
Design Space Exploration and Co-design

Sudip Dosanjh

Extreme Scale Computing
Sandia National Laboratories

Exascale Research Conference
April 16, 2012
Portland, OR

SAND2012-3209P

Provide guidance/feedback to architects and
algorithms/application researchers as we
explore options for exascale and potential
tradeoffs

Goal

Mantevo* Project

• Multi-faceted application performance project.

• Started 4 years ago.

• Two types of packages:

 Miniapps: Small, self-contained programs.
• MiniFE/HPCCG: unstructured implicit FEM/FVM.

• phdMesh: explicit FEM, contact detection.

• MiniMD: MD Force computations.

• MiniXyce: Circuit RC ladder.

• CTH-Comm: Data exchange pattern of CTH.

 Minidrivers: Wrappers around Trilinos packages.
• Beam: Intrepid+FEI+Trilinos solvers.

• Epetra Benchmark Tests: Core Epetra kernels.

• Dana Knoll working on new one.

• Open Source (LGPL)

• Staffing: Application & Library developers.

* Greek: augur, guess, predict, presage

For diagnostics {D} = D1, D2, …, Dn,

baseline observations {B} = B1, B2, …, Bn, and

miniapp measurements {A} = A1, A2, …, An ,

Then

Xi = || Bi – Ai ||i , for all i

pass, for T1
i < Xi < T2

i

Vi = caution, for T2
i < Xi < T3

i

fail, for Xi > T3
i

for thresholds T.

For diagnostics {D} = D1, D2, …, Dn,

baseline observations {B} = B1, B2, …, Bn, and

miniapp measurements {A} = A1, A2, …, An ,

Then

Xi = || Bi – Ai ||i , for all i

pass, for T1
i < Xi < T2

i

Vi = caution, for T2
i < Xi < T3

i

fail, for Xi > T3
i

for thresholds T.

FY12 L2: Characterize the
role of mini-applications in
predicting key performance
characteristics of real ASC
applications.

Does information from
miniapp exploration result in
code changes?

Are they static?

Can we trust mini-applications?

Potential O(1000) reduction in complexity

miniMD as predictor for LAMMPS?
time Xi = || Bi – Ai ||I / Bi

0�

5�

10�

15�

20�

0� 1� 2� 3� 4� 5� 6� 7� 8�

N
o

rm
a

liz
ed

�d
if

fe
re

n
ce

�(
%

)�

Number�of�Processor�Cores�

32k�atoms�

16k�atoms�

8k�atoms�

4k�atoms�

0�

5�

10�

15�

20�

25�

30�

35�

40�

0� 1� 2� 3� 4� 5� 6� 7� 8�

N
o

rm
a

liz
ed

�d
if

fe
re

n
ce

�(
%

)�

Number�of�Processor�Cores�

32k�atoms�

16k�atoms�

8k�atoms�

4k�atoms�

0�

5�

10�

15�

20�

25�

30�

35�

40�

45�

50�

0� 1� 2� 3� 4� 5� 6� 7� 8�

N
or

m
a

liz
ed

�d
if

fe
re

n
ce

�(
%

)�

Number�of�Processor�Cores�

32k�atoms�

16k�atoms�

8k�atoms�

4k�atoms�

0�

50�

100�

150�

200�

250�

300�

350�

0� 1� 2� 3� 4� 5� 6� 7� 8�

N
o

rm
a

liz
ed

�d
if

fe
re

n
ce

�(
%

)�

Number�of�Processor�Cores�

32k�atoms�

16k�atoms�

8k�atoms�

4k�atoms�

Total time

Force

Set Neighbors
Inter-process
communication

miniFE as predictor for Charon?
Xi = || Bi – Ai ||I / Bi

Execution on Cielo, Cray XE6

Measurement

• Miniapplications studies on testbeds/prototypes
provides feedback to both architects and
application developers

Experiments

• Emulation

• Xstack (ParalleX, HPX, qthreads)

• Detuning studies

Prediction

• Simulation/modeling, AMMs, miniapps

Facets of Co-design

Measurement

1990s 2010s

Recent Testbeds

Intel Many Integrated Core
(MIC) testbed with Knights
Ferry co-processors

Cray XK6 with Nvidia GPUs

Convey HC-1ex

AMD Fusion cluster: a
heterogeneous CPU/GPU
node with common memory
address space

Tilera TILE-Gx36 Processors

“miniFE” is a Finite-Element mini-application

1. Assemble a sparse linear-
system from the steady-state
conduction equation on a
domain of hexahedral
elements

2. Solve the linear-system using
the Conjugate Gradient
algorithm
Per iteration:

2 dot-products

3 axpys

1 sparse matrix-vector product

Implements algorithms from an implicit finite-element application

00 Axbr 

11

2211 /









kkkk

k
T

kk
T

kk

prp

rrrr





Loop {

} kkkk

kkkk

k
T

k
T

kk

Aprr

pxx

Apprr
k



















1

1

11 /

If k == 1

else
01 rp 

Performance Results

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

S
p

e
e

d
u

p

N1/3

GPU vs. CPU Speedup

GenStructure

Assembly

Solve

Overall

GPU: M2090

CPU: Xeon E5-
2680@2.7 Ghz
(8 cores)

MiniFE/GPU Studies*
Mantevo/MiniFE = FE construction + assembly + solve

Take-away messages:

• (Nvidia) Increase max registers
per thread:

• More shared memory per thread.

• Better register spilling.

• Smarter compilers.

• Faster register spilling.

• Larger L1/L2 caches per thread.

• (Sandia) Reduce thread-state size:

• Stripmine FE construction.

• Explore other thread-to-work
mappings.

Activities:
• Port & refactor MiniFE.

• Study bottlenecks.

Findings:
• Simple lock-based assembly

sufficient (<1%).

• FLOP-rich construction
performance is suboptimal:

• Requires a lot of state.

• Leads to large amounts of register
spilling.

• Operation is bandwidth bound
due to register spilling.

*Luitjens, Williams, Heroux, Optimizing miniFE an Implicit Finite Element
Application on GPUs, SIAM PP12, Savannah, GA, Feb, 2012.

MiniMD on Testbeds

• High proportion of time spent in
force loop

• Does not vectorize automatically

 Needs manual vectorization

• Threading is an even greater
challenge

• Opportunity for gather/scatter
memory operations – feedback
from Intel

• Opportunity to employ masked
vector operations to simplify code
and improve vector code
performance

for (i = 0; i < nlocal; i++) {
neighs = neighbor.firstneigh[i];
numneigh = neighbor.numneigh[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];

for (k = 0; k < numneigh; k++) {
j = neighs[k];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;

if (rsq < cutforcesq) {
sr2 = 1.0/rsq;
sr6 = sr2*sr2*sr2;
force = sr6*(sr6-0.5)*sr2;

f[i][0] += delx*force;
f[i][1] += dely*force;
f[i][2] += delz*force;
f[j][0] -= delx*force;
f[j][1] -= dely*force;
f[j][2] -= delz*force;

}
}

}

Experiments
and Emulation

Compute Node Diagram

Network / Compute Balance Experiments
on Red Storm and Cray XT5 Platforms

15

Opteron
Socket 1
(6 Cores)

Opteron
Socket 2
(6 Cores)

SeaStar
Network
Interface

Coherent
HyperTranspor

t
(not modified)

Non-Coherent
HyperTransport

(modified)

Link Frequency
& Width

8 bits wide 16 bits wide

200 MHz 400 MB/s 800 MB/s

400 MHz 800 MB/s 1600 MB/s

800 MHz 1600 MB/s 3200 MB/s

• GOAL: Gather data to guide network
bandwidth requirements for future
systems

• Modified Cray BIOS to allow setting
network injection bandwidth to speeds
listed in table below

• Result is platform with configurable
injection bandwidth

 Tool for analyzing application sensitivity
to system balance

 Run full-scale experiments in real-time

Theoretical Peak Bandwidths per-direction,
HyperTransport is full-duplex

Links to 6 Neighbors

Application Results

16

CTH SAGE

CharonxNOBEL

CTH + Sage most impacted;
xNOBEL jumps suddenly with Eighth BW Degradation

Red Storm Network / Compute
Balance Experiments

17

• CTH 2048 nodes, 4096 cores:

Network Speed Runtime (s)
%Increase
Runtime

%Increase
Energy

Full 1519 -- --

Half 1671 10 % (7 %)

Quarter 1975 30 % 1 %

Eighth 2127 40 % 4 %

• AMG2006 2048 nodes, 4096 cores:

Network Speed Runtime (s)
%Increase
Runtime

%Increase
Energy

Full 859 -- --

Half 852 (1 %) (16 %)

Quarter 858 0 % (23 %)

Eighth 867 (1 %) (26 %)

HPX Runtime Software System

• Current version of HPX provides the following
infrastructure as defined by the ParalleX execution model
 Complexes (ParalleX Threads) and ParalleX Thread Management

 Parcel Transport and Parcel Management

 Local Control Objects (LCOs)

 Active Global Address Space (AGAS)

Courtesy of LSU and Indiana 18

HPX allows multiple simulation
phases simultaneously

• ParalleX based AMR removes all global computation barriers, including the timestep
barrier (so not all points have to reach the same timestep in order to proceed
computing)

GTC with static MPI vs. dynamically
scheduled HPX

• Preliminary experiments show asynchronous
scheduling (HPX) changes the
communication pattern vs. MPI

• Asynchronous communication (HPX) uses
many more, much smaller messages, but less
aggregate network bandwidth

1000

10000

100000

1000000

10000000

100000000

1E+09

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
B

/s
)

Time (s)

MPI

HPX

MPI

HPX

Qthreads Lightweight Threading

• Task-based runtime
 Tool for programming

model research

 Supports both OpenMP-
like models and more
complex Chapel-like
models

 Presents simplified
model of system to the
application

 High-performance
scheduler

High performance
“sherwood” work-
stealing scheduler

effectively balances
cache efficiency with

load balancing.

0.1

1

10

100

1 2 4 8 16 32

E
xe

cu
tio

n
 T

im
e
 (

se
cs

)

Cores

Unbalanced Tree Search Benchmark

Qthreads Intel TBB Intel OpenMP

GCC OpenMP Cilk

Prediction

• Abstract Machine Models

• Proxy Applications

• Simulators

What is an Abstract Machine Model?

Definition: An Abstract Machine model represents the
machine attributes that will be important to reasoning
about code performance

• Enables us to reason about how to map algorithm onto
underlying machine architecture

• Enables us to reason about power/performance trade-offs
for different algorithm or execution model choices

• Want model to be as simple as possible, but not neglect
any aspects of the machine that are important for
performance

For each parameterized machine attribute, can

• Ignore it: If ignoring it has no serious power/performance consequences

• Abstract it (virtualize): If it is well enough understood to support an automated
mechanism to optimize layout or schedule

• This makes programmers life easier (one less thing to worry about)

• Expose it (unvirtualize): If there is not a clear automated way of make decisions

• Must involve the human/programmer in the process (make pmodel more expressive)

• Directives to control data movement or layout (for example)

Want model to be as simple as possible, but not neglect any
aspects of the machine that are important for performance

Notional Multi-Scale Abstract Machine Model
(what do we need to reason about when designing a new code?)

Notional Multi-Scale Abstract Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many
•Heterogeneous
•SIMD Width

Network on Chip (NoC)
•Are they equidistant or
•Constrained Topology (2D)

On-Chip Memory Hierarchy
•Automatic or Scratchpad?
•Memory coherency method?

Node Topology
•NUMA or Flat?
•Topology may be important
•Or perhaps just distance

Memory
•Nonvolatile / multi-tiered?
•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults
• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead
•Topology

Primitives for data
movement/sync

•Global Address Space or
messaging?
•Synchronization
primitives/Fences

26

An SoC Model

Processor Core (ARM, Tensilica, MIPS deriv)
With extra “options” like DP FPU, ECC

NoC Fabric: (Arteris, Denali, other OMAP-4)

DDR3 1600 memory controller (Denali /
Cadence, SiCreations)
+ Phy and Programmable PLL

PCIe Gen3 Root complex

Integrated FLASH Controller

10GigE or IB DDR 4x Channel

memctl

memctl

Memory
DRAM

Memory
DRAM P

C
Ie

F
L
A

S
H

 ctl

N
IC

N
IC

DRAM: 300-1000 GB

Integrated memory: 50-100 GB, 4-5TB/s

0.1-0.5 TB/s

0.25-0.5 TB/s

Draft FY13 L2: Study
key performance
Issues of ASC
Applications executing
on emerging
technologies

• Testbeds
• Miniapps
• AMMs
• Simulation/Modeling

Hierarchical co-simulation is a key
for co-design

• Current Release (2.0) at

http://www.cs.sandia.gov/sst/

• Includes parallel simulation core, configuration, power
models, basic network and processor models, and
interface to detailed memory model

Structural Simulation Toolkit
• Parallel

• Parallel Discrete Event core with conservative

optimization over MPI

• Holistic

• Integrated Tech. Models for power

• McPAT, Sim-Panalyzer

• Multiscale

• Detailed and simple models for processor,

network, and memory

SST simulations have quantified the impact of
the Memory Wall

• Most of DOE’s Applications (e.g., climate, fusion, shock physics, …)
spend most of their instructions accessing memory or doing integer
computations, not floating point

• Additionally, most integer computations are computing memory
Addresses

• Advanced development efforts are focused on accelerating memory
subsystem performance for both scientific and informatics
applications

SST is providing architectural insights to algorithms
developers

• Input: SST Trace for SpMV.

• Lots of instruction stream data.

• Model: Use restricted sin2 function to
mark start/finish of each instruction.

• Use FFTs to analyze behavior.

Number if “in-flight” instructions vs. clock cycle.

Important cycle frequencies

Trace fragment from SpMV inner loop

Component Validation

• Strategy: component validation
in parallel with system-level
validation

• Current components validated at
different levels, with different
methodologies

• Validation in isolation

• What is needed

 Uniform validation methodology
(apps)

 System (multi-component) level
validation

Component Method Error

DRAMSim
RTL Level validation

against Micron
Cycle

Generic
Proc

Simplescalar
SPEC92 Validation

~5%

NMSU
Comparison vs. existing

processors on SPEC
<7%

RS
Network

Latency/BW against
SeaStar 1.2, 2.1

<5%

MacSim
Comparison vs.
Existing GPUs

Ongoing
<10%

expected

Zesto
Comparison vs several

processors, benchmarks 4-5%

McPAT
Comparisons against
existing processors

10-
23%

Sample Results –Node Level

Power analysis help prioritize
technology investments

SST Simulation of MD code shows diminishing
returns for threading on small data sets

Detailed component simulation
highlights bottlenecks

Sample Results – System Level

Simulation of new network API semantics
(triggered operations) enabling flexible
collective offload shows advantages in

latency and noise tolerance

Simulation uses validated
Red Storm router model

coupled with a block-level
NIC model(shown above)

and a high level processor
model

200ns / 20%

500ns / 50%

300ns / 30%

300ns / 30%

H
o
s
t
I
n
t
e
r
f
a
c
e

300ns / 30%

To Network

From
Network

H
eaders

Portals Cmds

FIFO FIFO

Portals Unit

FIFO

FIFO

FIFO

Engine
Tx DMA

Data

Offload

Atomic

Rx DMA
Engine

FPU

Unit Logic
Trigger

Match/Event

0

50000

100000

150000

200000

64 128 256 512 1024 2048 4096 81921638432768

B
a
rr

ie
r

T
im

e
(n

s)
Nodes

Host Tree: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise
Host Rec. Dbl.: 1000 ns latency, w/ Noise
Trig. Rec. Dbl.: 1000 ns latency, w/ Noise

Host Diss: 1000 ns latency, w/ Noise
Trig. Diss: 1000 ns latency, w/ Noise

Conclusions

• Co-design needs to impact architectures
and applications/algorithms

• Our strategy for co-design has 3 elements:
Measurements, experiments and
prediction

• We need to speak with one voice to have
any chance of influencing industry
(especially processors and memory)

• Abstract machine models are one
mechanism for engaging the broader
research community and overcoming IP
issues

Backup Slides

FY12 L2:
Characterize the Role of the Mini-Application in Predicting Key
Performance Characteristics of Real Applications. The Mantevo project
includes a set of application proxies, referred to as mini-apps, and designed by
code developers to represent key runtime performance characteristics of their
applications. SNL will analyze two of these mini-apps to determine how well
they represent the full application programs. Specifically, SNL will profile the
runtime performance of the mini-app and application, characterizing the
relationship between the two on at least two HPC platforms (including Cielo).

Draft FY13 L2:
Study of Key performance Issues of ASC Applications Executing on
Emerging Technologies. Next generation computing platforms are expected
to present significantly different architectural designs from the previous several
generations. In preparation for these changes, we will explore the potential
computing environments from processor core, to node, to inter-node. Our tools
include a set of application proxies (called miniapps), a set of testbeds,
simulation capabilities provided by the Structural Simulation Toolkit, abstract
machine models, and analytic performance models. The outcome will be a
better understanding of the characteristics and capabilities within the context of
the computational science and engineering simulations of interest to the ASC
program on emerging and future architectures and will inform hardware and
software requirements.

Related Sandia L2 Milestones

• Size: O(1K) lines.

• Focus: Proxy for key app performance issue.

• Availability: Open Source.

• Scope of allowed change: Any and all.

• Intent: Co-design: From HW registers to app itself.

• Developer & owner: Application team.

• Lifespan: Until it’s no longer useful.

Miniapps: Specs

• SLOCCOUNT (tool from David A. Wheeler)

 Charon physics: 191,877 SLOC.

 Charon + nevada framework 414,885 SLOC

 Charon_TPL 4,022,296 SLOC

• Library dependencies:

 25 Trilinos package.

 15 other TPLs.

• Requires “heroic effort” to build

• MPI-only, no intranode parallelism

• Export controlled

Charon Complexity

• SLOCCOUNT:

 Main code: 6,469 SLOC

 Optional libraries (from Trilinos): 37,040 SLOC

• Easy to build:

 Multiple targets:

• Internode: MPI or not.

• Intranode: Serial, Pthreads, OpenMP, TBB, CUDA.

 Dialable properties:

• Compute load imbalance.

• Communication imbalance.

• Data types: float, double, mixed.

• Open source

MiniFE Complexity

HW Synchronization: Full/Empty Bits

• Every word in memory gets a full/empty state bit

• Reads/writes can:

 wait for a precondition state

 modify state atomically

• Previous HW Implementations

 Tera/Cray MTA, Cray XMT, XMT2

 MIT Alewife

 Denelcor HEP

64-bit Data

S
ta

te

writeEF

readFE

writeEF

Full,
Waiters

writeEF
readFF

Empty,
Waiters

readFE
readFF

Full,
Free

readFF

Empty,
Free

writeEF

readFE
readFE
readFF

FEB Use Cases & Users

• Use Cases

 Producer/Consumer

• Communication/Computation
Overlap

• Loop Synchronization

 Low-Contention Low-footprint
Safety

• Graph node locking

 Combination

• Graph node prod/cons

• Users

 Multi-Threaded Graph Library

• Based on Cray MTA/XMT

• Safety

 Chapel

• General purpose synchronization
primitive

• Basic datatype modifier

 Convey CHOMP Runtime

• Provides for “nearly-atomic”
operations

• Better semantics than “try again”

• Simplifies lock-free algorithms

Implementation Comparisons

Does MiniFE Predict Charon Behavior?
Processor Ranking: 8 MPI tasks; 31k DOF/core

• Charon steady-state drift-diffusion BJT
• Nehalem (Intel 11.0.081 –O2 –xsse4.2; all cores of dual-socket quadcore)
• 12-core Magny-Cours (Intel 11.0.081 –O2; one socket, 4 MPI tasks/die)
• Barcelona (Intel 11.1.064 –O2; use two sockets out of the quad-socket)
• 2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
• Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
• Try to compare MiniFE “assembling FE”+”imposing BC” time with Charon equivalent

CG FE assem+BC

1 Nehalem Nehalem

2 MC(1.7) MC(1.7)

3 Barc(2.7) Barc(1.8)

CharonMiniFE

LS w/o ps LS w/ ps Mat+RHS

1 Nehalem Nehalem Nehalem

2 MC(1.7) MC(1.8) MC(1.46)

3 Barc(2.8) Barc(2.5) Barc(1.52)

Number in parenthesis is factor greater than #1 time

MiniFE Predict Charon? Multicore Efficiency Dual-
Socket 12-core Magny-Cours : 124k DOF/core

CharonMiniFE

cores CG eff

4 Ref

8 89

12 73

16 61

20 54

24 45

cores LS w/o ps eff LS w/ ps eff

4 Ref Ref

8 87 89

12 74 78

16 61 66

20 49 54

24 40 45

• Charon steady-state drift-diffusion BJT; Intel 11.0.081 –O2
• Weak scaling study with 124k DOF/core
• 2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ in matrix row
• Efficiency: ratio of 4-core time to n-core time (expressed as percentage)
• Charon LS w/o or w/ ps: GMRES linear solve without/with ML precond setup time
• 100 Krylov iterations for both MiniFE and Charon (100 per Newton step)

MiniMD/CPU Studies: Sandia
Mantevo/MiniMD = Molecular Dynamics Lennard - Jones

Take-away messages:

• (Intel) Need to improve methods
for vectorization

• (Sandia) Investigate code
vectorization on existing platforms
(and prepare for the future):

• Look at code structure, pointer restriction,
manual inlining etc

• Introduce intrinsics to manually vectorize

Activities:
• Optimizing miniMD

• Prepare code for future
architectures

Findings:
• Performance critical kernels do

not vectorize automatically

• Challenging environment for
programming models, compiler
and application

• Direct impact on LAMMPS and
other key MD codes

• Can improve performance of
codes on existing machines

