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ABSTRACT

GentenMPI is a toolkit of sparse canonical polyadic (CP) tensor decomposition algorithms that is
designed to run effectively on distributed-memory high-performance computers. Its use of
distributed-memory parallelism enables it to efficiently decompose tensors that are too large for a
single compute node’s memory. GentenMPI leverages Sandia’s decades-long investment in the
Trilinos solver framework for much of its parallel-computation capability. Trilinos contains
numerical algorithms and linear algebra classes that have been optimized for parallel simulation
of complex physical phenomena. This work applies these tools to the data science problem of
sparse tensor decomposition. In this report, we describe the use of Trilinos in GentenMPI,
extensions needed for sparse tensor decomposition, and implementations of the CP-ALS (CP via
alternating least squares [4, 7]) and GCP-SGD (generalized CP via stochastic gradient

descent [11, 12, 17]) sparse tensor decomposition algorithms. We show that GentenMPI can
decompose sparse tensors of extreme size, e.g., a 12.6-terabyte tensor on 8192 computer cores.
We demonstrate that the Trilinos backbone provides good strong and weak scaling of the tensor
decomposition algorithms.



ACKNOWLEDGMENT

We thank Tammy Kolda for her extensive motivation and guidance in this work; she is too selfless
to accept that she should be a co-author of this technical report, even though it was our intent to
include her as such. We also thank Eric Phipps and Shaden Smith for their guidance on running
the software packages Genten and SPLATT, respectively. And we thank Eric Phipps, Chris
Siefert, Rich Vuduc, and Jeff Young for helpful discussions and suggestions.

This work was supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.



CONTENTS

1. Introduction

2. Using Trilinos and Tpetra
2.1. Parallel distribution and TpetraMaps . ...t
2.2, Tpetra MUltiVECLOTS . . ..ottt e e e e e e e e
2.3 Trilines ContAuNTIGatION . « s s wmsssss s 5 s s msuNaSs5Es 6§55 FASEERAES GRS 5§ § ¢4

3. GentenMPI classes
3.1, SPArse teNSOT . . .ttt ettt e e e
3.2, Factor MAatIiCeS . ...ttt ettt e e e e e e e e e e e e
3.3. Square 10cal MatriCes . .. ... vit ettt e e e e
3.4, Kruskal tensor . .. ..ot e
B SYBEHL sonussnessisassammmunenis s554 ioaBoRRaRaass §15 3 bSO EREENRARES 5§ 5 54
3.6. Sampling Strate@ies . ... ... ...ttt e
3.7, LoSS FUNCHONS . . ..ottt e e e e e et

4. MTTKRP
4.1. Parallel MTTKRP vs. Parallel SpMV .. ... . e
4.2, Implementation .. ... ...ttt e e
4.3. Column-major vs ROW-major ........... ..o ittt iiinennnn

5. CP-ALS
S.1. Algorithm . ..o
5.2, Implementation . .. ... ...ttt e
5.3. Experimental Results ... ......... .. e

6. GCP-SGD
6.1. Distributed-Memory Sampling . .......... ...
6.2. Algorithm and Parallel Implementation .............. . ... ... oo,
6.3. Experimental Results ....... ... . i
6.3.1. Convergence Results ......... ...t
6.3.2. Parallel Distribution for Sampling . ............. ... ... .. i,
6.3.3. Strong Scaling and Timing Breakdown............. ... .. .. .. .....

7. Conclusions and Future Work

References

11
11
12
13

14
14
14
15
15
15
16
16

18
18
18
20

22
22
22
23

26
26
28
30
30
34
34

38
39



References

39



LIST OF FIGURES

Figure 2-1.

Figure 4-1.
Figure 4-2.
Figure 4-3.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

Examples of a distributed matrix and vectors in Trilinos .. ................... 12
The expand and fold communication involved in SpMV ..................... 19
The expand and fold communication involved in MTTKRP . ................. 20
MTTKRP times using column- and row-major layout of factor matrices ....... 21
SPLATT medium-grain distribution . . . ««ccsvssnssssssssssmmsonnsanssassss 23
Weak scaling of CP-ALS . .. ... 24
Strong scaling of CP-ALS on delicious-4d tensor ................c.cccooun... 25
Strong scaling of CP-ALS on amazon-reviews tensor ....................... 25
Uniformly sized box tensor distribution. . ........... ... ..o, 27
GCP-SGD convergence for Chicago crime datatensor . ..................... 31
GCP-SGD convergence for LBNL network tensor . ..............cccoveunn... 32
GCP-SGD convergence for amazon-reviews tensor ... .........c..covuvenen... 33
Runtime comparison with medium-grained and uniform-box distributions. . . . .. 34
Strong scaling of GCP-SGD for LBNL network tensor ...................... 33
Strong scaling of GCP-SGD for random order-4 tensor. . . ................... 36
Strong scaling of GCP-SGD for amazon-reviews tensor ..................... 37






1. INTRODUCTION

GentenMPI is a toolkit of sparse tensor decomposition algorithms that is designed to run
effectively on distributed-memory high-performance computers. Its use of distributed-memory
parallelism enables it to efficiently operate on tensors that are too large for a single compute
node’s memory. And its use of the Trilinos framework’s Tpetra linear algebra classes delivers
scalable performance on large number of processors.

Tensor decomposition is a valuable tool in data analysis and unsupervised machine learning.
Kolda and Bader [16] provide a complete mathematical description of tensor operations and
survey of tensor decomposition methods. Here, we present only the details needed to describe
GentenMPI.

For simplicity, we present algorithms using a three-way tensor X with dimensions 7 X J x K.
GentenMPI, however, handles tensors of arbitrary order and, indeed, many of the results
presented are for tensors with order greater than three. X is assumed to be sparse; that is, most
tensor entries x; j are zero.

Tensor decomposition can be see as an extension of matrix decomposition to higher order. The
commonly used Canonical Polyadic (CP) decomposition [4, 7] is a tensor decomposition in which
tensor X is approximated by M, the sum of R rank-one tensors. For a three-way tensor, CP
decomposition can be written as

R
Xijk & mijk =Y Ay@irh jrCir (1.1)

r=1

where a;y, bjr and ¢y, are entries of factor matrices A € R™R, B € R/*R and C € RE*K,
respectively, and A € R is a weighting vector. We refer to M as the model and represent it by the
Kruskal tensor [A;A,B,C]. The goal is to minimize the difference between X and M with respect
to some loss function f(x,m)

J K
minimize F (X, M) = Z Z Zf Xijk,mijk) subjectto rank(M) <R. (1.2)
i=1j=1k=1

The CP-ALS (canonical polyadic decomposition via alternating least squares) method [4, 7] uses
an L? loss function f(x,m) = (x —m)? in Equation 1.2 and an alternating least squares approach
to solve the optimization; details are in Chapter 5. In their generalized CP (GCP) tensor
decomposition, Hong, Kolda and Duersch [11, 12] support general loss functions. By providing
appropriate loss functions, users can better represent tensors with special form, such as tensors
with binary-valued or non-negative-valued data. A method for solving GCP’s optimization via
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stochastic gradient descent (SGD) was proposed by Kolda and Hong [17]; this algorithm is
described in Chapter 6.

The Matlab toolkit Tensor Toolbox [1, 2] provides implementations of both CP-ALS and
GCP-SGD tensor decomposition. The C++ toolkit GenTen [18, 19] builds on the Kokkos [5, 6]
performance portability library to provide CP-ALS and GCP-SGD implementations that can run
on multicore CPUs and GPUs. In distributed memory systems, the SPLATT [21, 22] library
performs CP-ALS using OpenMP for on-node multithreading and MPI for interprocessor
communication.

Our new GentenMPI implementation provides CP-ALS and GCP-SGD for distributed memory
systems. It leverages Sandia’s decades-long investment in the Trilinos solver framework [9, 8] for
much of its parallel-computation capability. Trilinos contains numerical algorithms and linear
algebra classes that have been optimized for parallel simulation of complex physical phenomena.
Its Tpetra linear algebra package [3, 10] contains classes for distributed maps, vectors,
multivectors, and sparse matrices; these building blocks are used as key kernels of GentenMPI’s
tensor decomposition.

In this report, we describe the implementation and performance of GentenMPI. We provide a
brief introduction to Trilinos’ linear algebra package Tpetra [3, 10]. We then detail GentenMPTI’s
main classes, with their use of Tpetra and extensions needed for sparse tensor decomposition. We
describe the implementation of a key kernel of CP-ALS and GCP-SGD: the MTTKRP
(Matricized Tensor Times Khatri-Rao Product). We then present implementations and results of
CP-ALS and GCP-SGD using GentenMPI. We show that GentenMPI can decompose sparse
tensors of extreme size, e.g., a 12.6-terabyte tensor on 8192 computer cores. We demonstrate that
the Trilinos backbone provides good strong and weak scaling of the tensor decomposition
algorithms.
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2. USING TRILINOS AND TPETRA

The Trilinos [8] framework is designed to provide linear, nonlinear, and eigen solvers, as well as
discretization and load balancing tools, to parallel applications. The tools are designed to run on
distributed memory parallel with multicore or GPU nodes. These components can be combined

with physics descriptions to rapidly construct applications with minimal computer science effort
needed by application developers.

Tpetra [3] is the key linear algebra package in Trilinos. Tpetra contains classes for vectors,
multivectors and matrices, with operations performed in CPUs or GPUs. Tpetra exploits the
Kokkos performance portability layer to enable computation across a variety of platforms.
GentenMPI uses Tpetra to provide factor matrices and parallel distribution maps in tensor
decomposition.

2.1. PARALLEL DISTRIBUTION AND TPETRA MAPS

Tpetra uses the Map class to describe the distribution of vectors and matrices to processors. Each
entity (vector entry, matrix row, matrix column, etc.) has a unique global identifier (ID). The Map
class describes the assignment of these IDs to processors. It also assigns a local identifier to each
global ID on a processor; this local identifier can be used as an array index in local vector data.

The default distribution of IDs in a Map among processors is a linear partition of the IDs; for IDs
{1,2,...,J} on P processors, the default Map would assign IDs {1,2,...,J/P} to processor 0, IDs
{J/P+1,...,2J/P} to processor 1, and so on. Users can obtain other distributions, however, by
specifying the number of IDs to give to each processor or by providing a list of specific IDs to
assign to each processor.

A Tpetra sparse matrix (e.g., Tpetra: : CrsMatrix) has four maps: a row map, a column
map, a domain map, and a range map. The row map of a matrix contains the global indices of
each row for which the processor stores at least one nonzero. The column map contains the global
indices of each column for which the processor stores at least one nonzero. Neither row maps nor
column maps need to be “one-to-one”; that is, many processor may store a given global ID in
their row maps. The domain and range maps describe the distribution of the input vectors and
output vectors, respectively, to be used in sparse matrix-vector multiplication. These maps are
“one-to-one”’; each entry is stored in only one processor’s Map.

Figure 2-1 shows examples of the maps associated with a matrix A, input vector x and output
vector y. In the left example, A is distributed in a row-wise manner, so that all nonzero entries
(marked with x) in a row are assigned to a single processor. The blue processor has nonzeros in
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rows 4 and 5; thus, entries 4 and 5 are in its row map. The nearly dense row 5 causes the blue
processor’s column map to have nearly all column indices. The distributions of x and y to
processors are identical; thus, the range and domain maps are identical. The right example the
same distributions of the input and output vectors, but uses a nonzero-based distribution of the
tensor. The blue processor has nonzero entries in rows 4, 5, and 8; thus, these entries are in its row
map. Note that rows 4 and 5 are also in the red processor’s row map. The column map for the
blue processor is smaller in the right figure, as the blue processor has nonzeros only in rows 4, 5,
6, and 7.

Row-based (1D) Distribution Nonzero-based (2D) Distribution
Process 2 (Blue) Process 2 (Blue)

Row Map = {4, 5} Row Map = {4, 5, 8}
ColumnMap={0,1,2,3,4,5,6,9, 10, 11} Column Map ={4, 5, 6, 7}
Range/Domain Map = {4, 5} Range/Domain Map = {4, 5}

X

AN MM AL A2 AL

Figure 2-1. Examples of a distributed matrix and vectors in Trili-
nos. The left figure uses a row-based distribution; the right
figure uses a nonzero-based distribution. Colors indicate pro-
cessor assignment. The Map entries for the blue processor are
listed.

2.2. TPETRA MULTIVECTORS

Tpetra’s Mult iVector class contains R vectors of length n, distributed to processors according
to a Tpetra Map. In Figure 2-1, the input and output vectors x and y are Mult iVectors of
length n = 12 with R = 1 vector. They are distributed to six processors using “one-to-one”” maps,
so that each entry is uniquely assigned to a processors. Mult iVectors may also have maps
that are “overlapped” (not one-to-one) so that multiple processors have copies of the vectors
entries. Such overlapped maps are used in sparse matrix-vector multiplication (SpMV), where
several processors may contribute to a single output vector’s entry. (See Chapter 4 for details.)
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The MultiVector class provides operations such as dot products, random vector generation,
vector normalization, scaling, and vector norms.

2.3. TRILINOS COMMUNICATION

Trilinos” Teuchos package provides wrappers around MPI Communicators. These wrappers
allows Trilinos to be built with MPI for parallel execution, or without it for serial execution. They
wrap the fundamental operations of MPI (send, receive, reduce, gather), and are used in all of
Tpetra’s distributed objects.

Tpetra provides the class Import to establish communication patterns between pairs of maps.
For example, an Import object can be used to redistribute data from a source MultiVector using
one map to a target Multivector using a different map. They can reverse the communication
pattern as well, sending the data from the target object to the source. Data can be copied or
accumulated into the target object; the latter allows data from several sources to be added into a
single target entry. An Import object uses point-to-point communication in an underlying
Tpetra Distributor class to perform communication.
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3. GENTENMPI CLASSES

GentenMPI’s tensor and factor matrix classes rely on the Tpetra classes described in Chapter 2,
with additional structures needed to support higher-order tensor data.

3.1. SPARSE TENSOR

File: pt_sptensor.hpp

In GentenMPI’s distributed sparse tensor class, each tensor nonzero is assigned and stored on a
single processor. Tensor nonzeros are stored in coordinate format; that is, a nonzero is represented
by its global tensor indices in each mode and its value. A processor’s nonzeros’ indices and values
are stored in Kokkos: : View data structures, analogous to 2D and 1D arrays, respectively.

For each tensor mode, the distributed tensor stores a Tpetra Map, listing the indices in the mode
for which a processor has nonzeros. These maps are analogous to the row and column maps
stored for Tpetra matrices (see Section 2.1, and most closely resemble the overlapped maps used
for matrix distributions (as in Figure 2-1, right). For example, for a nonzero tensor entry x; j in X,
index i is in the mode-0 map, index j is in the mode-1 map, and index & is in the mode-2 map.

Sparse tensors may also have bounding box information specified by a distributed sparse tensor

bounding box class (File: pt_sptensor_boundingbox.hpp). In the case the tensor is distributed
using a “medium-grain” distribution [21], for example, all of the processor’s nonzero entries fall
within a Cartesian product of mode index ranges. These ranges can be stored as a bounding box,
which is required for sampling strategies (see Section 3.6) within the GCP-SGD algorithm.

3.2. FACTOR MATRICES

File: pt_factormatrix.hpp

A factor matrix A € R’”*R is a Tpetra MultiVector of length I with R vectors (see Section 2.2).
It exploits the MultiVector’s methods for normalization, randomization, and norm calculations, as
well as the MultiVector’s map for its distribution. Like MultiVectors, factor matrices may be
distributed uniquely (with one-to-one maps) or with copies (with overlapped maps).

By default, Tpetra stores the MultiVector data in column-major order (Kokkos::LayoutLeft). For
many factor matrix operations, however, data is more efficiently accessed row-wise — that is,
accessing all R entries for a given index i. Thus, GentenMPI modifies the Tpetra MultiVector to
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use row-major storage (Kokkos::LayoutRight). Results showing the benefit of using row-major
storage are in Chapter 4.

3.3. SQUARE LOCAL MATRICES

File: pt_squarelocalmatrix.hpp

A square local matrix G € RR*R is stored redundantly on every processor as a Kokkos: :View
2D data structure. This class is used for Gram matrices of factor matrices and the temporary
matrices computed from them. Operations defined for square local matrices include Hadamard
(elementwise) products with other square local matrices and with the outer product of a vector
with itself and the sum of entries in the matrix (without absolute value). These operations are
useful in forming linear systems within CP-ALS iterations (see Section 3.5) and in computing the
norm of a Kruskal tensor (see Section 3.4), which itself is used in computing the 2-norm of the
residual of a system (see Section 3.5). Square local matrices are nearly always symmetric, but this
symmetry is not exploited in the implementation (computations involving these small matrices are
rarely a bottleneck).

3.4. KRUSKAL TENSOR

File: pt_ktensor.hpp

The distributed Kruskal tensor (ktensor) class contains a factor matrix for each mode of the model
M, and an array A of length R [1]. Factor matrices stored in the ktensor use one-to-one maps;
each factor matrix entry is stored on only one processor. The A array is stored redundantly on
every processor.

3.5. SYSTEM

File: pt_system.hpp

Many operations in tensor decomposition require both a sparse tensor and a Kruskal tensor.
GentenMPI’s distSystem class couples a sparse tensor with a ktensor.

A distSystem’s sparse tensor provides Tpetra maps analogous to the row and column maps of a
Tpetra matrix. Its ktensor provides Tpetra maps analogous to the domain and range maps of a
Tpetra matrix. The distSystem contains additional internal factor matrices for each mode,
distributed according to the sparse tensor’s maps. These factor matrices hold factor matrix entries
corresponding to the stored nonzeros of the sparse tensor and typically have overlapped maps.
The internal factor matrix entries are used, for example, to evaluate the model M at the indices of
the sparse tensor. To update the internal factor matrices, the distSystem uses a Tpetra Import
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object for each mode; the object contains the communication pattern necessary to transfer factor
matrix entries from the ktensor’s distribution to these internal factor matrices, and vice versa.

Operations requiring a sparse tensor and ktensor are also in the distSystem class. These
operations include CP-ALS, GCP-SGD, MTTKRP, residual norm computation, loss function
evaluation, and evaluation of the model M.

3.6. SAMPLING STRATEGIES

File: pt_samplingstrategies.hpp

The GCP-SGD algorithm [17] can involve multiple sampling strategies of a sparse tensor (see
section 6.1). SamplingStrategy is a base class with a derived class for each of three different
strategies: stratified, semi-stratified, and full. All of the sampling strategies involve only local
data, even for the distributed implementation. For all of the cases, the sampled entries are stored
as a sparse tensor (see section 3.1) with both nonzero and (sampled) zero values stored explicitly.
(Kolda [15] uses the term “scarce tensors” to refer to sparse tensors storing both nonzeros and
zeros as we do here.)

The stratified strategy samples nonzeros and zeros separately. Nonzeros are sampled uniformly
from the nonzeros in the original tensor, and zeros are sampled uniformly from within the full
range of indices (in the distributed case, this range is determined by the bounding box of the
sparse tensor, as described in section 3.1). In order to ensure that sampled zeros do not
correspond to nonzero entries, each zero sample must be checked against the nonzero entries of
the original tensor. This is implemented using a hash: all original nonzero entries are hashed with
a Kokkos :UnorderedMap!, and sampled zero indices are checked against the hash before
being accepted as samples.

The semi-stratified strategy also samples nonzeros and zeros separately. Again, nonzeros are
sampled uniformly from the nonzeros in the original tensor, and zeros are sampled uniformly
from within the bounding box. In this case, zero samples are accepted whether or not they
correspond to an original nonzero value; this possible inconsistency is accounted for within the
GCP-SGD algorithm.

The full sampling strategy is used only for testing and debugging. It samples all nonzero values
and all zero values of the original tensor and stores them in sparse format.

3.7. LOSS FUNCTIONS

File: pt_lossfns.hpp

I'The TensorHash class (File: pt_tensorhash.hpp) wraps the Kokkos : UnorderedMap in order to use a variable
number of indices (up to 6).
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The Generalized CP (GCP) decomposition is defined for general loss functions. The loss function
can be specified by a derived class of the base lossFunction class. The base class has three key
operations: function evaluation, partial derivative evaluation, and model lower bound. For
example, for the L? loss function (for Gaussian data), the loss function evaluation returns

f(x,m) = (x —m)?, the partial derivative evaluation returns 3—51 (x,m) = 2(x—m), and the model
lower bound is —eo (implemented as the lowest floating point number). The distributions with
loss functions implemented are Gaussian, Poisson (-log), Bernoulli (odds and logit), Rayleigh,

and Gamma.
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4. MTTKRP

The Matricized Tensor Times Khatri-Rao Product (MTTKRP) operation is a key kernel of many
tensor decomposition methods. In CP-ALS, for example, MTTKRP updates one factor matrix A
of a Kruskal tensor using values from the other factor matrices B and C as follows:

djr = Z xijkbjrckrv i=lyensy 7= 1,004 R 4.1)
JjkeX

In GCP-SGD, MTTKRP updates factor matrices of a gradient ktensor G in a similar manner.

4.1. PARALLEL MTTKRP VS. PARALLEL SPMV

The analogy between parallel MTTKRP and parallel sparse matrix-vector multiplication (SpMV)

—

is strong. In the SpMV (@) = X (D), vector entries of the vector (&) are updated using the values of
(B):

JjeX

In parallel SpMYV, input vector entries b; must be communicated to processors having nonzeros in
column j of the matrix; this communication is called an “expand” communication. The received
values are multiplied by the processor’s x;;. The resulting products are then summed across
matrix rows. All processors with nonzeros in row i must accumulate their partial sums into output
vector entry a;; this communication operation is called a “fold” communication. These expand
and fold operations are illustrated in Figure 4-1.

Parallel MTTKRP requires the same expand and fold communications, as illustrated in

Figure 4-2. In the expand communication, entries from factor matrices B and C are communicated
to processors with corresponding tensor entries. Partial sums are then computed within the
processor. The fold operation then communicates and accumulates the partial sums into the result
factor matrix A.

4.2. IMPLEMENTATION

The MTTKRP implementation in GentenMPI works much like the implementation of SpMV in
Tpetra. Here, we’ll assume factor matrix A will receive the result of the MTTKRP computed from
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X X| X

|
|
ttttt1

X X| X

Figure 4-1. The expand and fold communication involved in
SpMV. In the expand communication, the input vector entries
b; are communicated to processors with nonzeros in column
j- Local products x;;b; are computed. Then the fold commu-
nication accumulates partial sums across processors sharing
matrix rows i into output vector entry g;.

three-way tensor X and factor matrices B and C; this scenario is relevant to CP-ALS
(Chapter 5).

1. MTTKRP requires a di st System object D constructed from the tensor X and a Kruskal
tensor with the factor matrices A, B, and C. During construction of the D, its internal factor
matrices A, B, and C are updated via communication using the Import objects in each
mode. This update constitutes the “expand” communication, and brings to each processor
the factor matrix entries in each mode corresponding to the indices of the processor’s x; jx
entries.

2. Local products are computed within each processor. The processor loops over its owned
tensor entries x;; and multiplies them by the associated entries b jr and €y, accumulating
the results in ;. This operation is a triply nested loop, first over the N, tensor entries on a
processor, then over tensor modes, and then over the rank R.

3. After completion of the local computation, D’s Import object associated with A
communicates values from A back to A, with contributions from multiple processors
summed into A. This operation is the “fold” communication.

4. Once A is updated by all processors, the accrued values of A can be communicated back to
A to keep the internal factor matrices up-to-date with actual factor matrix values.

For GCP-SGD (Chapter 6), the result of the MTTKRP with B and C is not stored in A, but rather,
is stored in an additional factor matrix G. In this case, additional storage G is used to receive the
result of the MTTKRP in step 2, and G is communicated to G in step 3. Step 4 is not needed since
neither A nor A is changed in the MTTKRP.
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Figure 4-2. The expand and fold communication involved in
MTTKRP. In the expand communication, the entries input factor
matrices B and C are communicated to processors with corre-
sponding entries in the tensor X. Local products x;;:b;.c;, are
computed. Then the fold communication accumulates partial
sums across processors into output factor matrix A.

4.3. COLUMN-MAJOR VS ROW-MAJOR

The default layout of data in Tpetra’s MultiVector class is column-major

(Kokkos: :LayoutLeft); thatis, for an I X R factor matrix, the first vector of length 7 is
stored, followed by the second vector of length /, and so on. This layout is convenient for some
linear solvers that need to access a single vector or a subset of vectors of a given multivector.
However, in MTTKREP, all R factor matrix entries for a given index i are accessed together in
step 2 above. The default layout causes strided memory acceses that can lead to poor cache
performance.

A better layout for MTTKRP is row-major (Kokkos: : LayoutRight), in which all R entries
for a given index i are stored contiguously in memory. Thus, GentenMPI uses a modified Tpetra
MultiVector that uses row-major storage; these modifications were trivial and did not
interfere with Tpetra’s communication of multivector data values.

Figure 4-3 shows the difference in performance using column-major vs row-major layouts. This
example was run on one processor of Sandia’s SkyBridge cluster with 2.6GHz Intel Sandy Bridge
processors. It uses the delicious-4d tensor from the FROSTT [20] tensor collection, a

532,924 x 17,262,471 x 2,480,308 x 1443 tensor with 140 million nonzeros. With rank R = 8,
the difference in MTTKRP time between column- and row-major layouts is visible;
column-major layout requires 1.7 times more execution time per MTTKRP. With larger values of
R, the difference becomes even more significant, with column-major layout taking 3.4 times
longer than row-major layout for R = 32.

For all experiments in the remainder of this report, GentenMPI uses row-major
(Kokkos: :LayoutRight) layout for all factor matrices.
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5. CP-ALS

The Canonical Polyadic decomposition (CPD) [4, 7] is a tensor decomposition that uses an L>
loss function f(x,m) = (x —m)? in the optimization in Equation 1.2. CP-ALS — CP solved via
alternating least squares optimization — is one approach for performing this tensor
decomposition.

5.1. ALGORITHM

CP-ALS uses an alternating least squares approach to perform the optimization. A sketch of the
algorithm for three-way tensors is included in Algorithm 1. The method and GentenMPI
implementation extend to tensors of any order; for more details, see Kolda and Bader’s

survey [16]. First, factor matrix A is computed with fixed factor matrices B and C; then B is
updated using A and C; and then C is updated using A and B. The algorithm iterates over the
updates until a desired convergence tolerance is reached or the specified maximum numer of
iterations is exceeded.

Algorithm 1 CP-ALS algorithm for a three-mode tensor X

1: procedure CP-ALS(X,[A;A,B,C)])

2 repeat

3 A < MTTKRP(X,B,C) (CTC+B"B)~!
4: Normalize columns of A

5: B + MTTKRP(X,C,A) (ATA+CTC)~!
6:

7

8

9

Normalize columns of B
C + MTTKRP(X,A,B) (BTBxATA)~!
Normalize columns of C; store norms as A4
until converged or max iterations reached
10: return [1;A,B,C]

5.2. IMPLEMENTATION

In GentenMPI, CP-ALS is implemented using the MTTKRP algorithm described in Chapter 4.
The R x R Gram matrices (CT C x BT B) are small enough to replicate on every processor;
contributions from each processor are accumulated using an MPI_Allreduce operation. The linear
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systems involving these matrices are solved using LAPACK’s GESV method. Convergence is
checked by computing the L?-norm of X — M.

While GentenMPI’s CP-ALS can function with any distribution of the tensor and factor matrices,
faster performance and better scaling is achieved when the number of tensor entries per processor
is balanced and tensor indices are localized to reduce the number of factor matrix entries needed
in MTTKRP. The SPLATT tensor code provides a “medium-grain” decomposition in which the
tensor is divided into subtensors with roughly uniform number of nonzeros per subtensor [21]. In
each mode, then, expand and fold communication is done among processors within a slice of
subtensors. A illustration of a medium-grain decomposition is in Figure 5-1. For a three-way
tensor, P = 48 processors are organized into a three-way 6 x 4 x 2 grid. Cuts in each mode then
greedily assign tensor slices to processors in a way that balances the number of nonzero entries.
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Figure 5-1. lllustration of a SPLATT medium-grain distribu-
tion [21] of a three-way tensor to 48 processors

We adopt this medium-grain decomposition for CP-ALS in GentenMPI. Because equal number of
nonzers are assigned to each processor, this decomposition provides good load balance in the
MTTKRP computation. While it doesn’t explicitly attempt to minimize communication during
MTTKREP, it provides reasonable alignment between factor matrix distributions and needed tensor
entries. And it is inexpensive to compute compared to partitions that do explicitly attempt to
reduce communication, such as the hypergraph methods of Kaya and Ucar [13].

We use the default Trilinos Map layout (Section 2.1) for factor matrices; that is, on P processors,
factor matrix A € R'*R is divided into P chunks of length /P, with processor 0 receiving chunk
{1,2,...,1/P}, processor 1 receiving chunk {//P+1,...,2I/P}, and so on.

5.3. EXPERIMENTAL RESULTS

The main motivation in creating GentenMPI is to enable decomposition of tensors too large to fit
into a single node’s memory. To demonstrate this capability, we study the weak-scaling of
GentenMPI’s CP-ALS by generating random sparse tensors and apply CP-ALS to them. The
generated tensors are four-way tensors with 64 million nonzeros per processor and the mode
lengths adjusted to maintain constant nonzero density of 0.001024. With these characteristics, the
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tensor size is 12.6 Terabytes on 8192 processors: 524 billion nonzeros with four integers and one
double per nonzero.

Weak scaling results on Sandia’s SkyBridge cluster (2.6 GHz Intel Sandy Bridge nodes with
Infiniband network) are shown in Figure 5-2. We show both the average time per CP-ALS
iteration and MTTKRP within a CP-ALS iteration. Clearly, the MTTKRP kernel dominates the
CP-ALS computation. Weak scaling is very good, but degrades slightly due to an increased
number of neighboring processors (and, thus, of messages) as the number of processors increases.
(Envision more layers of processors being added to the processor distribution in Figure 5-1 as the
number of processors increases.)

Weak Scaling, Random, 64M nz per process
H CP-ALS time  E MTTKRP time

16 128

N
o

=
(%]

[y
o

i

o

Time per CP-ALS Iteration (secs)

1024 8192
Number of Processes (One node = 16 processes)

Figure 5-2. Weak scaling of CP-ALS on a four-way random ten-
sor: the time for one CP-ALS iteration is in blue, with the
MTTKRP time per iteration in orange. The largest tensor, de-
composed on 8192 processors, is 12.6 Terabytes.

We next examine the strong scaling of GentenMPI’s CP-ALS implementation, comparing
GentenMPI’s performance with SPLATT [21] and Genten [19]. SPLATT can run with distributed
memory parallelism only (“MPI-only”) or with hybrid distributed memory and shared memory
threading (“MPI+OpenMP”’). We compare with both configurations. For the MPI-only case, we
use the same number of MPI ranks for SPLATT and GentenMPI. For MPI+OpenMP, we use 16
threads per MPI rank and one MPI rank in SPLATT for every 16 MPI ranks in GentenMPI. For
16 processor runs, we compare with Genten with 16 threads.

We begin with the delicious-4d tensor from the FROSTT [20] tensor collection, a

532,924 x 17,262,471 x 2,480,308 x 1443 tensor with 140 million nonzeros. We run with 16 to
1024 cores, with rank R ranging from 8 to 128. Times per CP-ALS iteration are shown in

Figure 5-3. We see that the strong scaling of GentenMPI is good in all experiments. Runtimes are
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generally faster than SPLATT MPI-only; multithreading does make SPLATT’s performance with
MPI+OpenMP superior to GentenMPI. GentenMPI’s runtimes are acceptable when compared to
Genten. GentenMPI has the benefit that it can access sufficient memory for the R = 128 case,
while Genten has the advantage that it can run on both multithreaded CPUs and GPUs.
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Figure 5-3. Strong scaling of CP-ALS on the delicious-4d ten-
sor from the FROSTT [20] collection. GentenMPI times per CP-
ALS iteration are compared with those from Genten [19] and
SPLATT [21] with MPI-only and MPI+OpenMP.

We demonstrate GentenMPI on the larger amazon-reviews tensor from FROSTT, a

4.8M x 1.8M x 1.8M tensor with 1.7 billion nonzeros. This tensor is too large to fit in a single
node of SkyBridge, so comparisons with Genten are not possible. For this tensor, we see in
Figure 5-4 that GentenMPI’s implementation is faster than both SPLATT MPI-only and SPLATT
MPI+OpenMP. Strong scaling is good out to 1024 cores.
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Figure 5-4. Strong scaling of CP-ALS on the amazon-reviews
tensor from the FROSTT [20] collection. GentenMPI times per
CP-ALS iteration are compared with those from SPLATT [21]
with MPIl-only and MPI+OpenMP.
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6. GCP-SGD

Kolda and Hong [17] propose using a stochastic gradient descent method to solve the Generalized
Canonical Polyadic (CP) optimization of Equation 1.2. This algorithm relies on samples of the
full sparse tensor to inexpensively estimate the loss function F' and its gradient with respect to the
model.

6.1. DISTRIBUTED-MEMORY SAMPLING

Uniform sampling of a large sparse tensor would likely select mostly zero valued entries of the
tensor, since the number of nonzeros in a sparse tensor is much smaller than the number of zeros.
To ensure that a sufficient number of nonzeros of the sparse tensor are selected in each sample,
Kolda and Hong present two sampling strategies: stratified and semi-stratified. Stratified sampling
samples p nonzeros and g zeros of X separately, allowing sufficient numbers of nonzeros to be
selected. Semi-stratified sampling samples p nonzeros and ¢ tensor indices separately; tensor
indices include both nonzeros and zeros. A correction to the partial derivative computation
accounts for the possibility that a sampled tensor index may actually be a nonzero. All sampling is
done “with replacement’; that is, a nonzero or zero may be selected and stored more than once.

Distributed-memory parallelism introduces some challenges to effective sampling. Sampling
nonzeros is straightforward; each processor z samples some number p, of its locally stored
nonzeros. Sampling zeros is more challenging because, for sparse tensors, only nonzeros are
explicitly stored. In theory, each processor z could simply sample ¢, indices from the index space
of the entire tensor. In practice, however, this approach has severe parallel performance problems.
Stratified sampling of zeros, for example, requires a check for each selected index to confirm that
it is actually a zero, not a nonzero. In parallel, this check would require all-to-all communication
of all sampled indices to determine whether they are nonzeros on any processor. Even in
semi-stratified sampling, which doesn’t require a check to confirm that sampled indices are truly
zeros, sampling from the entire tensor can cause performance problems, as the resulting set of
indices can require factor matrix entries from all processors for model and MTTKRP
computation. Restricting the domain from which each processor samples zeros can alleviate both
problems.

While the CP-ALS algorithm in GentenMPI can operate with an arbitrary distribution of the
sparse tensor, for GCP-SGD, we restrict the distribution so that each processor owns a unique
“bounding box” of the tensor’s index space. Processors’ bounding boxes may not overlap, and
they must cover the entire index space of the tensor. Thus, each processor is responsible for both
the nonzeros and zeros of a subtensor within the tensor.
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Two bounding box options are available in GentenMPI. The first arises from the SPLATT
medium-grain distribution [21] from Figure 5-1. In this distribution, every processor has an equal
number of nonzeros, but an unequal number of zeros. To sample p nonzeros uniformly across P
processors, p. is chosen to be p/P on every processor z. For load balancing, then, one would want
every processor to use the same value of g, as well, giving an equal number of indices p; + g, on
each processor. However, because bounding boxes are not uniformly sized with a medium-grain
distribution, achieving load balance causes the space of zeros to be sampled nonuniformly, with
the density of sampled zeros being higher in small bounding boxes than in large ones. Conversely,
scaling g, to the size of the bounding box results in imbalanced numbers of sampled indices
across processors.

An alternative is to use uniformly sized bounding boxes for each processor, as in Figure 6-1. This
nearly trivial distribution of the tensor’s index space results in processors having unequal numbers
of nonzeros and zeros, but equal number of indices overall. Thus, to achieve load balance, each
processor z selects s, = (p+¢)/P samples. On processor z with n, nonzeros out of n nonzeros in
the tensor, the number of nonzeros samples p; is p(n;/n); the number of zero samples ¢ is

s; — p.. In this way, the numbers of indices per processor in the sampled tensor are balanced, and
sampling of both zeros and nonzeros is done uniformly across the entire tensor. As a practical
consideration, limits are imposed to ensure that p, is at least 0.1(s;) and no more than 0.9(s;);
these limits ensure that both nonzeros and zeros are sampled even when the distribution of
nonzeros to boxes is very imbalanced (e.g., when p(n;/n) > s.).
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Figure 6-1. lllustration of a uniformly sized box distribution of a
three-way tensor to 48 processors

When using a sampled tensor to estimate the loss function, Kolda and Hong [17] scale the
contributions of selected zeros and nonzeros by a factor that amplifies the contribution based on
sample size. For stratified sampling, they define the estimated loss function F' (Equation 5.2

of [17]) as

F= Y ZfCopmp)+ Y @f&muk)

x;jk 70 ;i jx=0

where the summations are over sampled tensor entries only, N is the total number indices in the
tensor (i.e., the product of the tensor dimensions), n is the number of tensor nonzeros, p is the
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number of nonzeros samples, and ¢ is the number of zero samples. In distributed memory with
local sampling, we locally scale the contributions of each index before summing over all

processors:
A n; (Nz - nz)
F= Y Y S fuemig)+ Y, ———=1(0,mij) (6.1)
all processors z x; ;70 £'< X; k=0 ks
where the inner summations are over sampled entries, and, on processor z, N, is the number of
indices in the bounding box (i.e., the product of the bounding box dimensions), 7, is the number
of nonzeros, and p, and g, are the numbers of nonzero and zero samples, respectively.

6.2. ALGORITHM AND PARALLEL IMPLEMENTATION

To solve the optimization problem in Equation 1.2, Kolda and Hong [17] adopt the Adam
optimization algorithm [14] outlined in Algorithm 2. Here, we follow [17] and write the model
M = [A;{A}], where {A;} is the set of factor matrices making up the model. (In our prior
three-way examples, {A;} = {A,B,C}.) Algorithm parameters &, 1, B, €, T, and Vv are
user-specified parameters controlling the learning rate of Adam; we use the default values from
TensorToolbox [2]: & = 0.001, B; = 0.9, B, =0.999, ¢ = le —8, T = 1000, and v =0.1.
Parameter / is a lower bound of reasonable solution values (e.g., O for non-negative tensors).

Temporary factor matrices {7} } and {U, } are created using the same parallel distribution (i.e., the
same Tpetra Maps) as {Ag}. Thus, the randomization and initialization in lines 2-3 can be done
locally on each processor’s portion of the factor matrices with no communication. Likewise, the
element-wise factor-matrix operations in lines 14-19 can be performed locally; no communication
is needed.

The sparse tensor X is used to estimate error during GCP-SGD. It is constructed via stratified
sampling using a fixed set of sampled indices. Its creation in line 4 requires communication to
create its maps and import objects relative to {A;}. The loss function computation in line 5
requires “expand” communication to send the entries of {A;} corresponding to indices of X as
described Chapter 4; since X contains zero indices that were not in X, processors need different
factor matrix entries than they needed for X. Similarly, expand communication is needed for
line 20 as the entries of {A;} were modified by the loop above.

The stochastic gradient computation is by far the most expensive part of the GCP-Adam
computation. Algorithm 3 provides a high-level overview of our parallel implementation;
mathematical details for stratified and semi-stratified computation are found in [17], Algorithms
4.2 and 4.3, respectively.

In line 2 of Algorithm 3, a sampled tensor Y with s samples is created via stratified or
semi-stratified sampling. The sampling itself is local to each processor, but creation of the
sampled tensor requires communication to construct its maps in each mode. In line 3, we build a
distSystem class to create the communication pattern (import objects) between the Y and
{A;} and expand values from {A;} to processors that need them. Again, Y may have a different
set of zeros from X and X, so different maps and import objects are needed for Y. In line 4, the
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Algorithm 2 GCP-Adam

1: function GCP-ADAM(X, M = [A;{A}], s, &, B1, B2, €, T, V, £)
2 Randomly initialize {A;}
3 {Tx} < 0; {Ux} <0 > temporary factor matrices for {A;}
4: X sparse tensor stratified-sampled from X
5 F « EsTOBI(X, {A(}) > estimate loss with fixed set of samples
6 t<0 >t = # of Adam iterations
7 while max number of bad epochs not exceded do
8 Save copies of {Ay}, {Tx} and {Uy } > save in case of failed epoch
9: Fold —F > save to check for failed epoch
10: for 7 iterations do > T = # iterations per epoch
11: {Gy} < STOCGRAD(X,{Ax},s) > s = # samples per stochastic gradient
12: for k =1, |{A}| do
13 t<t+1
14: T < P17+ (1= B1) G
i5s Ui + BoUi+ (1 —ﬁz)G;% // Adam update depe.nds on
16: T — T/ (1 — B Bi, Bo, €; a = learning rate
17: U+ U/(1-B3)
18: Ak<—Ak—OC-(Tk®( ﬁk‘l-é‘))
19: Ay < max{Ag, ¢} > ¢ = lower bound
20: F < EsTOBI(X, {A;}) > estimate loss with fixed set of samples
21: if F > )4 then > check for failure to decrease loss
22: Restore saved copied of {Ay}, {Ti}, {Ui} > revert to last epoch’s variables
23: F— Fyy > revert to prior function value
24: i4-f—1% > wind back the iteration counter
25 oa<—a-V > reduce the step length

26: return { A; }

29



sampled values in Y are overwritten by the element-wise partial gradient tensor such that

Yijk = g—’{l(xi ik,m;ijk). Then MTTKRP operations (line 6) are used to compute the returned values
{Gy}. Only “fold” communication of {Gy} is needed during MTTKRP as the values of {A;} were
communicated (expanded) during system construction and do not change in the MTTKRP.

Stochastic gradient implementations in TensorToolbox and Genten fuse sampling with the partial
derivative computation. They do not form a sampled tensor but, rather, sample an index and
immediately compute the element-wise derivative at the index, storing it in Y. They can do this
fusion because they operate in a single memory space and have all factor matrix entries available
for use. Since GentenMPI operates in distributed memory, it does not have all factor matrix
entries associated with a given sampled index within a processor; those entries must be
communicated. We construct the sampled tensor, then, so that the communication can be done in
one round rather than for each sampled index.

Algorithm 3 StocGrad

function STOCGRAD(X, {Ax}, 5)
Sample s indices and construct sparse tensor Y
Build distSystem object from Y and {A;}

1:

2

3
. fem Of
4: Y < element-wise Sin
m

5

6

7

for A, € {A;} do
G < MTTKRP(®Y, {Ac}\Am)

return {Gy }

6.3. EXPERIMENTAL RESULTS

6.3.1. Convergence Results

In this section we present convergence results of GCP-SGD for three different data sets, each
using a Poisson loss function and the semi-stratified sampling strategy. Figures 6-2 to 6-4 plot the
values of the loss function over time. The first two datasets are small enough to run on a single
node, and the first experiment is designed to be compared against an existing result using a
MATLAB implementation of the GCP-SGD algorithm [17]. The third data set is too large for
GCP-SGD to execute on a single node, and the experiment is performed using 16 nodes.

Figure 6-2 shows the convergence results for GCP-SGD on the Chicago crime data set from the
FROSTT [20] collection using Poisson loss. The Chicago crime data tensor is

6186 x 24 x 77 x 32 with 5.3 million nonzeros. This result can be compared against [17, Figure
5.6], where the same GCP-SGD algorithm is used (with similar parameter settings) in a
MATLAB environment. In both cases, the Poisson loss converges to approximately 2 .05e7,
though the time required is less for the parallel results. The experiment was performed on a single
node of Skybridge, with one MPI process for each of the 16 cores. The average time per iteration
is 1.24 seconds.
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Figure 6-2. GCP-SGD convergence results for Chicago crime
data, using Poisson loss, rank R = 10, and semi-stratified gradi-
ent sampling. Each of the 92 markers corresponds to an epoch,
each epoch corresponds to 1000 iterations, and each iteration
used a total of 3152 nonzero samples and 3152 index (zero) sam-
ples. The error is estimated using stratified objective function
sampling with 31,588 nonzero samples and 31,596 zero sam-
ples.
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Figure 6-3. GCP-SGD convergence results for LBNL network
data, using Poisson loss, rank R = 10, and semi-stratified gra-
dient sampling. Each of the 30 markers corresponds to an
epoch, each epoch corresponds to 1000 iterations, and each
iteration used a total of 439,879 nonzero samples and 439,881
index (zero) samples. The error is estimated using stratified ob-
jective function sampling with 4,398,859 nonzero samples and
4,398,869 zero samples.
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Figure 6-4. GCP-SGD convergence results for amazon-reviews
data, using Poisson loss, rank R = 16, and semi-stratified gradi-
ent sampling. Each of the 11 markers corresponds to an epoch,
each epoch corresponds to 1000 iterations, and each iteration
used a total of 4,200,196 nonzero samples and 4,200,444 index
(zero) samples. The error is estimated using stratified objec-
tive function sampling with 42,003,186 nonzero samples and
42,003,214 zero samples.

Figure 6-3 shows the convergence results for GCP-SGD on the LBNL network data set from the
FROSTT [20] collection using Poisson loss. The LBNL network tensor is

1605 x 4198 x 1631 x 4209 x 868131 with 1.7 million nonzeros. The experiment was performed
on a single node of Skybridge, with one MPI process for each of the 16 cores. The average time
per iteration is 143 seconds.

Compared to the Chicago crime data set, the LBNL network data set takes over 100 times longer
per iteration. This is because the number of entries in the model is proportional to the sum of the
tensor dimensions, and the number of samples used is chosen to be proportional to the number of
entries in the model. That is, the number of samples used for LBNL network is about 100 times
the number used for Chicago crime, which helps to explain the increase in time.

Figure 6-4 shows the convergence results for GCP-SGD on the amazon-reviews data set from the
FROSTT [20] collection using Poisson loss. The experiment was performed on 16 nodes of
Skybridge, with one MPI process per core, for a total of 256 MPI processes. The average time per
iteration is 869 seconds.
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Figure 6-5. Comparison of runtimes using the amazon-reviews
tensor using L’ loss, rank R = 16, and semi-stratified sampling
using medium-grained partitioning versus a uniform box distri-
bution. Each of the five epochs ran 1000 iterations. Each it-
eration used semi-stratified sampling with approximately 4.2M
nonzeros and 4.2M zeros. Error estimation used stratified sam-
pling with approximately 42M nonzeros and 42M zeros.

6.3.2. Parallel Distribution for Sampling

We compare the performance of Algorithm 2 using the medium-grained distribution and
uniform-box distributions described in Section 6.1. For our experiments, we use the
amazon-reviews tensor from the FROSTT [20] collection. The Amazon data tensor is

4821207 x 1774269 x 1805187 with 1.7 billion nonzeros. In Figure 6-5, we show execution times
for five epochs with 1000 iterations each on the Skybridge cluster with 128 to 2048 processors. In
all cases, the uniform-box distribution resulted in lower execution time and more consistent
scaling performance. With the uniform-box distribution, less time was needed for performing
MTTKRP and building maps between the sampled tensor and factor matrices.

Given the benefit of uniform-box distribution, we use it in all subsequent parallel experiments.

6.3.3. Strong Scaling and Timing Breakdown

Having confirmed the convergence behavior of GentenMPI, we now consider its parallel
performance and strong scaling. Figures 6-6 to 6-8 demonstrate the strong scaling behavior for
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Figure 6-6. Strong scaling for LBNL network tensor using 1>
loss, rank R = 16, and semi-stratified sampling. Each of the five
epochs ran 1000 iterations. Each iteration used semi-stratified
sampling with approximately 10K nonzeros and 10K zeros. Er-
ror estimation used stratified sampling with approximately 100K
nonzeros and 100K zeros.

LBNL network, random, and amazon-reviews data sets. All experiments were performed on
Skybridge, and all used L? loss and the semi-stratified sampling strategy.

The LBNL network data set has order five, with about 1.7 million nonzeros. For the experimental
results in Figure 6-6, we use approximately 200,000 samples to estimate the error and 20,000
samples in the stochastic gradient tensor. On 16 processors (1 node of Skybridge), the time for 5
epochs is 192 seconds. For comparison, Genten [19] takes between 101 and 120 seconds,
depending on the MTTKRP implementation used. The strong scaling is reasonable up to 128
processors, achieving over a 4 x speedup, but there is little reduction from 128 to 256 processors.
At 256 processors, the average number of original tensor nonzeros per processor is quite small —
less than 10,000 — and the number of samples per processor is less than 100.

Figure 6-7 shows experimental results for a random tensor, which allows for perfect load balance
of nonzeros, even in the case of uniform boxes. The random tensor is 1000 x 1000 x 500 x 500
with 256 million nonzeros. We use approximately 5 million samples to estimate the error and 1.5
million samples in each stochastic gradient. Using 16 processors (1 node), GentenMPI took 373
seconds; Genten [19] with 16 threads took between 306 and 1250 seconds, depending on the
MTTKRP implementation used. From one MPI rank to 64 ranks, GentenMPI exhibited a 52.7 x
speed-up.

From the time breakdown, we see that the dominant kernels in this experiment (using up to 64
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Figure 6-7. Strong scaling for random 4D tensor using L’ loss,
rank R = 16, and semi-stratified sampling. Each of the five
epochs ran 1000 iterations. Each iteration used semi-stratified
sampling with approximately 768K nonzeros and 768K zeros.
Error estimation used stratified sampling with approximately
2.6M nonzeros and 2.6M zeros.
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Figure 6-8. Strong scaling for amazon-reviews tensor using >
loss, rank R = 16, and semi-stratified sampling. Each of the five
epochs ran 1000 iterations. Each iteration used semi-stratified
sampling with approximately 4.2M nonzeros and 4.2M zeros. Er-
ror estimation used stratified sampling with approximately 42M
nonzeros and 42M zeros.

processors) are within the stochastic gradient computation: evaluating the partial derivative,
constructing the sampled tensor, and performing the MTTKRP. No communication is needed to
evaluate the partial derivative. Similarly, no communication is needed to sample the tensor, but a
small amount of communication occurs in creating the Tpetra maps describing the distribution of
the sampled tensor (see Section 3.1). The cost of building maps (the communication pattern) and
performing the communication are small in this case, but they grow with the number of
processors.

Figure 6-8 presents results for the amazon-reviews tensor, using between 128 and 2048 processors
of Skybridge (the tensor is too large to run GCP-SGD on fewer processors). We use 84 million
samples to estimate the error and 8.4 million samples for each stochastic gradient. Compared to
the experiment with the random tensor, we see that communication costs become much more
significant in this experiment. The dominant kernels are again in the stochastic gradient
computation, but in this case, the communication costs (building maps and communicating) are
significant on 128 processors and become a bottleneck on 2048 processors. The scaling is nearly
perfect between 256 and 1024 processors, but little speedup is obtained in increasing to 2048
processors.
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7. CONCLUSIONS AND FUTURE WORK

We have described GentenMPI, a toolkit for computing low-rank approximations of sparse
tensors on distributed memory parallel computers. GentenMPI is built on the Trilinos scientific
computing toolkit, which provides data structures and parallel communication classes that can be
exploited in tensor decomposition. Using this infrastructure, GentenMPI provides
implementations of the classic CP-ALS low-rank decomposition using alternating least squares
optimization, and the new GCP-SGD method supporting arbitrary loss functions. We present
parallel distribution strategies for sampling tensors in distributed memory environments. And we
demonstrate that GentenMPI can achieve good parallel scalability, while enabling decomposition
of tensors too large for single-memory computers.

Future work will combine the distributed memory capabilities of GentenMPI with the multicore-
and GPU-capabilities of Genten. Both Genten and Trilinos rely on Kokkos for
performance-portable multicore and GPU kernels. On-node parallelism related to factor matrices
and MPI communication packing/unpacking will be managed by existing Trilinos classes.
On-node parallelism in operations such as MTTKRP will exploit methods in Genten. Some
modification of GentenMPI’s tensor storage will be needed to accommodate use of Genten on the
node. In the end, our multicore and GPU version of GentenMPI will exploit the fine-grained
parallelism in Trilinos and Genten.
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