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Abstract. A rigorous mathematical framework is provided for a substructuring-based domain-
decomposition approach for nonlocal problems that feature interactions between points separated by
a finite distance. Here, by substructuring it is meant that a traditional geometric configuration for
local partial differential equation problems is used in which a computational domain is subdivided into
non-overlapping subdomains. In the nonlocal setting, this approach is substructuring-based in the
sense that those subdomains interact with neighboring domains over interface regions having finite
volume, in contrast to the local PDE setting in which interfaces are lower dimensional manifolds
separating abutting subdomains Key results include the equivalence between the global, single-
domain nonlocal problem and its multi-domain reformulation, both at the continuous and discrete
levels. These results provide the rigorous foundation necessary for the development of efficient
solution strategies for nonlocal domain-decomposition methods.
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1. Introduction. Nonlocal models have become a popular alternative to partial
differential equation (PDE) models due to their ability to describe effects that PDEs
fail to capture. In particular, a nonlocal model can describe multiscale and anomalous
behavior for applications that exhibit hierarchical features that cannot be reproduced
by a classical model. These applications include, among others, subsurface transport
[9, 49, 50], image processing [10, 17, 30, 36], multiscale and multiphysics systems [3, 7],
magnetohydrodynamic [48], finance [47, 46], and stochastic processes [11, 19, 38, 40,
41].

The general class of nonlocal models we consider are characterized by integral
operators having the form

(1) ru(x) = J (u(y) — u(x))-y(x, y) dy ,

where B5(x) denotes the ball (usually Euclidean) centered at x with radius 6 (usu-
ally referred to as the horizon or interaction radius) and ry(x , y) is an application-
dependent kernel function (usually symmetric in its arguments and nonnegative) that
determines the regularity properties of the solution. The nonlocality inherent in (1)
is clear: points x interact with all points y located within a distance 6 . Compared
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to that for the local PDE setting, the integral form clearly reduces regularity require-
ments on the solution and allows for the capture of long-range interactions.

However, the utilization of nonlocal models in applications that result in im-
proved predictive capabilities is hindered by several modeling and numerical chal-
lenges. Relevant to this work there are, e.g., the unresolved treatment of nonlocal
interfaces [2, 13], the nontrivial prescription of nonlocal volume constraints (the non-
local counterpart of boundary conditions) [16, 24], and the fact that computational
costs attendant to the use of nonlocal problems may become prohibitive as the extent
of the nonlocal interactions increases; see, e.g., [18, 23] for variational methods and
[14, Chapter 7] for mesh-free methods. Other critical challenges are related to the
uncertain nature of model parameters; in fact, modeling parameters such as õ and
those characterizing the kernel, applied forces, and/or sources can be non-measurable,
sparse, and/or subject to noise. Research on such topics is very active (see, e.g.,
[6, 5, 20, 21, 22, 17, 31, 42, 43, 44, 52]) but further consideration of them is beyond
the scope of this work.

Here, we focus on the treatment of nonlocal interfaces and, notably on the de-
sign of nonlocal domain-decomposition (DD) formulations with the aim of reducing
computational costs by increasing the parallel concurrency in the numerical solution
of nonlocal problems. Specifically, the goal is to address the high computational cost
associated with nonlocal models by providing a foundational algorithmic framework
for their parallel solution, mirroring that of successful parallel algorithms for DD for
PDEs such as, e.g., Finite Element Tearing and Interconnecting (FETI) [29] and other
approaches [37, 51].

This work is part of a comprehensive effort by the authors to fill the theoretical
and practical gaps in the current understanding of nonlocal interfaces (both physical
ones and those created by DD solution algorithms) by developing a rigorous nonlocal
interface theory for nonlocal diffusion (see the preliminary work [13]), including pure
fractional diffusion, and nonlocal mechanics. Our ultimate goal is to design efficient
and scalable DD solvers to unlock the full potential of nonlocal models. To this end, as
is often done in nonlocal modeling, we take inspiration from the vast literature about
classical DD methods for PDEs. Unfortunately, the extension of local DD methods to
nonlocal models is a nontrivial task: nonlocality introduces many challenges and limi-
tations. Some of these challenges are shared with local DD methods. An example of a
shared challenge is the proper treatment of floating subdomainsi which require special
attention due to the singularity of the discretized equations on such subdomains.

However, other challenges are unique to the nonlocal setting and require new
approaches that have no analogs in the local setting. For example, in the local PDE
setting, a typical class of DD methods commonly starts by breaking the computational
domain into non-overlapping subdomains, a process we refer to as substructuring of the
domain. These subdomains interact only through their shared boundaries on which
one usually imposes some appropriate continuity conditions. Although one starts from
the same initial geometric configuration in which the domain is substructured into non-
overlapping subdomains, inherent nonlocal interactions between the subdomains force
one to expand these subdomains to include parts of neighboring subdomains having
nonzero volume, causing an overlap of a thickness determined by the interaction radius

lIn a multi-domain setting, floating domains are subdomains of the decomposition that are either
internal (they do not share boundaries with the physical boundary) or share boundaries only with
parts of the physical boundary at which Neumann-type conditions are prescribed. In this context
"floatine refers to the fact that these domains either do not have volume constraints because they
are internal, or have partial constraints of Neumann type.
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S. This overlap is required because, in the nonlocal setting, it is not possible to define
subdomain problems simply by restricting the global operator to the subdomains. For
this reason we refer to our approach as being substructuring-based. It is important
to point out that the thickness of the overlap regions depends solely on the modeling
parameter (5 and is unrelated to the discretization method employed and, in particular,
to the grid size. As a result, discretization of the decomposed nonlocal problem
requires special care because the overlapping regions induced by the decomposition
do not, in general, match the underlying mesh.

The current state of the art of nonlocal DD methods is very limited, with [1]
being perhaps the most relevant work. In that paper, the authors consider a simple
two-domain configuration and develop a variational approach to DD based on adding
an interface equation and a new variable that lives on the overlap between the sub-
domains, while using test functions that vanish on the interface for each subdomain.
Decoupling is achieved by solving a Schur-complement problem for the interface vari-
able, similar to a conventional FETI scheme. The subproblem definition in [1] does
not consider multi-domain configurations nor does it consider floating subdomains.
As a result, it is not clear how one extends that approach to the general multi-domain
case.

In this paper we formulate a general framework for nonlocal DD problems with
the central goal being that

(2) 
the discrete solution obtained via the DD approach is identical
to the discrete solution obtained for the parent single domain.

As already mentioned, we refer to our approach as "substructuring-baseT because,
much like as it is in standard non-overlapping DD, the subdomains interact only
through their shared interfaces. Of course, the key difference is that in the nonlocal
setting these shared interfaces are nonlocal, i.e., they are regions having finite volumes
as opposed to the local case in which interfaces are lower-dimensional manifolds.

The main contributions of this paper are as follows.
• We introduce a systematic way to decompose the domain given an existing

mesh for the single-domain problem and we discuss ways to make the de-
composed domains compatible with the given mesh. Specifically, we provide
a recipe for decomposing the domain that prevents integration over partial
(cut) finite elements by using approximate neighborhoods in a manner such
that the equivalence of the decomposed solution and the single-problem one
is not compromised.

• We formulate a continuous nonlocal DD system of subdomain problems and
prove that it is equivalent to the single-domain problem. The key ingredient
is the appropriate definition of indicator functions that keep track of the
number of overlapping subdomains.

• We define a Galerkin finite element discretization of the nonlocal DD problem
and prove that it is equivalent to the discretization of the single-domain do-
main problem effected using the same type of finite element functions. This
equivalence holds for the finite-dimensional variational formulation and for
the corresponding matrix form.

Our nonlocal DD formulation provides a mathematical foundation for the devel-
opment of a range of efficient numerical algorithms for the parallel solution of nonlocal
problems that mirror existing approaches for local problems. For example, treating
the nonlocal interface equations as constraints and using Lagrange multipliers to en-
force them lends itself to the development of nonlocal FETI [29] or Arlequin [25] like
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algorithms Alternatively, one can choose to view these coupling conditions as an an
optimization objective and treat the subdomain equations as constraints. Such an
approach would lead to nonlocal optimization-based DD methods that are nonlocal
counterparts of the methods in [32, 33, 34].

It should be noted though that realizing the potential of our DD framework
to reduce the computational burden of solving nonlocal problems requires the ratio
between 6 and the linear size of the subdomains to be smaller than 1, i.e., we target
problems for which the extent of the nonlocal interactions is much smaller than the
diameter of the domain. Such problems arise in several engineering applications such
as, e.g., nonlocal mechanics, and are the main motivator for this work. In contrast, for
applications described by nonlocal operators with infinite interactions, a DD approach
may not be as effective because the interaction regions would span a portion of the
domain that is of the same size (or even larger) than the domain itself.

Finally, we mention that often one may be given a decomposition of Q into a
few subdomains which is constructed to follow well-defined geometric entities, e.g., a
wing and a fuselage, or different media properties, e.g., different diffusion coefficients,
within Q. Such "physically"-motivated DDs typically arise in the context of mesh
tying [35, 45] in which a complex geometric entity is broken into smaller parts to
enable efficient mesh generation. In contrast, here we focus on DD as a means for
faster and more efficient parallel solution methods for nonlocal problems in which
case the number of the subdomains is very large and they do not generally follow any
"physice-motivated interfaces.

Outline of the paper. The paper is organized as follows. In Section 2, we recall
the variational formulation of a single-domain volume-constrained nonlocal Poisson
problem and briefly describe its discretization via finite element methods. In Section
3, we introduce the continuous formulation of a multi-domain nonlocal DD method
and prove its equivalence to the single-domain problem presented in Section 2. Sec-
tion 4 explains how we address the decomposition problem by formulating rules for
the construction of the subdomains and their interaction regions that guarantee the
equivalence of the DD and the single-domain problems. In the same section we also
introduce the discretized subproblems and their matrix forms and show their equiva-
lence to the underlying single-domain formulation. Concluding remarks are provided
in Section 5. In Appendix A we report the proof of the main result of this work. In
Appendix B, we further elucidate the equivalence between the multi-domain formula-
tion and the single-domain problem and illustrate the application of the nonlocal DD
framework. Specifically, we use the framework developed in this work along with a
FETI solution approach to obtain, for a very simplified setting, illustrative numerical
examples of nonlocal DD problems.

2. A nonlocal (single-domain) volume-constrained problem and its fi-
nite element discretization. For simplicity, in this work, we consider the two-
dimensional case. Let Q denote a bounded, open subset of V. For any 6 > 0, often
referred to as the horizon or interaction radius, we define the associated interaction
domain as the closed region

(3) r interaction = fy E \ YI < 6 for some æ E .

The interaction domain is split into two disjoint parts F and rNeurnamn, where F is a
nonempty closed domain, whereas FNeumann is allowed to be empty. Thus, we have
that P U FNeumann = r interaction and n r r_ . _ Neumann = (6, where Neumann is open
along its common boundary with I. Also, note that F interaction 

 

and
F
 therefore also F
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and rNeurnann depend on (5, even though that dependence is not explicitly indicated.
Figure 1-left illustrates this geometric configuration.2

FIG. 1. Left: A domain 'CZ and its associated interaction domain I' U FNe„m„.,.,,n on which
Dirichlet and Neumann volume constraints are imposed on F and FNeumann, respectively. Right:
the domain SI = Q U ir/Veurnann•

The strong formulation of a nonlocal volume-constrained Poisson problem is given
by [18, 26, 27, 28]3

(4)

2 f 
QUFUrNeumann

) = g(x)

I--'2U1.-UrNeuman.re

(u(y) — u(x))7(x,y)dy = fn(x) x E S2 (a)

E (b)

(u(y) — Ii(X))7(X, y)dy = f Neumann(X) X E rNeumann. (C)

where 4,-2(x), fNeumann (X), and g(x) are given functions and -y(x, y) is a given sym-
metric positive kernel, i.e., ry(x, y) = y(y, x) for x, y E fiururNeumann. Equations
(4b) and (4c) are volume constraints imposed on sets with nonzero measures in R2
which are nonlocal analogues of the Dirichlet and Neumann boundary conditions, re-
spectively, for PDEs. For this reason we refer to (4b) and (4c) as a Dirichlet volume
constraint and a Neumann volume constraint, respectively.

The nonlocal operators in (4a) and (4c) are identical up to a sign so that these
equations can be combined to obtain an equivalent, more compact, strong form

—2 { f 
ur 

(u(y) — u(x))7(x, y)dy = f (x) X E SZ
Q 

u(x) = g(x) x E F,

where II = b U U- Neumann ) f (x)Ifi = fdx), and f (X)Ir._ Neuma.n = —fNeumanu (X).
The strong form (5) corresponds to the configuration in Figure 1-right and is used in

(5)

2Domains such as F and FNeurnann in Figure 1-left and therefore also in subsequent figures
are stylized versions of their true shapes. For example, because points œ interact only with points
y E B 5 (4 where B (X) denotes the Euclidean ball of radius (5 centered at œ, those domains have
rounded corners. However, in practice, one can keep the stylized domains because the points outside
the true interaction domains are not accessed during a finite element assembly process.

3The problem (4) is a nonlocal analogue of the PDE Poisson problem —V • (aVu) = in ft,

u = g on a nonempty part of the boundary of ft, and aVu • n = fNeurnann on the rest of that
boundary.
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the remainder of the paper. We refer to the domain C2 as being semi-open by which
we mean that if al2 and OF denote the boundaries of C2 and r, respectively, CI does
not include the boundary portion OSt 11 OF but does include the boundary portion
8C2 \ (0C2 n OF).

We define the function spaces

w = {v E L2(i2 Ur) < 00}
(6) where 111412 =   lw(y) - w(x)1 2 (X y)dydæ 110112(QUI")f

ur' 
f

ur

W°={wEW : w=0 forxEF}

and, for u, v E W, we define the bilinear form A(•,.) and linear functional .F(-) as

A(u, v) =   (v(y) — y(x))(u(y) — u(x)) 74 , y)dyclx{ f
ur 
f

ur

T(v) = f v(x)f(x)dx.
SZ

(7)

Then, a weak formulation of the nonlocal volume-constrained problem (5) can be
stated as [18, 26, 27, 28]

(8)
given f (x) E W', g(x) E Wr, and a kernel y(x, y), find u(x) E W such that

A(u, v) = .F(v) by E Wo subject to u(x) = g(x) for x E F.

Here, W' denotes the dual space of bounded linear functionals on W° with respect to
the standard L2 duality pairing and Wr denotes the nonlocal "trace" space defined
as Wr = {v1r : v E W}. If F 0, the well posedness of the problem (8) is proved
in, e.g., [18, 26, 27, 28].

For v E W, define the energy functional

(9) Esingle(v) = 2 A(v, , v) — .F(v).

Then, (8) is equivalent to the minimization problem [18, 26, 27, 28]

(10)
Esingie(u) = vigv Esingie(v) subject to u(x) = g(x) for x E F.

given f (x) E W', g(x) E Wr, and a kernel ry(x,y), find u(x) E W such that

REMARK 1. The functional setting and the well posedness of the nonlocal prob-
lem depend on the kernel y(x , y). For example, if the kernel is square integrable (i.e.,

four (y(x,y))
2
dy < oo for all x E UF) or if the kernel is integrable and translation-

ally invariant (i.e., fc2ur (x , y)dy < co for all x EQUF and ry(x, y)) = y (y — x)),
it is known that W = L2(52 U F); see, e.g., [18, 26, 27, 28]. On the other hand, for
the fractional kernel y(x, y) xl—c1-2s with d denoting the space dimension and
0 < s <1, it is known that W = H5 (C2UP), i.e., a fractional Sobolev space; again, see,
e.g., [18, 26, 27, 28]. However, the technical aspects of this work are largely indepen-
dent of the choice of the kernel as long as the nonlocal problem remains well-posed.
Moreover, some conditions such as the symmetry of y(x, y) can be further relaxed
under some additional assumptions [18, 19] that ensure the well-posedness of the non-
local problem. Likewise, one can also relax the condition that y (x , y) be positive
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everywhere; see, e.g., [39]. For such kernels, an energy minimization characterization
of the problem may not be available, even though related strong and weak formula-
tions are well defined. Thus, in particular, the algorithms developed in this work can
be extended in a straightforward manner to problems that cannot be characterized in
terms of an energy minimization setting. 0

2.1. Finite element discretization of the nonlocal volume-constrained
problem. The weak formulation (8) of the nonlocal volume-constrained problem
can be discretized using a finite element method as follows. Let Th denote a finite
element triangulation of S2U F parameterized by a grid-size parameter h. We assume
that Th conforms to the boundary of St, i.e., 8S2 consists of finite element edges.
This requirement can be satisfied by first constructing a grid in 52 after which a grid
is constructed in F that shares element vertices with those of the grid in S2 along
their common boundary. For simplicity, in the sequel, we restrict the discussion to
Lagrangian finite element spaces.

Let Wh c W and Wo'h C Wo denote finite element (FE) subspaces. Then, a FE
approximation uh(x) E Wh of the solution u E W of (8) is defined to be the solution
of the discretized weak formulation

given f (x) E g(x) E Wr, , and a kernel -y(x, y),

(11) find uh(x) E Wh such that

A(uh vh) T(vh) vh E WO,h subject to uh(x) = gh(x) for x E F,

where gh(x) denotes an approximation of g(x) that is usually chosen to be the FE
interpolant4 of g(x). As long as F 0, the well posedness of problem (11) is also
proved; see, e.g., [18, 26, 27, 28].

Let gh denote the number of degrees of freedom corresponding to the nodes
in 12 U F and let Nh denote the number of degrees of freedom corresponding to the
(possibly semi-) open domain 12, with the remaining and gh — Nh degrees of freedom
corresponding to the closed domain F. Note that because 52 is an open domain with
respect to its common boundary with F and F itself is a closed domain, nodes and
degrees of freedom along their common boundary are assigned to F. We then define
the finite element subspace Wh c W as the span of a nodal finite element basis

{0,(x)}igihi so that a finite element approximation Ith(X) of the solution u(x) of (8)
can be expressed as

Nh Nh

(12) uh(x) = E (foichi(x) + E (micbi(x),
i=1 i=Nh+1

where fi, denotes an Nh-vector of unknown coefficients and :g. denotes an (gh — Nh)-

vector of nodal values of the approximation gh(x) of g(x). We recall that the sup-
port of each nodal basis function Oi(x) comprises all elements sharing the node
xi. As a result, all basis functions corresponding to nodes in S2 vanish on F and

span{ Oi(x)}ri c Wo'h.

Let Asingle and gsingle denote the Nh x Nh matrix and the Nh-vector with ele-

4When g(x) is not of class C°, gh(x) can be defined by, e.g., least-squares approximation or
Clement interpolation [15].
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(13)

{(Asingle)ij = A(0 j ) 0i)

gh

for i,j = 1,... , Nh

(gsingle)i — -7- (0 i)

j=Nh +1

A(0 j 1 0i)(4) j for i = 1, , Nh,

respectively. Then, the discrete FE problem (11) is equivalent to the linear algebraic
system

(14) Asingletl = gsingle

for the unknown nodal coefficient vector it. The matrix Asingle is symmetric and,
owing to the fact that F 0, it is also positive definite [1, 18, 26, 27, 28].

For Vh E Wh, we define the discrete energy functional

(15) eisingle(vh = 2 A(vh vh) — I(0).

Then, the discrete nonlocal volume-constrained problem (11), respectively (14), can
be expressed in terms of the equivalent minimization problem [18, 26, 27, 28]

the vector 17 solves (14) < > uh(x) E Wh solves (11) < >
(16)

gstngle(U
h
(X)) = vh (111)ienviih etnglee (X)) subject to vh(x) = gh(x) on F.

REMARK 2. As implied by (3), any point x EQUF interacts only with points
in the ball BJ(x). This raises a serious issue in FE methods for nonlocal problems
because the intersection of such balls and the finite element grid results in cut ele-
ments, i.e., partial elements, within the ball. As a result, one either has to deal with
cut elements or, if one wants to only deal with uncut elements, one is faced with dis-
continuous integrands that vanish outside the ball. This issue is glossed over in many
FE papers for nonlocal problems, especially those that only provide one-dimensional
numerical results. However, we address this issue in Section 4.1. A comprehensive
discussion of how to effectively handle cut elements can be found in [23]. ❑

3. Nonlocal domain decomposition in the continuous setting. In this
section we first describe, in the continuous setting, how to define a nonlocal de-
composition of the domain and then introduce the formulation of the multi-domain
system. The central result of this section proves the equivalence of the solution of the
single-domain system and the one corresponding to the multi-domain system. The
significance of this result is that it establishes the consistency and the well posedness
of our multi-domain formulation.

3.1. Construction of the geometric domain decomposition. In a stan-
dard PDE domain decomposition setting, one can partition SI into non-overlapping
subdomains and then simply define the subdomain problems by restricting the global
operator to each subdomain. Such a construction is impossible in the nonlocal setting
due to the inherent nonlocal interactions which require any two adjacent subdomains
to share an interface having nonzero volume. As a result, our substructuring-based
domain decomposition starts from a non-overlapping, covering subdivision of S2 into
N, sub domains {C2n}nNs1, as illustrated in Figure 2-left for N, = 6, and then adds
the overlaps necessary for the nonlocal interactions. Note that some of the domains
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f25

FIG. 2. Left: a non-overlapping, covering subdivision of the domain I-2 into six subdomains
52n, n = 1, , Ns = 6. Right: the corresponding nonlocal overlapping domain subdivision 52n, U rn,
n = 1, . , N3 = 6. The domain U6n=IFn is depicted in green and the domain F= Fl U F2 U Fg U Fs
is depicted in red with r3 and r4 being empty sets. The blue regions in r illustrate the overlaps
between pairs of rn•

(2n include part of the boundary OQ. For example, in Figure 2-left, we have that
this is the case for Q2, Q3, and Q5 so that those are examples of what we refer to as
semi-open subdomains because they are closed with respect to OQ \ (OQ fl OF).

For each subdomain Qn, n = 1, . . . , N,, we define the (possibly semi-) open smaller
subdomain

(17) Qn ={xEk ly—xl>-
2 
VyEQ\64;

see Figure 2-right for an illustration. Note that {Qn}nN•i1 is, by construction, a set of
non-overlapping domains. We also subdivide the interaction domain I' into a set of
overlapping, covering subdomains

(18) Fn = E F : ly — (5 V y E Qn} for n = 1, . . . , N,

and also define the set of overlapping subdomains

(19) fn =fæEQ\ : < 6 Vy E Qn for n = 1, , N,.

In Figure 2-right, for each n, Fn U fn consists of all the strips of thickness S that
surround Qn, including in some instances a portion of F. Because each subdomain Fn
overlaps with at least one other subdomain Fn,, n' n, and likewise for each subdo-
main Fn, the above construction results in the overlapping domain decomposition of
Q U F given by

(20) Q U I= Univ iQn U fn u rn.

Following conventional DD nomenclature, we subdivide the set of subdomains

{Qn U rn U F}nN.i1 into two classes:

floating subdomains if Fn =

non-floating subdomains if Fn O.

For example, in Figure 2-right, Q3 and Q4 are floating subdomains, whereas Q1,
Q2, Q5, and Q6 are non-floating. Analogous to the conventional local DD setting,
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a floating domain is endowed with a purely Neumann nonlocal volume constraint so
that its associated nonlocal problem has a non-trivial null space. In a typical local or
nonlocal DD configuration, the number of subdomains is large and most of them are
of the floating type.

REMARK 3. As alluded to in Section 1, in a local PDE setting one can consider
both non-overlapping and overlapping DD algorithms because the latter offer some
computational conveniences and may allow for a faster convergence of iterative solu-
tion methods. Typically, the overlap depends on the grid size and its thickness goes
to zero as the mesh size is reduced. In contrast, the nonlocal setting requires any two
adjacent subdomains to overlap in order to compute the necessary nonlocal interac-
tions between them. As a result, the size of this mandatory overlap is determined not
by the mesh size but by the interaction radius (5, i.e., its thickness is independent of
the underlying discretization mesh. E

3.2. The domain decomposition (multi-domain) system. A multi-domain

system is a system of N., equations, each of which holds for æ E Qn u fn U Fn, n =
1, ... , Ns. In constructing the multi-domain system we have to deal with overlapping
domains, i.e., although the three domains UnNs 1S2n, UnNs1Fn, and UnNs 1Fn are mutually
disjoint as are the Ns domains Sin, there are overlaps among the Ns domains in
Un s1Fn and in UnNs1rn•

To properly deal with the consequences of having overlapping domains, we define
the functions

Ns Ns

(21) (4(x, y) and (y(x) = N-. X (x)= E Xsznuf,urn (x)Xs-2„uf,,,ur„ (Y) z__, ft„urn •
n=1 n=1

Note that CA(x , y) is a symmetric function, i.e., C ji(x , y) = CA(y, x) and is a non-
negative piecewise integer-valued function and (F(x) is a positive piecewise integer-
valued function.

3.2.1. The subdomain system. For n = 1, ... , N, and any pair of functions
un(x) and vn(x) defined on Qn U Fn U Fn, we define the subdomain bilinear form

An(un, vn)

(22) = f f ,,,y)-1(vn(y) — vn(x))(un(y) — un(x))-y(x, y)dyclx
sz„uf„ur, 12,, Lif, ur„

and the associated subdomain linear functional

(23) Tn(vn) =  _ CF(X)-1vn(X)f (x)doc,f
2nurn

where, of course, for floating domains, i.e., if Fn = 0, the integrals over Fn vanish.
For n = 1, ... , N,, we define the function spaces

f Wn = {w E L2(Sin u fn u rn) : IllwIlln < 00}
(24) t iv° = fw E min : w = 0 for x E Fnl,

where 111wIlln2 = An(W, IV) + 11WIlL2 2 (S2nUrnUfn)•

Let

(25) 
TT — W° if Fn 0, i.e., for non-floating domains

Wn if Fn = 0, i.e., for floating domains.
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We then define the domain-decomposition or multi-domain system of equations as

given f (x) E WI, g(x) E Wr, and a kernel ry(x, y),

for n = 1, . . . , N9, find un E Wn such that

An(ttn, Tn(vn) V vn E Wn (a)

(26) subject to

un(x) = un,(x)

and

V x E n fn, for 7-11 = n +1, • • • , Ns (b)

un(x) = g(x) V x E Inn if Fn 0, i.e., for non-floating domains. (c)

Equation (26b) can be thought of as a nonlocal version of the standard continuity
constraint in non-overlapping local DD methods. The constraints in that equation
are needed because the solution u(x) of (8) is a single-valued function on St U F, and

nNfin particular on U l fn. However, by construction, we have that for all n' such that

Fn n 0, both un(x) and un, (x) are defined on fr, n fn, O. Clearly, we have
that (26b) must be imposed on that domain. Of course, this equation automatically
holds on rn n Fn, because both un(x) = g(x) and un, (x) = g(x) there.

REMARK 4. It is possible for (4(x, y) = O. For example, this is the case if x E S-27,
and y E lin, with n' n. However, this fact does not cause problems in (22) because
points x interact only with points y such that ly—xl < 6 and for such pairs of points,
CA(x , >

REMARK 5. As in the standard (local) DD case, the constraints in (26b) ensure
single-valued solutions of the multi-domain system, and are appropriate when the
global nonlocal solution is also continuous. However, one of the principal advantages
of nonlocal models is that, for some kernels in common use, they admit solutions with
jump discontinuities [18, 26, 27, 28]. In anticipation of such solutions, one may choose
to enforce (26b) weakly, i.e., i.e., for n = N, and n' = n + 1, , Ns,

(27) __
.„,
(un(x) — un,(x))v(x)dx = 0 Vv(x) e WnIfnnf„•

ff„ nr 

Note that (27) also arises when (26b) is enforced using Lagrange multipliers; such a
treatment of (26b) would therefore result in mass matrices being involved in finite
element formulations of the constraints (26b). ❑

REMARK 6. The constraints in (26b) are not independent. For example, con-

sider a point x E r1 n F4 n F6 near the bottom right corner of S21 in Figure 2-
right. Then, (26b) would include the constraints ui = u4(x), ui(x) = u6(x), and
u4(x) = u6 (x), only two of which are independent. These redundancies in (26b) have
implications in the design of discretization algorithms as is discussed in Section 4.2.
0

3.2.2. Equivalence of the single-domain and multi-domain problems.
Our next task is to show that the solution u(x) for x E C2 U F of the single-domain
system (8) and the solutions un(x), n = 1,... , N9, of the multi-domain system (26)

are the same or, more precisely, that un(x) = u(x) for x E S2n U rn U Fn. The first
step towards that end is the following lemma. We refer to Appendix A for a proof.
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LEMMA 7. Given functions w(x) and v(x) for x E 52 U F, define the functions

wn(x) and vn(x) for x E C2n, u fn U Fr, as

(28) wn (x) = v(x) nur and vn(x) = v(x) for n = 1, . . . , N .

Then, for n = 1, . , N, and n' = n +1, , Ns, we have that, if fn 11 0 and
rn n rTh, 0,

(29) wn,(x) = wn(x) and vn,(x) = vn(x) for x E fn nfm, and x E rn nr,

Then, for the bilinear forms and linear functionals defined in (7), (22), and (23), we
have that

Ns Ns

(30) A(w, , v) = E An (Wn Vn) and .F (v) = E •Fn(vn)•
i=1 n=1

Using Lemma 7 and the fact that W = OnN•i1Wn and W° = OnN •iiWn one can
easily prove the following equivalence result.

PROPOSITION 8. Let u(x) E W denote the solution of the single-domain system
(8) and, for n = 1, . , Ns, let un(x) E Wn denote the solution of the n-th subproblem
in multi-domain system (26). Then, the multi-domain system (26) and the single-
domain system (8) are equivalent and their respective solutions coincide, i.e, un(x) =

u(x)Is „uf nur „ ❑

The equivalence of the multi-domain and the global problems and the fact that
the latter is well-posed implies that (26) is also well posed.

We note that the equivalence between the multi-domain weak formulation (26)
and the single-domain system (8) can also be established by noting that the single-
domain energy functional (9) can be written as a sum of subdomain energy functionals
defining a multi-domain energy functional. The proof is straightforward so that it is
omitted.

PROPOSITION 9. Define the subdomain energy functionals En(un) by

(31) En(un) :=
2
An (1111, ILO Tn(un) for n = 1, . . . , N,,

where the bilinear form An(•,•) and linear functional ,Fn() are defined in (22) and
(23), respectively. Then,

Ns

(32) E En (Un) = Esingie(U).
n=1

Furthermore, the multi-domain weak formulation (26) is the Euler-Lagrange equation
corresponding to the minimization problem

Ns

(33) inf E En (Vn)
vnEW n=1,...,Ns

n=1 {
subject to, for n,n' = 1, ... ,N,, n' n,

un(x) = un,(x) for x E f,,,nfri, and
un(x) = g(x) for x E rn•
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4. Finite element discretization of the subdomains systems. In this sec-
tion we consider a finite element discretization corresponding to the multi-domain
system (26). For finite element (FE) methods in general, the construction of the
stiffness matrices and the right-hand side vectors corresponding to the subdomain
problems follows a standard procedure which here we specialize to our setting. For
each n = 1, ... , N,, the procedure is given as follows.

Subdomain grid construction. From (22), it is clear that we need a meshing of the

subdomain C2n U rn U rn.
Definition of a finite element space. For each subdomain 1-2n U rn U Fn, we define

a finite element space W,!:' as the span of a set of basis function, usually chosen
to be piecewise polynomials with respect to whatever grid is constructed.

Definition of the sought for FE approximation. An approximation (of the solution
um (x) of (26)) having the form of a linear combination of the basis functions
is then sought.

Discrete linear system construction. The stiffness matrix and right-hand side
vector are constructed as is standard for nonlocal problems, i.e., in the same
manner as that used for a single-domain problem.

It is crucial to keep in mind that this procedure, as is the case for DD methods in
general, has as a central goal (2) that we rephrase more precisely as having

the global solution obtained from the N, discretized subdomain FE

(34) systems corresponding to (26), i.e., udd,h(x), should be the same as
the solution Uh of the discretized single-domain FE system (11).

To meet this goal, it is obvious that the subdomain grids and subdomain basis func-
tions have to be subsets of the grid and basis functions used for the single-domain
problem. The implication is then that the starting point for the construction of sub-
domain grids is a given single-domain grid.5

4.1. Definition of subdomain grids. We assume we are given, as introduced
in Section 2.1, a finite element meshing Th of QUF that respects the common boundary
shared by 1-2 and F. Associated with that mesh are Nh degrees of freedom, e.g., nodal
values, Nh of which are associated with the domain 1-2 with the remaining Nh — Nh
degrees of freedom associated with the closed domain F.

In local PDE settings, for both non-overlapping and overlapping DD methods,
the next step is to subdivide the domain 52 into subdomains that contain only whole
finite elements. If one is going to invoke a non-overlapping DD method, the construc-
tion of the subdomains is complete. If instead an overlapping DD method is to be
used, one adds, to each non-overlapping subdomain, whole elements in neighboring
subdomains that are within a certain distance from the common boundary between
the two domains; the distance used is usually related to some multiple of the local
grid size, although other criteria are also in use [12, 37, 51].

In the nonlocal case, the practical construction of a subdivision of 12 is similar
to that for overlapping DD in the local case. We again start by subdividing 12 into
the set {f2ri}nN 1 of subdomains with each fin consisting of whole finite elements. We

now want to add to and subtract from each subdomain SZn strips of thickness 5/2 to

5This approach precludes, in general, the use of the perhaps Utopian situation in which the
domains {52r,}nN'i1, {rTh}nNs1, and {Fn}nNs 1 are meshed separately into whole elements which respect
their common boundaries. Utopia is reached in only the very simplest settings such as rectangular
domains and Cartesian uniform meshes having a grid size proportional to b.
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create the subdomains S27, and fn. Unfortunately, because we are given a global grid
over C2 ur to work with, in general, we will not be able to (see Remark 2) define grids

consisting of whole finite elements that respect the boundaries between 52r, and rn,
i.e., those domains would also contain partial (cut) elements which is something we
want to avoid.

We thus see that there is a big difference between the definitions of overlapping
grids for the local and nonlocal cases. To recapitulate, in the local case we are free to
add whole elements to effect an overlap with neighboring elements. In the nonlocal
case, we do not have this freedom because the strips to be created have thickness c5
irrespective of the given global finite element grid so that, in general, that strip will
not consist of whole elements. Thus we have the choice of truncating triangles so
that the S thickness of the strip is respected or instead approximate the strip by a
strip consisting of whole triangles which is tantamount to approximating the common
boundaries of QT, and rn by element edges. We use the latter choice because it is
substantially easier to implement and, as shown below, does not compromise achieving
the goal (34).

The above discussion motivates the following procedure for the construction, in
the discretized setting, of a subdivision of C2 into subdomains that is analogous, but not
the same, as that in Section 3.1 for the continuous problem. We begin by assuming,
as is done in Section 2.1 for the single-domain setting, that

— we are given an integer N, > 1 and a finite element meshing Th of 52 U F which
respects their common boundary SZ n F.

We denote by VI' and Trh the sets of finite elements in S2 and P, respectively, and we
denote by T a typical element in Th. Then,

— we subdivide C2 into N, non-overlapping, covering subdomains I n, n = 1, . . . , N,,
such that each subdomain Qn consists entirely of whole finite elements.

This step is effected in entirely the same manner as for the local PDE non-overlapping
DD setting so that no further comments are needed.

Note that the boundary 0?-27, of i4„, consists of two or three disjoint, covering
parts. First, we have for all n, _

NsType 1. En,=1, n, rt 052,, n 0S2n,, i.e., the common boundary shared by i-ir, and
subdomains lin, that abut to S2n.

We also have either one or both of
Type 2. Ofin n or, i.e., the common boundary shared by -6„ and F.
Type 3. Ok \ [(EnN; 1, n' n afin n afin,)] U (afin n or), i.e., the part of Oi'-'27,— 

that is not shared with the boundary of F or with any of the boundaries
of other subdomains Qn,.

For example, referring to Figure 2-left, we have that the boundaries of floating domains
such as 113 consist of only Type 1 and 3 parts, the boundaries of domains such as S26
consist of only Type 1 and 2 parts, and the boundaries of domains such as C25 consists
of all three parts.

Recall that, by construction, the domains fin consist of whole FE triangles. How-
ever, in general, the subdomains Itn, rn, and Fn consist of whole FE triangles and
additionally partial (cut) FE triangles. To obtain the equivalence of the single- and
multi-domain FE solutions, we necessarily have to work with subdomains that consist
of only whole FE triangles because only such triangles, i.e., triangles T E Ti„ are
used in the single-domain FE method. For this reason, we define an approach for the
construction of subdomains 127th, Fnh, and rnh of QUI' in such a way that all subdomains
consists of only whole FE triangles. Additionally, the construction process is required
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account for all interactions that occur between two subdomains 52n and 52n . Meeting
this requirement is guaranteed if all triangles that overlap with the Fn are included
in F.

The specific geometric domain decomposition we use is defined as follows. We
denote by ævertex a typical vertex on OS2n and by ocTbarycenter the barycenter of a
typical finite element T E Th. Then, for n = 1, . . . , N,, we define the subdomains

*vertex xTbarycenter < h
— 2

v ævertex
E Type 1 part of 8i47,1

(35) 
°nh = {T E n fn,h)}
rnh c Trh *vertex xtrycenter < å h

V ævertex E Type 2 part of

We have that Fah consists of all elements T E V whose barycenters are within a
distance 6/2 h of some element vertex on the Type 1 part of the boundary of fin.
Also, Film consists of all elements T E Trh whose barycenters are within a distance

+ h of some element vertex on the Type 2 part of the boundary of i-271. Note that
this procedure guarantees that the true interface region Fr, is fully contained in the
approximate interface region F. For obvious reasons, we refer to the approach we
use as "barycenter-based".

We illustrate the above discussion in Figure 3. Note that all of that discussion
applies even to the case of the single domain S2 being a rectangle and a single-domain
FE grid that is Cartesian and uniform. Figure 3a depicts a portion of the grid in
the single domain C2 that respects the common boundary (depicted by the thick line

segment) between two subdomains SZn and For Figure 3b, we have that the
orange subdomains depict_portions of the subdomains lin and Qn, and the blue domain
depicts a portion of rTh fl r„,. Note that the common boundaries of both (2n and Sin,
with Fn n Frit do not respect the grid so that 52„, 52„,, and Fn n Fn, all contain
some partial (cut) triangles. Figure 3c illustrates the need to make changes to the
single-domain FE grid so that the new grid does respect those common boundaries.
Of course, if we define the subdomain FE discretization using the new grid of Figure
3c, there is no hope for the solution of the FE discretization of (26) to be the same
as the solution of single-domain FE discretization (11), i.e., the goal (34) cannot be
achieved. Note also that the re-meshing of Figure 3 is relatively easy to effect for
Cartesian grids, but becomes a much more complex task for general grids, especially
in three dimensions. Figure 3d illustrates the process defined in (35). Now the orange-
shaded regions depict portions of the subdomains 12nh and Itah, and the magenta region

depicts a portion of fah n fah,. Note that, in Figure 3d, those three domains all contain

only whole FE triangles. Also, the blue region in Figure 3b, i.e. fn f1 fn,, is fully
contained in the set of magenta triangles.

REMARK 10. Comparing the definitions of fah, Fnh, and 52ha with the definitions of

fn, Fn, and fin given in Section 3.1, one can certainly view the first trio as approxi-
mations to the second trio. However, this view does not intrude on any aspect of the
developments that follow. For example, the accuracy of these domain approximations
is, as is made evident in Section 4.2, irrelevant with respect to the goal stated in (34).
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(a) (b) (c) (d) (e) (f)

FIG. 3. (a): A portion of the FE single-domain grid and portions of the two subdornains Sin and
dry. (b): Portions of the subdomains 12n and 5-2„, (in shades of orange) and of fn fl fn, (in blue).
(c): A re-meshing of the FE grid of (a) so that now the common boundaries between the subdomains
in (b) are respected but only if cut elements are introduced. (d): Portions of the approximate

subdomains SZn and 1-2Thh , (in shades of orange) and of Pn fl Fn, (in magenta) as determined using
(35). (e): The white elements overlap with fn but are not included inf4. (f): The yellow elements
are in P4 fl fnh, but do not overlap with fn fl

REMARK 11. Figure 3e illustrates why, e.g., in the first equation in (35), we used

the criteria x v ertex xTbarycenter h and not simply the criteria lævertex —
barycenter i < A "XT The barycenters of the white triangles are such that lXv tex2
barycenter

X T > so that using the latter criteria means that the white triangles are

not included in ft even though it is obvious from Figure 3b that those triangles

overlap with fnh nfnh,. On the other hand, Figure 3f illustrates that using the criteria
lævertex xbarycenter

< h results in the yellow triangles which are in fnh f1 frih,

but do not overlap with fn n fn, so that those elements do not interact with elements
on the other side of Pin n ft,. However, the equivalence between single- and multi-
domain solutions is not compromised because in assembling the FE stiffness matrix,
the entries in that matrix corresponding to points in the yellow elements and points
on the other side fn fl fm, are computed to be zero. 0

4.2. Multi-domain finite element system. Let Wh denote the finite element

space spanned by the set of basis functions { cbi(x)}i=i used in Section (2.1) to define
the single-domain FE system (14). Then, let

(36) W41 = span{ Uliri 0,(x) : xt E S2n U rnh U frih} for n = 1, , N,,

i.e., Wri:' is spanned by the basis functions Oi such that the associated node xi belongs

to 52hTh U Fnh U I. The subspaces W4i c Wh are well defined because of (35), i.e.,

because 52hn, Fnh, and fnh all consist of whole elements from the triangulation Th. We
also define the spaces

147-n0,h {wh (x) c wh (x)
= 0 forxEFnh}

for n = 1, , N, such that rirl 0.

Note that although we have that WI' 0 • • • Wks = Wh c W, in general, W4' Wn•
We define

(37)

Ns Ns

(38) 04(0c, y) = E xfv,ufi,turi:,(x)Xszi,luftuQ(Y) and 0-(x) = E 4).
n=1 n=1
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For n = 1, , N, and for unh(x), vnh(x) E WI:, we define the discretized subdomain
bilinear form

Ahn (unh vnh)

(39)

S41ur,ituflt,
fCIA (x, y)-1 (vni (y) — (x)) (u,1(y) — urt(x))-y(x , y)dy dx

and the discretized subdomain linear functional

(40) Tint, (vnh ) f C/I-(x)-1-vnh(x)f (x)dx
Wt,uf-',1

with the tacit understanding that for floating domains, i.e., if Fnh = 0, the domains of

integration of both integrals in (39) reduce to Qnh U F.
As done for the continuous problem, we introduce the function space

vvn0,h rnh i.e., for non-floating domainsWnh =
WInt, rnh = 0, i.e., for floating domains.

Then, we define the system of equations
(41)

given f (x) E W', g(x) E Wr, and a kernel -y(x, y),

for n = 1, . . . , Ns, find Om E WI: such that

nh) V yThh E
Anh (unh ,vnh) Th(v Wn

subject to

unh (x) = uhn, (x) V x E fnh n fnh, for n' = n + 1, . . . , NS

and

unh (x) = gh(x) V æ E Filn if F nh 0, i.e., for non-floating domains. (c)

The system (41) is not a discretization of the system (26) because Anh(., •)

An(., .), i.e., the former is defined with respect to Qnh U Fnh U fnh whereas the latter is

defined in terms of Qn U rn U fn. However, this observation is unimportant because
what is true is that

the global discrete solution udd,h(x), i.e. the solution such that

(42) unh(x) = udd,h
)IsituQuft is the same as the solution uh(x)

of the single-domain FE system (11)

which is, after all, the goal (34) we want to achieve. The truthfulness of (42) is
verified following the same steps as those used to prove Proposition 8 with, of course,
c2n U rn U rn replaced by S2nh U Frih U F.

When we define, in Section 4.2.1, the matrix form of (41), it is useful to differen-
tiate between the bilinear forms in the two cases in (41a). First, because Fn = for
floating domains, we have

(unh vnh) (nnh ,vnh)

fol?1,uflt /2,1tuQ yr' (vnh (y) — nh (X)) (unh (y) un(x))-y(x , y)dy dx .
(43)
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For non-floating domains, the bilinear form involves integrals with respect to I. For
such integrals, we have that either vN.) = 0 [because vnh E 1/177:1/] or unh(.) = gh (.)

[because of the constraint (41c)], so that then

(44) A nh u hn, vnh) Ar,h v nh) A gt,h (9 h, v1;),

where
Airlif 1,h (unh vnh)

( ) unh (x))7(x , y)dydxf hu,h1,,hu,hd(x,y),(vm(y) v.,:(x),(um, y.
(45)

(x)vnh (x)dy dx+ f f d(x, y)lunh
S2,/tuf,/,t,

+ f f 04(x y)lunh /__
)v 

nh
tY (y)dydx

and

(46)

Agt,h(gh, vnh ) = f
f 044, yrl gh (y)v n(x)dy doe
„

+ f f CA(h , y)-1 gh (x)v nh (y)dy dx .
7,1 1-27,1u r 1,1

Note that in (43), (45), and (46), both On (.) and vnh(.) are evaluated only at points in

C2nh U fnh and gni' 0 is evaluated only at points in F.
In light of (43), (45), and (46), (41) can be rewritten as, for floating domains,

A41,h (unh, vnh) 
—
Tnh(vnh ) (a)

(47)
/41, (x) = u171, (x) V x E I n n ft, for n' = n + 1 , . . . N, (b)

and for non-floating domains

Anft,h (unh ,vn) 
=
.n(vm)+ Agl,h (gh ,vn) 

(a)
(48) Sl 

u,h.t(x) = u,171, (x) V x e fnh n fnh, for n' = n + 1 , . . . , NS. (b)

REMARK 12. For any domain indexed by n, each of the subdomain problems in
(47) and (48) is coupled, through (47)b or (48)b, to other domains indexed by n' with

n. Of course, this defeats the goal of domain decomposition which is to construct
uncoupled subdomain problems so that, e.g., parallelization can be realized. This
becomes the task for algorithms of obtaining solutions of the subdomain problems.
Further comments in this regard are provided in Section 5. ❑

REMARK 13. If instead of (4a) we consider

—2 f (u(y) — u(x))7(x , y)dy c(x)u(x) = fo(x)
12UrUrNeumaren,

with c(x) > 0 so that the bilinear form A(u, v) in (7) has the additional term
c(x)u(x)v(x)dx , then that bilinear for is coercive even for floating subdomains.

In this case, the design of solution methods for (41), and in particular for (47), be-
comes substantially simpler. ❑

REMARK 14. The discussion that includes (43)—(48) as well as the comments
made in Remarks 12 and 13 about the discrete bilinear form Anh(•, .) and the discrete
subdomain system (41) also hold for the continuous bilinear form An(' •) defined in
(22) and continuous subdomain system (26). ❑
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4.2.1. Matrix form of the multi-domain finite element system. Based on
the numbering introduced in Section 2.1, we let

XSIur = {xi}v=i denote the set of nodes in the grid used for the FE discretization
of the single-domain S2 U F

XQ = and Xr = friliNhNh+1 denote the set of nodes in 12 and F, respec-
tively.

The sets X0 C X0ur and Xr C )(Our are disjoint and X0 U Xr = XQur. For
n = 1, , Ns, let

X n
h
= "i denote a local numbering of the set of nodes in 52nh U ft;

clearly, by construction, Xn C Xour

Xn = { ocrii},N-i and Xl,'h = {x7}NN"h+1 denote the nodes in rknh located in Qhn U fnh

and Fnh, respectively.

The sets Xnh c .knh and X-Ph c Kh are disjoint and Xnh U Xrhh = ienh. Note that for

n, the sets Xnh and Xnh, overlap whenever ft n ft, and similarly for the sets
Xrh and Xrh, . Also note that if Itnh is a floating domain, then the set is vacuous.

Bilinear forms in matrix notation. We first consider the conversion of (47a) and
(48a) to matrix notation. Corresponding to the nodes in 'Cour, we have the set of

basis functions {0i(x0_hi whose span is used to define the finite element space Wh
for the single-domain finite element system. We introduce the set of basis functions
corresponding to each subdomain. For n = 1, , N,, let

{eii(x)},21 denote a local numbering of the basis functions in the spanning set

for Wh which correspond to the nodes in X .
h

By construction, {074)1,21 spans the finite element space W. We then
Nh

divide {ce(x)}i2i into the sets {07(x)}ni and 107 (X)}
g 
nivh +1 that correspond

to nodes in Xnh and Xrhh, respectively.
gh

Note that if Sin is a floating domain, then n = :-/Ch so that the set {07:'(ac)}, -Nh+l

is vacuous.
Let fin denote an n-vector of nodal values of a function u(x) defined for the

nodes in Xnh (i.e., nodes in S2nh U fnh) and let gn denote the — n)-vector of nodal
values of gh(x) defined for the nodes in XP, (i.e., nodes in Fnh). Then, we have that

(49) u"ni(x) =

E (t7n),q(x) + E (gn)jo.7(x)j=1 j=n+1

NTy

E ed.), o; (x)
j=1

for non-floating domains

for floating domains.

Note that components of fin are ordered according the local indexing of nodes. We
then define, for n = 1, , N,, the entries of the n n matrix An as

Ail 1,h (q, 07) for non-floating domains
(50) (An)ii = 

11 
for i, j = 1, ,

Afl,1,k
Y-Pi q) for floating domains
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and, for i = 1, .. . , n, the components of the n-vector gm as

{ 

j\Th

(51) (gn)i = -791:(07) — E A,:i'h(o..7,07)(iln)i
j=Nh+1

-F,1:(Orii) for floating domains.

Then, the finite element problems (47a) and (48a) both have the matrix-notation
equivalent

(52) Aniln = gn for n = 1, ... , N,.

for non-floating domains

Constraints in matrix notation. We next turn to the conversion of the constraints
in (41b) [or equivalently (47b) and (48b)] to matrix notation.

We first transform those constraints to vector notation. We have global and local
indices of nodes. Thus, if the node xy E Xr, corresponds to the node xi E X, i.e.,
if we have xi = xy, then i and j are the global and local indices, respectively, for
the same node. We define a mapping from global to local indices, specifically, for a
globally indexed node Xi E Fnh, we let

In, = local index of the node Xi E

Now suppose that fnh n fnh, 0. Then, for a globally indexed node Xi E fnh n fnh„ we
have that

= = where j = In, and j' = /re,.

Because the FE approximation linh(x) is uniquely determined by its nodal values, the
constraints in (41b) can be equivalently expressed as

(53) (fin)a = (z7n,)3, for all nodes xi E frih, n fnh,, _ n + 1, , N,.

We keep in mind that, as was the case for the continuous multi-domain system (see

Remark 6), the constraints in (53) are not independent. For example, if PI n f/21 n
0, then, for a node xi in that domain, we have from (53) that 0703 = (7.12)3,,

(/703 = (i73)3", and (t72)3, = (7.73)3,,, where j = /li, j' = /2„ and j" = 13,. Cleary,
these three equations are not independent.

Our task is then reduced to expressing the constraints in (53) in an economical
matrix form. Here, we mimic the process given in [37] for DD in the local PDE case,

In fact, we construct an M x EnNs n matrix M of the form
M = MNj

such that the constraints in (53) can be equivalently expressed as

Ns

(54) Emnfin =0,
n=1

where Mn, n = 1, , N,, are M x n matrices. We construct two such matrices, one
for the constraints in (53), the other for an equivalent non-redundant set of constraints.

To this end, letting Fh = 1.11nVs lrirt„

for each node in xi E f, we define the set
(55) 0(x,) = {n : xi Eft}

and let m(xj) = cardinality of the set O(xi)
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so that 0(x2) consists of the indices of all the subdomains fnh that contain the globally
indexed node xi and m(xi) denotes the number of distinct subdomains which the node
xi belongs to.

Non-redundant constraints - full-rank matrix M. For each node xi E Fh,
- arrange the indices in 8(xj) in increasing order
- for each consecutive pair of indices, impose one constraint.

This results in, with Nrh denoting the number of nodes in Fh,

Nrn

M = E (n(xi) - 1)
i=1

non-redundant constraints. For example, if n I2 0, then, for a node xi in
that domain, we now have that (111)j = (f12)i, and (f12)j, = (77,3),i,,, where j = /li,
j' = /2i, and j" = hi. Clearly, these two equations are not redundant and together
imply the constraint (771).i = (773).i, from (53) that is now missing.

The entries of the matrix M can be determined as follows: set k = 0 and then,
- for i = ... ,Arph
- for each pair n < n' of consecutive indices in 8(xi)
- set k k +1
- set, for j and j' such that eji = = Xi,

(Mn)kj = 1 (Mn')kj' =

and all other entries in the k-th row of M to zero.

Redundant constraints We proceed as we do above for the non-redundant set of con-
straints, except that now we do not require that n < n' be consecutive indices in 9(x,),
i.e., we impose a constraint for every distinct pair n < n' of indices in 8(xi). This
approach lends itself better for parallelization compared to the use of non-redundant
constraints; see, e.g., [37] for a discussion in the local DD setting. Thus, we im-
pose all the constraints in (53). Note that redundant constraints are caused only for
mi(xj) > 3. Because there are mi(x) distinct indices in m(x,), we have that the
number of rows in the matrix M is now given by

Nrh 1

M = E 2 m(aci)(m(xj) - 1).i=i

5. Concluding remarks. We have defined and analyzed a general framework
for the construction of domain decomposition methods for nonlocal problems that
achieves the goal stated in (2) or, more precisely, in (34). However, there is still work
to be done because we have not met a second goal which is that the nonlocal DD
method is amenable to parallelization. What we have so far are N, systems (47)-(48)
in which the subdomain systems are coupled through the constraints (47b) and (48b)
or, equivalently, the subdomain matrix systems in (52) that are coupled through the
constraints in (54). Such couplings prevent the direct use of (47)-(48) (or equivalently
(52)-(54)) for achieving the second goal.

At a similar stage in the development DD algorithms in the local PDE setting, one
is faced with the analogous situation; for example, in the non-overlapping DD setting,
there is coupling of the subdomain problems at, say in the matrix formulation, at the
nodes located along the common boundaries between subdomains. The uncoupling
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between subdomain problems is then effected through the design of solution methods
in which the bulk of the computational effort is borne by steps in those methods that
are parallelizable and for which the non-paralellizable steps and the communications
between subdomain problems, i.e., between processors, is kept to a minimum.

In the nonlocal DD setting, solution methods have to be designed to meet the
same criterion: the bulk of the computational costs has to be borne by parallelizable
steps. In a follow-up paper, we will develop, analyze, and implement such methods.
Parallelizable solution methods for local PDE non-overlapping DD will be generalized
to the nonlocal setting. For example, Lagrange multiplier methods, e.g., FETI [29],
Arlequin methods [25], and optimization-based DD methods [32, 33, 34], all of which
are in use for local PDE non-overlapping DD and which are also all good candidates
for generalization to the nonlocal DD setting. Other local DD solution methods could
also be considered for generalization. As is the case for the framework developed
in this paper, generalizations of solution methods will pose challenges because of
nonlocality. One thing to keep in mind is that a preferred solution method in the
local setting may or may not remain so when generalized to the nonlocal setting.
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Appendix A. Proof of Lemma 7.
It is convenient for what follows to introduce, for each n = 1, , Ns such that

Fn 0 0, the splitting

Fn = U Ft with
rn C Fn such that r;', n (u7,,=

rtn = rn \ 1-7, C rn 

1, ritonr0 = 0{

so that 1--,', (resp. Ftn) are the disjoint parts of rn that do not (resp. do) overlap with
any other Fn, with n' 0 n. The blue regions in Figure 2-right illustrate examples of
the sets F. Note that, by definition, F:, n Fin = O. With these definitions in hand,

we have that, for n = 1, ... , AT 8 , Qn urnurn = Qn U fn Uri', U rtn. We can then
express (21) as

Ns

CA(Xly) = E X1-2„ur;,ufnurt (x)Xstnur;ufnurt (u)•
n=1
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Note that among the sets Q„,, Fn, fn, and ft the only two that may possibly overlap
with other sets are Ft and fn. For this reason and for ease of notation, we furthern
introduce the set Fn = Ftn U fn. Based on this consideration, we split the outer
integral of the bilinear form An into a set that does not overlap with any other sets
(i.e. am U Fn*) and F. We have:

An(un,

C.A(x, 3)-1 (vn(Y) - vn(x)) (un(y) - un(x))-y(x, y)dydx
fo,ur;,ufn Lur;,ur,

= vn) Aolverlap (um vn),

where

Adnisjoint (un, vn) :=

(A(x, y)-1 (vn (y) - vn(x)) (un(y) - un(x))-y(x, y)dydx,

ArTerlap(un, vn)

CA (x, y) (vn (y) - vn (X)) (un (y) - un (x)) (x, y)dydx.
f /27/ ur;t

To simplify the notation, we let wn(x, y) = (un(y) - un(x))7(x, y) and (u(y) -

u(x))7(x, y) = w(x, y). Note that whenever x or y belong to a set that overlaps
with other sets, the interface conditions guarantee that wn(x, y) = w(x, y). We first
analyze AdniSioint; we have that

Adnisjoint (un, vn) w(x,y)dydx
1:2„,ur-,; 14, urz, uf„

w(x, y)dydx
ist„,ur:1 fon ufn

w(x, y)dydx
12„ur;, f(oUr)VS-2„Ur;tuf,)

where the first equality follows from the fact that (A(x, y) = 1 for x E an U Fn

and y E an U Fn U rn and the second inequality from the fact that -y(x, y) = 0 for
x E S2n U r'n' and y E (S2 Ur) \ (C2n U U rn). Hence,

Ns

(56) 
E Andisioint(un, ,n) fis w(x, y)dydx.
n=1 U (onur,1) four

,y=1

By definition of CA, for any y (an U Fri*) and for any x E fn we have CA(x, y) = 1,
hence

Aoverlap/

\

,ttn,vn) = f f (vn(y) - vn(x)) (un(y) - un(x))7(x, y)dydx
f„ 14, uP,1

ff (x, y)-1 (tin (y) - vn (x)) (un (y) - un (x)) y(x, y)dydx

Aozverlap,I
yin, 'V n) 

Anoverlapj I (um vn)
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We introduce an open disjoint covering {Ain. of Uni1 Fn, i.e.

NA Ns

U = U rn, and Ai n Aj = 0, for i j,
i=i i=i

such that there exists an index set In, n = 1, . . . Ns, for which

U Ai =
In practice, this means that for every n = 1, . . . Ns there exists a subset of the covering
that provides a disjoint covering of Fn. Note that such a disjoint covering always
exists. Then we have

Ns Ns

Exverlap,I (un,vn) E wn (x, y)dydx
n=1 n=1 fT4 C27,ur;,

Ns

= E A wn (x, y)dydx
n=1 iEI„ S2„1..11,1

Ns N.),

= E A 
wn(x, y)dydx

n=1 i=1

NA Ns f

— E „ 
i 

wn(x, y)dy dx
j=1 [n=1 JC2,,,Ur

j
Uirs14 .110-1„uP,0

where the second equality follows from the fact that fAilier„ form a disjoint covering

of Fn, the third from the fact that (x , y) = 0 for all the extra terms, the fourth from
the fact that the sums are independent and hence can be switched, and the fifth from
the fact that the sets are disjoint.

For Aoiverlap,H we have

w(x, y)dydx,

f f ,E Anver1",//(un, vn) = Ef_Tyf y)1w(x, y)dydx
(x

n=1 n=1

Ns

=EEEf,./,.
n=1 iEI„ 3

(A (0e, y) 1 w (x , y)dydx,

where, again, the second inequality follows from the fact that the sets {A,}iEr,,, are

disjoint and form a covering of rn•
Next, we introduce the index set y) that contains all indexes n such that

(x, y) E Ai x A3 and i, j E In. Formally,

(57) ii3 (x, y) = E {1, , Ns} S.t. X E At, y E A3, and i, j E -Tml•

We let cardinality(Za )(x, y) = /43 (x, y); this is the number of times the pair (x, y) E
Ai x A3 is considered when solving all subproblems, i.e.

Ns

/to (x, y) = E X(n E y)).
n=1
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Note that for x E Ai and y E Aj
Ns

CA(x) Y) = E X12„ur:;,ufn (x)Xs-2„uruf-n(Y)
n=1
Ns

(58) = E X(n E iii(x,y))xAi(x)xAi(y)
n=1
Ns

= E X(n E ,y)) = NJ* y).
n=1

Thus,

EAoverlap,H(un,vn)=EELJ f
Ns Ns .

(A(X1 y) 1W(OC, y)dyclx
n=1 n=1 iErn jE.r, .A, .A,

Ns

=EEEf f X (n E Iii (x , y)) X Ai (x)XAi (y)(A(x, y)-1w(æ, y)dydx
n=1 iEIn jEI, Ai Ai

Ns NA NA

=EEEi i X (n E iii 4, y))XA, (x)XA; (WO. (x, y)1w(x, y)dydx
n=1 i=1 j=1 Ai A

N), N),

=EEi  (A(x,yx,14,yr1w(x,y)dydxj=i Ai 
f
,

w(x, y)dyclx.
flJr1f 11r1r

Here, in the second equality we only added terms that are equal to 1 because all the
indicator functions are active. This allows us to extend the sums over i and j in the
third equality because all the extra terms are zero. Then, the fourth equality follows
from (58) and the fifth from the fact that all sets Ai and A3 are disjoint.

It then follows that
Ns NsE Aorrlap Iotn,,un) E (Anovertop,/(un,,,n) Aotverlapj I (un, vn))

n=1 n=1

(59) 
=f 

w(x, y)dy + f (x, y)dy) dx
f UZ.11(Qnur;',) 

uzs

w(x, y)dydx.
f„ /Kir

The last equality follows from the fact that UnNs 1(Qn U l'n*) and U:\:s1(rtn U fn) are
two disjoint sets. For the same reason, we have

Ns Ns= E (Andisioint(in,vn) Aorrlap (um, vn))E An (1in, vTh)
n=1 n=1

(60) frg w(x, y)dydx + w(x, y)dydx
(onUP,;,) four fuZ., fn itur

n=i

= w(x,y)dydx = A(u, v).
2ur four
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The proof for ,F directly follows from the same arguments and it is not reported.

Appendix B. Numerical tests for a FETI formulation. Numerical sim-
ulations have been conducted to validate the theoretical analysis presented in the
paper and illustrate the consistency and robustness of the proposed nonlocal domain-
decomposition strategy. Specifically, we illustrate Proposition 8 that states that the
solution of the single-domain problem and the one obtained from the solution of the
multi-domain problem are equivalent.

We point out that in these preliminary tests we consider the special case of simple
rectangular domains discretized by structured grids; furthermore, we choose (5 such
that S= ch for some positive integer c > 1. This is a restrictive choice, although
standard in several meshfree settings.

Solution strategy We solve the multi-domain system with a FETI-like approach
(see [29] for the local counterpart), as outlined in Remark 5 in the paper, i.e. we
prescribe the coupling conditions weakly as follows:

(61) J (un(x) — un,(x))µ(x)dx = 0 Vµ E Wn •

Note that in FETI approaches the test function it in (61) plays the role of a Lagrange
multiplier and is part of the unknowns.

Discretization We discretize the multi-domain problem via finite element method
using piecewise linear finite element spaces for both the solution of the single-domain
problem, the solutions of the multi-domain problem and the Lagrange multipliers.

Software The matrix assembly is performed using the C++ finite element library
FEMuS 6, built on top of the PETSc library [8]. The solution of the multi-domain
system is obtained either with the same library, or with Matlab. In the former case,
the system is solved in a monolithic fashion using the MUMPS direct solver [4]. In the
latter case, we first solve for the Lagrange multipliers and then for the sub-solutions
with a Schur complement approach.

Notation and problem set up In all our tests we denote by Uh the approximate
finite element solution of the single-domain problem and by Uh'dd the one obtained
from the solution of the multi-domain problem. According to the strategies described
in the previous paragraph, we denote by uhF'" and tile the solutions computed with
FEMuS and Matlab respectively. We also introduce the vectors ilp, and ilm that
correspond to the nodal values of the solutions and multipliers corresponding to uhF'"

and uhiCidd respectively. We consider the following subdomain configurations:
C1 Four subdomains with Dirichlet volume constraints, see Figure 4.
C2 Two subdomains for a cantilever beam domain, i.e. one domain with mixed

(Dirichlet-Neumann) volume constraints and one domain with Neumann con-
straints only, see Figure 5.

C3 Two subdomains with a floating subdomain fully contained in the other do-
main to which Dirichlet volume constraints are prescribed, see Figure 6.

Results for C1 Note the absence of floating subdomains, i.e. the multi-domain
problem does not require any special treatment since its matrix is non-singular. Let
the (single) domain be defined as S2 = [-1, 1] x [-0.5, 0.5] and let QUF = [-1.25, 1.25] x

6http://github.com/gcapodag/MyFEMUS
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FIG. 4. Four-subdomain configuration without floating subdomains, Cl.

FIG. 5. Two-subdomain configuration with a floating domain, C2.

FIG. 6. Two-subdomain configuration with a floating domain 122 fully contained in 5-21, C3.

[-0.75, 0.75], i.e. S= 0.25. The mesh size is set to h = 0.0625. In Figure 7 we show
the computational domain C2 in blue, the computational interaction domain F in red
and the finite element quadrilateral grid. These are decomposed in four subdomains
as shown in Figure 4. The finite element solutions for the single-domain and multi-
domain problem are compared in Figure 8.

Numerical errors are reported in Table 1, first row. Here, we report, respectively
,in each column, the L2 norm of (uh uFh,m)the £2 norm of the difference of their

nodal values, i.e. (fi — fiF), and the £2 norm of (yF — ilm-). Results show that all
these errors are zero up to machine precision; hence, the single-domain and multi-
domain solutions are equivalent, regardless of the solver used for their computation,
confirming the theoretical results.

Results for C2 Note that in this configuration the right subdomain is floating
(physical and virtual interaction domains are of Neumann type), hence, the multi-
domain matrix is singular and special care must be taken when solving the system.
The (single) computational domain, computational interaction domain and quadri-
lateral grid are the same as in C1, see Figure 7. In Figure 9, left, we report the
single-domain finite element solution u; on the right, we report a line plot at y = 0 of
the sub-solutions, denoted by u1 and u2. Note that u1 and u2 are set to zero outside
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Ilu' - 
tiFh,ddllL2

HilF llt2

C1 1.10e-15 2.00e-14 2.78e-14
C2 5.85e-14 9.60e-13 1.70e-11
C3 1.80e-15 2.00e-14 2.30e-12

TABLE 1
Errors between solutions.

FIG. 7. Domain, interaction domain and quadrilateral grid for the configurations Cl and C2.

FIG. 8. For configuration Cl., finite element solutions Uh'dd (left) and Uh (right).

their respective subdomains. The numerical errors are reported in Table 1, middle

FIG. 9. For configuration C2, uh on the left; line plot at y = 0 of ui and 7/2 on the right.

row. Once again, the errors are zero up to machine precision. This confirms the
suitability of the proposed formulation also in presence of floating subdomains.
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Results for C3 In this test we consider a different domain for the single-domain
problem, we let II = [-2.2.] x [-1.5, 1.5] and li U P = [-2.25, 2.25] x [-1.75, 1.75], i.e.
6 = 0.25. The mesh size is set to h = 0.125. In this test a floating subdomain is fully
contained in It, as illustrated in Figure 6. In Figure 10 we report the single-domain
solution 1th on the left and the sub-solutions u1 and u2 in the middle and on the right
respectively. The numerical results reported in Table 1, bottom row, show the same
error behavior as for cases C1 and C2. We conclude that the proposed approach
is consistent also in the realistic case of floating subdomains fully contained in the
single-domain.

FIG. 10. Solutions for C3. Lef t: global solution. Middle: u1. Right u2.


