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Provide guidance/feedback to architects and
algorithms/application researchers as we 
explore options for exascale and potential 
tradeoffs

Goal



Mantevo* Project

• Multi-faceted application performance project.

• Started 4 years ago.

• Two types of packages:

 Miniapps: Small, self-contained programs.
• MiniFE/HPCCG: unstructured implicit FEM/FVM.

• phdMesh: explicit FEM, contact detection.

• MiniMD: MD Force computations.

• MiniXyce: Circuit RC ladder.

• CTH-Comm: Data exchange pattern of CTH.

 Minidrivers: Wrappers around Trilinos packages.
• Beam: Intrepid+FEI+Trilinos solvers.

• Epetra Benchmark Tests: Core Epetra kernels.

• Dana Knoll working on new one.

• Open Source (LGPL)

• Staffing: Application & Library developers.

* Greek: augur, guess, predict, presage



For diagnostics {D} = D1, D2, …, Dn,

baseline observations {B} = B1, B2, …, Bn, and

miniapp measurements {A} = A1, A2, …, An ,

Then 

Xi = || Bi – Ai ||i , for all i

pass, for T1
i < Xi < T2

i

Vi =        caution, for T2
i < Xi < T3

i

fail, for Xi > T3
i

for thresholds T.

For diagnostics {D} = D1, D2, …, Dn,

baseline observations {B} = B1, B2, …, Bn, and

miniapp measurements {A} = A1, A2, …, An ,

Then 

Xi = || Bi – Ai ||i , for all i

pass, for T1
i < Xi < T2

i

Vi =        caution, for T2
i < Xi < T3

i

fail, for Xi > T3
i

for thresholds T.

FY12 L2: Characterize the 
role of mini-applications in 
predicting key performance 
characteristics of real ASC 
applications. 

Does information from 
miniapp exploration result in 
code changes?

Are they static?

Can we trust mini-applications?

Potential O(1000) reduction in complexity



miniMD as predictor for LAMMPS?
time Xi = || Bi – Ai ||I / Bi
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miniFE as predictor for Charon?
Xi = || Bi – Ai ||I / Bi

Execution on Cielo, Cray XE6



Measurement

• Miniapplications studies on testbeds/prototypes 
provides feedback to both architects and 
application developers

Experiments

• Emulation

• Xstack (ParalleX, HPX, qthreads)

• Detuning studies

Prediction

• Simulation/modeling, AMMs, miniapps

Facets of Co-design



Measurement

1990s 2010s



Recent Testbeds

Intel Many Integrated Core 
(MIC) testbed with Knights 
Ferry co-processors

Cray XK6 with Nvidia GPUs

Convey HC-1ex

AMD Fusion cluster: a 
heterogeneous CPU/GPU 
node with common memory 
address space

Tilera TILE-Gx36 Processors



“miniFE” is a Finite-Element mini-application

1. Assemble a sparse linear-
system from the steady-state 
conduction equation on a 
domain of hexahedral 
elements

2. Solve the linear-system using 
the Conjugate Gradient 
algorithm
Per iteration:

2 dot-products

3 axpys

1 sparse matrix-vector product

Implements algorithms from an implicit finite-element application
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Performance Results
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MiniFE/GPU Studies*
Mantevo/MiniFE = FE construction + assembly + solve

Take-away messages:

• (Nvidia) Increase max registers 
per thread: 

• More shared memory per thread. 

• Better register spilling. 

• Smarter compilers. 

• Faster register spilling. 

• Larger L1/L2 caches per thread.

• (Sandia) Reduce thread-state size:

• Stripmine FE construction.

• Explore other thread-to-work 
mappings.

Activities:
• Port & refactor MiniFE.

• Study bottlenecks.

Findings:
• Simple lock-based assembly 

sufficient (<1%).

• FLOP-rich construction 
performance is suboptimal:

• Requires a lot of state.

• Leads to large amounts of register 
spilling.

• Operation is bandwidth bound 
due to register spilling.

*Luitjens, Williams, Heroux, Optimizing miniFE an Implicit Finite Element 
Application on GPUs, SIAM PP12, Savannah, GA, Feb, 2012.



MiniMD on Testbeds

• High proportion of time spent in 
force loop

• Does not vectorize automatically

 Needs manual vectorization

• Threading is an even greater 
challenge

• Opportunity for gather/scatter 
memory operations – feedback 
from Intel

• Opportunity to employ masked 
vector operations to simplify code 
and improve vector code 
performance

for (i = 0; i < nlocal; i++) {
neighs = neighbor.firstneigh[i];
numneigh = neighbor.numneigh[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];

for (k = 0; k < numneigh; k++) {
j = neighs[k];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;

if (rsq < cutforcesq) {
sr2 = 1.0/rsq;
sr6 = sr2*sr2*sr2;
force = sr6*(sr6-0.5)*sr2;

f[i][0] += delx*force;
f[i][1] += dely*force;
f[i][2] += delz*force;
f[j][0] -= delx*force;
f[j][1] -= dely*force;
f[j][2] -= delz*force;

}
}

}



Experiments
and Emulation



Compute Node Diagram

Network / Compute Balance Experiments
on Red Storm and Cray XT5 Platforms
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Opteron
Socket 1
(6 Cores)

Opteron
Socket 2
(6 Cores)

SeaStar
Network
Interface

Coherent
HyperTranspor

t
(not modified)

Non-Coherent
HyperTransport

(modified)

Link Frequency
& Width

8 bits wide 16 bits wide

200 MHz 400 MB/s 800 MB/s

400 MHz 800 MB/s 1600 MB/s

800 MHz 1600 MB/s 3200 MB/s

• GOAL: Gather data to guide network 
bandwidth requirements for future 
systems

• Modified Cray BIOS to allow setting 
network injection bandwidth to speeds 
listed in table below

• Result is platform with configurable 
injection bandwidth

 Tool for analyzing application sensitivity 
to system balance

 Run full-scale experiments in real-time

Theoretical Peak Bandwidths per-direction, 
HyperTransport is full-duplex

Links to 6 Neighbors



Application Results
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CTH SAGE

CharonxNOBEL

CTH + Sage most impacted; 
xNOBEL jumps suddenly with Eighth BW Degradation



Red Storm Network / Compute 
Balance Experiments
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• CTH 2048 nodes, 4096 cores:

Network Speed Runtime (s)
%Increase
Runtime

%Increase 
Energy

Full 1519 -- --

Half 1671 10 % ( 7 % )

Quarter 1975 30 % 1 %

Eighth 2127 40 % 4 %

• AMG2006 2048 nodes, 4096 cores: 

Network Speed Runtime (s)
%Increase
Runtime

%Increase 
Energy

Full 859 -- --

Half 852 ( 1 % ) ( 16 % )

Quarter 858 0 % ( 23 % )

Eighth 867 ( 1 % ) ( 26 % )



HPX Runtime Software System

• Current version of HPX provides the following 
infrastructure as defined by the ParalleX execution model
 Complexes (ParalleX Threads) and ParalleX Thread Management

 Parcel Transport and Parcel Management

 Local Control Objects (LCOs)

 Active Global Address Space (AGAS)

Courtesy of LSU and Indiana 18



HPX allows multiple simulation 
phases simultaneously

• ParalleX based AMR removes all global computation barriers, including the timestep
barrier (so not all points have to reach the same timestep in order to proceed 
computing)



GTC with static MPI vs. dynamically 
scheduled HPX

• Preliminary experiments show asynchronous 
scheduling (HPX) changes the 
communication pattern vs. MPI

• Asynchronous communication (HPX) uses 
many more, much smaller messages, but less 
aggregate network bandwidth
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Qthreads Lightweight Threading

• Task-based runtime
 Tool for programming 

model research

 Supports both OpenMP-
like models and more 
complex Chapel-like 
models

 Presents simplified 
model of system to the 
application

 High-performance 
scheduler

High performance 
“sherwood” work-
stealing scheduler 

effectively balances 
cache efficiency with 

load balancing.
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Prediction

• Abstract  Machine Models

• Proxy Applications

• Simulators



What is an Abstract Machine Model?

Definition: An Abstract Machine model represents the 
machine attributes that will be important to reasoning 
about code performance

• Enables us to reason about how to map algorithm onto 
underlying machine architecture

• Enables us to reason about power/performance trade-offs 
for different algorithm or execution model choices

• Want model to be as simple as possible, but not neglect 
any aspects of the machine that are important for 
performance



For each parameterized machine attribute, can 

• Ignore it: If ignoring it has no serious power/performance consequences

• Abstract it (virtualize): If it is well enough understood to support an automated 
mechanism to optimize layout or schedule

• This makes programmers life easier (one less thing to worry about)

• Expose it (unvirtualize): If there is not a clear automated way of make decisions

• Must involve the human/programmer in the process (make pmodel more expressive)

• Directives to control data movement or layout (for example)

Want model to be as simple as possible, but not neglect any 
aspects of the machine that are important for performance

Notional Multi-Scale Abstract Machine Model
(what do we need to reason about when designing a new code?)



Notional Multi-Scale Abstract Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many
•Heterogeneous
•SIMD Width

Network on Chip (NoC)
•Are they equidistant or 
•Constrained Topology (2D)

On-Chip Memory Hierarchy
•Automatic or Scratchpad?
•Memory coherency method?

Node Topology
•NUMA or Flat?
•Topology may be important
•Or perhaps just distance

Memory
•Nonvolatile / multi-tiered?
•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults
• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead
•Topology

Primitives for data 
movement/sync

•Global Address Space or 
messaging?
•Synchronization 
primitives/Fences
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An SoC Model

Processor Core (ARM, Tensilica, MIPS deriv)
With extra “options” like DP FPU, ECC

NoC Fabric: (Arteris, Denali, other OMAP-4)

DDR3 1600 memory controller (Denali / 
Cadence, SiCreations)
+ Phy and Programmable PLL

PCIe Gen3 Root complex

Integrated FLASH Controller

10GigE or IB DDR 4x Channel

memctl

memctl

Memory
DRAM

Memory
DRAM P

C
Ie

F
L
A

S
H
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N
IC

N
IC



DRAM: 300-1000 GB

Integrated memory: 50-100 GB, 4-5TB/s

0.1-0.5 TB/s

0.25-0.5 TB/s

Draft FY13 L2: Study 
key performance 
Issues of ASC 
Applications executing 
on emerging 
technologies

• Testbeds
• Miniapps
• AMMs
• Simulation/Modeling



Hierarchical co-simulation is a key 
for co-design

• Current Release (2.0) at 

http://www.cs.sandia.gov/sst/

• Includes parallel simulation core, configuration, power 
models, basic network and processor models, and 
interface to detailed memory model

Structural Simulation Toolkit
• Parallel

• Parallel Discrete Event core with conservative 

optimization over MPI

• Holistic

• Integrated Tech. Models for power

• McPAT, Sim-Panalyzer

• Multiscale

• Detailed and simple models for processor, 

network, and memory



SST simulations have quantified the impact of 
the Memory Wall 

• Most of DOE’s Applications (e.g., climate, fusion, shock physics, …) 
spend most of their instructions accessing memory or doing integer 
computations, not floating point

• Additionally, most integer computations are computing memory 
Addresses

• Advanced development efforts are focused on accelerating memory 
subsystem performance for both scientific and informatics 
applications



SST is providing architectural insights to algorithms 
developers

• Input: SST Trace for SpMV.

• Lots of instruction stream data.

• Model: Use restricted sin2 function to 
mark start/finish of each instruction.

• Use FFTs to analyze behavior.

Number if “in-flight” instructions vs. clock cycle.

Important cycle frequencies

Trace fragment from SpMV inner loop



Component Validation

• Strategy: component validation 
in parallel with system-level 
validation

• Current components validated at 
different levels, with different 
methodologies

• Validation in isolation

• What is needed

 Uniform validation methodology 
(apps)

 System (multi-component) level 
validation

Component Method Error

DRAMSim
RTL Level validation 

against Micron
Cycle

Generic 
Proc

Simplescalar 
SPEC92 Validation

~5%

NMSU
Comparison vs. existing 

processors on SPEC
<7%

RS 
Network

Latency/BW against 
SeaStar 1.2, 2.1

<5%

MacSim
Comparison vs. 
Existing GPUs

Ongoing
<10% 

expected

Zesto
Comparison vs several 

processors, benchmarks 4-5%

McPAT
Comparisons against 
existing processors

10-
23%



Sample Results –Node Level

Power analysis help prioritize 
technology investments

SST Simulation of MD code shows diminishing 
returns for threading on small data sets

Detailed component simulation 
highlights bottlenecks



Sample Results – System Level

Simulation of new network API semantics 
(triggered operations) enabling flexible 
collective offload shows advantages in 

latency and noise tolerance

Simulation uses validated 
Red Storm router model 

coupled with a block-level 
NIC model(shown above) 

and a high level processor 
model
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Conclusions

• Co-design needs to impact architectures 
and applications/algorithms

• Our strategy for co-design has 3 elements: 
Measurements, experiments and 
prediction

• We need to speak with one voice to have 
any chance of influencing industry 
(especially processors and memory)

• Abstract machine models are one 
mechanism for engaging the broader 
research community and overcoming IP 
issues



Backup Slides



FY12 L2:
Characterize the Role of the Mini-Application in Predicting Key
Performance Characteristics of Real Applications. The Mantevo project 
includes a set of application proxies, referred to as mini-apps, and designed by
code developers to represent key runtime performance characteristics of their
applications. SNL will analyze two of these mini-apps to determine how well 
they represent the full application programs. Specifically, SNL will profile the 
runtime performance of the mini-app and application, characterizing the 
relationship between the two on at least two HPC platforms (including Cielo).

Draft FY13 L2:
Study of Key performance Issues of ASC Applications Executing on 
Emerging Technologies. Next generation computing platforms are expected
to present significantly different architectural designs from the previous several
generations. In preparation for these changes, we will explore the potential
computing environments from processor core, to node, to inter-node. Our tools 
include a set of application proxies (called miniapps), a set of testbeds, 
simulation capabilities provided by the Structural Simulation Toolkit, abstract 
machine models, and analytic performance models. The outcome will be a 
better understanding of the characteristics and capabilities within the context of 
the computational science and engineering simulations of interest to the ASC 
program on emerging and future architectures and will inform hardware and
software requirements.

Related Sandia L2 Milestones



• Size: O(1K) lines.

• Focus: Proxy for key app performance issue.

• Availability: Open Source.

• Scope of allowed change: Any and all.

• Intent: Co-design: From HW registers to app itself.

• Developer & owner: Application team.

• Lifespan: Until it’s no longer useful.

Miniapps: Specs



• SLOCCOUNT (tool from David A. Wheeler)

 Charon physics: 191,877 SLOC.

 Charon + nevada framework 414,885 SLOC

 Charon_TPL 4,022,296 SLOC

• Library dependencies:

 25 Trilinos package.

 15 other TPLs.

• Requires “heroic effort” to build

• MPI-only, no intranode parallelism

• Export controlled

Charon Complexity



• SLOCCOUNT: 

 Main code: 6,469 SLOC

 Optional libraries (from Trilinos):      37,040 SLOC

• Easy to build:

 Multiple targets: 

• Internode: MPI or not.

• Intranode: Serial, Pthreads, OpenMP, TBB, CUDA.

 Dialable properties:

• Compute load imbalance.

• Communication imbalance.

• Data types: float, double, mixed.

• Open source

MiniFE Complexity





HW Synchronization: Full/Empty Bits

• Every word in memory gets a full/empty state bit

• Reads/writes can:

 wait for a precondition state

 modify state atomically

• Previous HW Implementations

 Tera/Cray MTA, Cray XMT, XMT2

 MIT Alewife

 Denelcor HEP

64-bit Data

S
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writeEF

readFE

writeEF

Full,
Waiters

writeEF
readFF

Empty,
Waiters

readFE
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Full,
Free

readFF
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writeEF

readFE
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FEB Use Cases & Users

• Use Cases

 Producer/Consumer

• Communication/Computation 
Overlap

• Loop Synchronization

 Low-Contention Low-footprint 
Safety

• Graph node locking

 Combination

• Graph node prod/cons

• Users

 Multi-Threaded Graph Library

• Based on Cray MTA/XMT

• Safety

 Chapel

• General purpose synchronization 
primitive

• Basic datatype modifier

 Convey CHOMP Runtime

• Provides for “nearly-atomic”
operations

• Better semantics than “try again”

• Simplifies lock-free algorithms



Implementation Comparisons



Does MiniFE Predict Charon Behavior?
Processor Ranking: 8 MPI tasks; 31k DOF/core

• Charon steady-state drift-diffusion BJT
• Nehalem (Intel 11.0.081 –O2 –xsse4.2; all cores of dual-socket quadcore)
• 12-core Magny-Cours (Intel 11.0.081 –O2; one socket, 4 MPI tasks/die)
• Barcelona (Intel 11.1.064 –O2; use two sockets out of the quad-socket)
• 2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
• Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
• Try to compare MiniFE “assembling FE”+”imposing BC” time with Charon equivalent

CG FE assem+BC

1 Nehalem Nehalem

2 MC(1.7) MC(1.7)

3 Barc(2.7) Barc(1.8)

CharonMiniFE

LS w/o ps LS w/ ps Mat+RHS

1 Nehalem Nehalem Nehalem

2 MC(1.7) MC(1.8) MC(1.46)

3 Barc(2.8) Barc(2.5) Barc(1.52)

Number in parenthesis is factor greater than #1 time



MiniFE Predict Charon? Multicore Efficiency Dual-
Socket 12-core Magny-Cours : 124k DOF/core

CharonMiniFE

cores CG eff

4 Ref

8 89

12 73

16 61

20 54

24 45

cores LS w/o ps eff LS w/ ps eff

4 Ref Ref

8 87 89

12 74 78

16 61 66

20 49 54

24 40 45

• Charon steady-state drift-diffusion BJT; Intel 11.0.081 –O2
• Weak scaling study with 124k DOF/core
• 2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
• Efficiency: ratio of 4-core time to n-core time (expressed as percentage)
• Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
• 100 Krylov iterations for both MiniFE and Charon (100 per Newton step)



MiniMD/CPU Studies: Sandia
Mantevo/MiniMD = Molecular Dynamics Lennard - Jones

Take-away messages:

• (Intel) Need to improve methods 
for vectorization

• (Sandia) Investigate code 
vectorization on existing platforms 
(and prepare for the future):

• Look at code structure, pointer restriction, 
manual inlining etc

• Introduce intrinsics to manually vectorize

Activities:
• Optimizing miniMD

• Prepare code for future 
architectures

Findings:
• Performance critical kernels do 

not vectorize automatically

• Challenging environment for 
programming models, compiler 
and application

• Direct impact on LAMMPS and 
other key MD codes

• Can improve performance of 
codes on existing machines


