodes, 4096 cores:

Network Speed Runtime (s) %Rlncrt_ease %lIncrease
untime Energy
Full 859 = —
Al 852 (1%) (16 %))
Quarter 858 0% (23 %)
17 Eighth 867 (1%) (26 %)

HPX Runtime Software System

« Current version of HPX provides the following
infrastructure as defined by the ParalleX execution model
= Complexes (ParalleX Threads) and ParalleX Thread Management
= Parcel Transport and Parcel Management
= Local Control Objects (LCOs)
= Active Global Address Space (AGAS)

rocCess manager local memory performance performance
P g management counters monitor

AGAS "t
m translation B
& OO

L 1 LCOs

parcel action g g g
port parcel manager - -

thread thread poal
handler f manager 'p

Sandia
National
Laboratories

Courtesy of LSU and Indiana

HPX allows multiple simulation
phases simultaneously

Performance Impact of Removing Global Barriers

1-D AMR with quad precision using 2 levels of refinement

| ' | f | ' | ' |
— Performance upper limit for cases with a global barrier
—r=0
—r=44
= — =68
.= 0.15 r=2384
.
g
S
= 0.1F .
=
£
“£20.05 .
0 | | /

\ l L l I
0 500 1000 1500 2000 2500 3000

Physical Time

- ParalleX based AMR removes all global computation barriers, including the timestep
barrier (so not all points have to reach the same timestep in order to proceed
computing)

Sandia
!11 National

Laboratories

r—— GTC with static MPI vs. dynamically

scheduled HPX
MPI

* Preliminary experiments show asynchronous
scheduling (HPX) changes the
communication pattern vs. MPI —)

* Asynchronous communication (HPX) uses
many more, much smaller messages, but less
aggregate network bandwidth

1E+09 ‘ _MPI

PLLLLUE Rl —HPX
J HPX

7.8e+08

5.2e+08

2.6e+08

“A 100000000 |

10000000 -

L3e+07

S S
——

—
—_

1000000 -L

9.6e+06

100000

6.4e+06

10000

P —
—

3.2e+06

Network Bandwidth (B/s

T YT YT YT YT YT YT YT YT T YT YT T YT TITITITTIOYTOT

TANNMOTOD OMNMNODOODO T ANMTWOLONMNOOO®

Tme(s) "~~~ "7 7777

Sandia
m National

Laboratories

“%“ Qthreads Lightweight Threading

* Task-based runtime RO ...

- Tool for programming JOOI[EODI B tighpertorance
model research (D) @ e ofiectval bavances

. Supports both OpenMP- | = || | | o ST
like models and more S0l [§do
complex Chapel-like =
models Unbalanced Tree Search Benchmark

- Presents simplified 7 >
model of system to the 1 A
application . .

- High-performance 8 1 A
scheduler o . . . —

1 2 4 8 16 32

Cores
== Qthreads ==|ntel TBB ===|ntel OpenMP

GCC OpenMP ===Cilk

Prediction

 Abstract Machine Models
* Proxy Applications
 Simulators

L e
What is an Abstract Machine Model?

Definition: An Abstract Machine model represents the
machine attributes that will be important to reasoning
about code performance

* Enables us to reason about how to map algorithm onto
underlying machine architecture

« Enables us to reason about power/performance trade-offs
for different algorithm or execution model choices

 Want model to be as simple as possible, but not neglect
any aspects of the machine that are important for
performance

Sandia
ﬂ'l National

Laboratories

Ho‘tional Multi-Scale Abstract Machine Model

(what do we need to reason about when designing a new code?)

For each parameterized machine attribute, can
« Ignore it: If ignoring it has no serious power/performance consequences

« Abstract it (virtualize): If it is well enough understood to support an automated
mechanism to optimize layout or schedule

This makes programmers life easier (one less thing to worry about)

- Expose it (unvirtualize): If there is not a clear automated way of make decisions
Must involve the human/programmer in the process (make pmodel more expressive)
Directives to control data movement or layout (for example)

Want model to be as simple as possible, but not neglect any
aspects of the machine that are important for performance

i N otional Multi-Scale Abstract Machine Model

(what do we need to reason about when designing a new code?)

Cores
*How Many
*Heterogeneous
*SIMD Width
Network on Chip (NoC)
*Are they equidistant or
*Constrained Topology (2D)
On-Chip Memory Hierarchy
*Automatic or Scratchpad?
*Memory coherency method?

Node Topology
*NUMA or Flat?
*Topology may be important
*Or perhaps just distance
Memory
*Nonvolatile / multi-tiered?
*Intelligence in memory (or not)

Fault Model for Node

* FIT rates, Kinds of faults
* Granularity of faults/recovery

Interconnect

*Bandwidth/Latency/Overhead
*Topology

Primitives for data
movement/sync

*Global Address Space or
messaging?
*Synchronization
primitives/Fences

Sandia
m National
Laboratories

o = An SoC Model

Processor Core (ARM, Tensilica, MIPS deriv) — — — A
With extra “options” like DP FPU, ECC 0o Ef oo \r 0o \r oo \J
)
Bo 00 \ il \ SEAN

NoC Fabric: (Arteris, Denali, other OMAP-4) b D

B
DDR3 1600 memory controller (Denali / B 55 =5 —
Cadence, SiCreations) L oo \ 220N 0 \
+ Phy and Programmable PLL : |)

PCle Gen3 Root complex

I/0
Integrated FLASH Controller
10GigE or IB DDR 4x Channel

Sandia
m National
Laboratories

Draft FY13 L2: Study
key performance
Issues of ASC
Applications executing
on emerging
technologies

Testbeds

Miniapps

AMMs
Simulation/Modeling

0.1 -‘I’Bls

DRAM: 300-1000 GB

O.ZS‘TB/S

Integrated memory: 50-100 GB, 4-5TB/s

Sandia
National
Laboratories

-

for co-design

Structural Simulation Toolkit

» Parallel

« Parallel Discrete Event core with conservative
optimization over MPI

* Holistic

» Integrated Tech. Models for power

* MCcPAT, Sim-Panalyzer

* Multiscale

* Detailed and simple models for processor,

network, and memory
« Current Release (2.0) at

http://lwww.cs.sandia.qov/sst/

Hierarchical co-simulation is a key

* Includes parallel simulation core, configuration, power
models, basic network and processor models, and

interface to detailed memory model

Gir

CRAN

D

UKIVERSITY

AMD

A\

Mellanox

Instruction
Trace
Instrucl_lon High-leve #Stats. IF Memory
| Execution | nterface’ | nproeessor#pPower VF Component
. Componentéb) Cast UF <)
Message Low-leve /n?.?nl'i NIC
Trace Interface & ®Tech. FF i T~
— Y L Component
Synthetlc / ; G psi
- A
Messages Sy
el [
-~ Events Router)
~ ~| Gamponent
=7
S Esan
8
Stats. I/F R..x % \ component
Generic Power IYF %‘ﬁ” '
Component | Cast I/F
VT Component
OAK
» —~ T
RIDGE @

o (oD

Adicron

h

Sandia
National

Laboratories

.

> @

-SST simulations have quantified the impact of
the Memory Wall

@ Floating Point Address

@ Integer @ Integer Address
@ Branch @ Branch
® Memory O Int Data

@ Floating Point

Integer
Instruction
Usage

Instruction
Mix

« Most of DOE’s Applications (e.g., climate, fusion, shock physics, ...)
spend most of their instructions accessing memory or doing integer
computations, not floating point

« Additionally, most integer computations are computing memory
Addresses

« Advanced development efforts are focused on accelerating memory
subsystem performance for both scientific and informatics
applications

T YA L =35 Sondia
NI A’ R4 National
e Nteem oo misat Laboratories

iministration

e 8ST is providing architectural insights to algorithms

la(x) |

developers

Input: SST Trace for SpMV.

Lots of instruction stream data.

Model: Use restricted sin? function to
mark start/finish of each instruction.

Use FFTs to analyze behavior.

0r
60~
501
40
30
201
10

Number if “in-flight” instructions vs. clock cycle.

E=luln}

1000

1S00

Zooo 2oT00

Important cycle frequencies | -

-10

Trace fragment from SpMV inner loop

j I; issue complete &
59 he 737 741 4
6l lwz T35 T44 6
61 1id 740 746 6
62 | addi 742 746 4
63 | addi 742 746 4
64 | rlwinm | 743 746 3
65 lfd= 744 850 106
66 | fmadd | 8549 2564 5
67 he 850 2564 4
68 lwz 851 85T 6
(it l1id 853 250 i}
70| addi 855 =50 4
71| addi 855 250 4
72 | rlwinm | 856 =50 3
T3 lfdx= 857 =86 29
74 | fmadd | 885 200 5
Th he 286 =200 4
TH lwz 887 =203 6
TT 1id 889 205 6
TE addi 8201 =05 4
™ | addi 8291 =205 4
80 | rlwinm | 892 =05 3
81 lfd= 893 =209 6
82 | fmadd | 898 903 5
&3 he 294 003 4

e

Component Validation

« Strategy: component validation
in parallel with system-level
validation

» Current components validated at

different levels, with different
methodologies

 Validation in isolation

 What is needed
= Uniform validation methodology
(apps)
= System (multi-component) level
validation

TV AT =37
LAINS S

Component Method Error
DRAMSim RTL Lgvel va_lldatlon Cycle
against Micron
Generic Simplescalar ~59,
Proc | SPEC92 Validation °
Comparison vs. existing
NMSU processors on SPEC <7%
RS Latency/BW against <59
Network | SeaStar 1.2, 2.1 °
: Comparison vs. | Ongoing
MacSim Existing GPUs ex;eocfed
Comparison vs several
Zesto processors, benchmarks 4-5%
Comparisons against | 10-
McPAT existing processors | 23%

h

Sandia
National
Laboratories

\

— Sample Results —Node Level

GUPS Memory Power Breakdown
H500 Atoms
= - %4000 Atoms
4 8 16 32

SST Simulation of MD code shows diminishing
returns for threading on small data sets MiniMD Memory Power Breakdown

500
2206.8

375

250

125

0

Normalized
Performance
o = NOW e L

Avg. Memory Latency

nanoseconds

i B EH B B Power analysis help prioritize

GUF’S PageRank MiniMD HPCCG technology investments
Detailed component simulation EE—

I highlights bottlenecks Sandia
NS,) feol

- Sample Results — System Level

200ns / 20% D G00ns/30% |
Simulation of new network APl semantics -y
] L] L] L] ‘, B Y Match/Event : [g—) Portals Cmds
(triggered operations) enabling flexible s R T R
0 0 :] &
collective offload shows advantages in ;
latency and noise tolerance e :
77777777777777777777777777777777777777 sooms/s50% L
I HostI Tree: 10b0 ns Iaténcy, 10 l\lllmsgs/s,lRadix-B — . . .
140000 |- Host Tree w/ Noise: 1000 ns latency, 10 Mmsgs/s, Radix-8 . Simulation uses validated
Triggered Tree: 1000 ns latency, 10 Mmsgs/s, Radix-16 ----%---
Triggered Tree w/ Noise: 1000 ns latency, 10 Mmsgs/s, Radix-16 & Red Storm router model
120000 L Recursive Doubling: 1000 ns latency, 10 Mmsgs/s -9
Recursive Doubling w/ Noise: 1000 ns latency, 10 Mmsgs/s -- --e-.- i -
Triggered Recursive Doubling: 1000 ns latency, 10 Mmsgs/s ¢~ “ao coupled WIth a bIOCK Ievel
Triggered Recursive Doubling w/ Noise: 1000 ns latency, 10 Mmsgsfs — + N|C model(shown above)
100000 [e .
g T and a high level processor
0] TS
£ 80000 |- e - model
8 . g 200000 ‘Host Tree: ‘1000 Hs Iaténcy, W/ Noiée . —
S ” Triggered Tree: 1000 ns latency, w/ Noise
R} ... N \ Hqst Rec. DbI.E 1000 ns latency, w/ No!se
£ 60000 - e . ot o000 | ™ 5 55 1000 eney v e
<_E - N E} g Trig. Diss: 1000 ns latency, w/ Noise
40000 | e - E}“ _ E 100000 e e
e ‘E} (% A g
“ 50000 e -
20000 & e _ i
. == e e
. o S S 3 e S
;r?}'_—:.-:..ﬁ:;-.;;—.;::;—.%.—._':;::'.-' s A v U X" 64 128 256 512 10;2;3(;48 4096 81921638432768
0 1 1 1 1 1 1 1 1
64 128 256 512 1024 2048 4096 8192 16384 32768 Sandia
NS4 Nodes Natona

Laboratories

Conclusions

Co-design needs to impact architectures
and applications/algorithms

Our strategy for co-design has 3 elements:
Measurements, experiments and
prediction

We need to speak with one voice to have
any chance of influencing industry
(especially processors and memory)

Abstract machine models are one
mechanism for engaging the broader
research community and overcoming IP
iIssues

Backup Slides

Related Sandia L2 Milestones

FY12 L2:

Characterize the Role of the Mini-Application in Predicting Key
Performance Characteristics of Real Applications. The Mantevo project
includes a set of application proxies, referred to as mini-apps, and designed by
code developers to represent key runtime performance characteristics of their
applications. SNL will analyze two of these mini-apps to determine how well
they represent the full application programs. Specifically, SNL will profile the
runtime performance of the mini-app and application, characterizing the
relationship between the two on at least two HPC platforms (including Cielo).

Draft FY13 L2:

Study of Key performance Issues of ASC Applications Executing on
Emerging Technologies. Next generation computing platforms are expected
to present significantly different architectural designs from the previous several
generations. In preparation for these changes, we will explore the potential
computing environments from processor core, to node, to inter-node. Our tools
include a set of application proxies (called miniapps), a set of testbeds,
simulation capabillities provided by the Structural Simulation Toolkit, abstract
machine models, and analytic performance models. The outcome will be a
better understanding of the characteristics and capabilities within the context of
the computational science and engineering simulations of interest to the ASC
program on emerging and future architectures and will inform hardware and
software requirements. = Soni
National

Laboratories

Miniapps: Specs

Size: O(1K) lines.

Focus: Proxy for key app performance issue.
Availability: Open Source.

Scope of allowed change: Any and all.

Intent: Co-design: From HW registers to app itself.

Developer & owner: Application team.
Lifespan: Until it’s no longer useful.

Sandia
National
Laboratories

Charon Complexity

SLOCCOUNT (tool from David A. Wheeler)

= Charon physics: 191,877 SLOC.
= Charon + nevada framework 414,885 SLOC
= Charon_TPL 4,022,296 SLOC

Library dependencies:

= 25 Trilinos package.
= 15 other TPLs.

Requires “heroic effort” to build
MPI-only, no intranode parallelism
Export controlled

Sandia
National
Laboratories

MiniFE Complexity

« SLOCCOUNT:
= Main code: 6,469 SLOC
= Optional libraries (from Trilinos): 37,040 SLOC

- Easy to build:

= Multiple targets:

* Internode: MPI or not.

 Intranode: Serial, Pthreads, OpenMP, TBB, CUDA.
= Dialable properties:

- Compute load imbalance.

- Communication imbalance.

- Data types: float, double, mixed.

* Open source

Sandia
National
Laboratories

70 difjerence

40

30

20

10

-10

e |

Charon and miniFE: strong scaling MPI bytes sent per core

Weak scaling: Charon and miniFE, msgs per core

45
40
=1 DOF:BiCGStab+ILU(0) 35
=% 3 DOF:BiCGStab+ILU(0) | DOF.’BiCGSth+/LU(0)
3 DOF:GMRes()+ILU(2) 30 =3 DOF:BiCGStab+LU(0)
§ 2 3 DOF:GMRes()+ILU(2)
g 20 ~-3 DOF:GMRes(}+ML
5 15
, X 10
32 256 2048 16384 5
— 0 -
o . 5 32 256- 2048 16384
-10

Number of processor cores

% difference

70.00
60.00
50.00
40.00
30.00
20.00
10.00
0.00
-10.00
-20.00

-20 00

Number of processor cores

miniFE and Charon:
cache HR, XE6 Magny-Cours(8)

—-L1HR
“*[2 HR
L3 HR

matrix assembl conditioner solver .
. / P ' v Sandia
m National

Laboratories

e HW Synchronization: Full/lEmpty Bits

- Every word in memory gets a full/empty state bit __ -

» Reads/writes can:
= wait for a precondition state
= modify state atomically

* Previous HW Implementations
= Tera/Cray MTA, Cray XMT, XMT2

= MIT Alewife
writeEF
= Denelcor HEP readFF %

readFE

writeEF writeEF

Empty,
Waiters

readFE
readFF

readFE
readFF

writeEF

T YA L =35 smg{‘d"' |
VA TN 3 ional _
e NasersSe o mtsation. Laboratories

FEB Use Cases & Users

« Use Cases

« Producer/Consumer * Users
- Communication/Computation = Multi-Threaded Graph Library
Overlap - Based on Cray MTA/XMT
- Loop Synchronization - Safety
= Low-Contention Low-footprint - Chapel
Safety - General purpose synchronization
- Graph node locking primitive
= Combination - Basic datatype modifier
- Graph node prod/cons = Convey CHOMP Runtime
 Provides for “nearly-atomic”
operations

- Better semantics than “try again’
- Simplifies lock-free algorithms

PNAT=NT) Nottorel
VA TN ional _
e NasersSe o mtsation. Laboratories

Implementation Comparisons

MPI-style Delivery (one writer, N readers)

Loop Synchronization (N writers, 1 reader)

5E+07 1.5E+08
3.75E+07 1.125E+08
3 3
o 2.5E407 S 7.5E+07
Q ol
o o
1.25E+07 3.75E+07
0E+00
8 16 24 32 OE+00
8 16 24 32
Cores C
ores
— 60-bit contended — 64-bit contended . .
60-bit uncontended — 64-bit uncontended — 60-bit contended — 64-bit contended
60-bit uncontended — 64-bit uncontended
Graph Producer/Consumer Graph Node-Locking
1500000 112500000
1200000 90000000
900000 67500000
Q 3]
Q @
z 2
< 8
e} e}
600000 45000000
300000 22500000
. . J/__M
0 8 16 24 32 0 8 16 24 32
Cores Cores

— 64-bit datatype

— 60-bit datatype

— 64-bit datatype

— 60-bit datatype

Does MiniFE Predict Charon Behavior?
Processor Ranking: 8 MPI tasks; 31k DOF/core

* Charon steady-state drift-diffusion BJT

* Nehalem (Intel 11.0.081 —O2 —xsse4.2; all cores of dual-socket quadcore)
» 12-core Magny-Cours (Intel 11.0.081 —O2; one socket, 4 MPI tasks/die)

« Barcelona (Intel 11.1.064 —0O2; use two sockets out of the quad-socket)

» 2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row

» Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time

» Try to compare MiniFE “assembling FE"+"imposing BC” time with Charon equivalent

MiniFE Charon
CG FE assem+BC LS w/o ps |LS w/ps | Mat+RHS
Nehalem | Nehalem Nehalem | Nehalem | Nehalem
MC(1.7) MC(1.7) MC(1.7) MC(1.8) | MC(1.46)
Barc(2.7) | Barc(1.8) Barc(2.8) | Barc(2.5) | Barc(1.52)

Number in parenthesis is factor greater than #1 time

Sandia
National
Laboratories

e

MiniFE Predict Charon? Multicore Efficiency Dual-
Socket 12-core Magny-Cours : 124k DOF/core

* Charon steady-state drift-diffusion BJT; Intel 11.0.081 —O2
* Weak scaling study with 124k DOF/core
» 2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
« Efficiency: ratio of 4-core time to n-core time (expressed as percentage)
» Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
* 100 Krylov iterations for both MiniFE and Charon (100 per Newton step)

MiniFE

cores | CG eff
4 Ref

8 89
12 73

16 61
20 54
24 45

Charon
cores | LS w/o ps eff | LS w/ ps eff

4 Ref Ref
8 87 89
12 74 78
16 61 66
20 49 54
24 40

S,
H 7 [
& 'y

Sandia
National
Laboratories

MiniMD/CPU Studies: Sandia

Mantevo/MiniMD = Molecular Dynamics Lennard - Jones

Activities: Take-away messages:

* Optimizing miniMD * (Intel) Need to improve methods
* Prepare code for future for vectorization

architectures - (Sandia) Investigate code

Findings: vectorization on existing platforms

- Performance critical kernels do (and prepare for the future):
- Look at code structure, pointer restriction,

not vectorize automatically manual inlining etc
o Challenging environment for - Introduce intrinsics to manually vectorize
programming models, compiler
and application
* Direct impact on LAMMPS and
other key MD codes

« Can improve performance of
codes on existing machines

Sandia
ﬂ'l National

Laboratories

