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Abstract—Demand-side management is a fundamental up-to-
date strategy that transforms the traditional power grid to a 
modern smart grid where the flexible pricing mechanisms play 
a critical role in its successful implementation. In this paper, the 
pricing-demand response between a distribution system 
operator (DSO) and load aggregators (LAs) is modeled as a 
Stackelberg game, where the DSO is the price maker that 
adjusts its strategy based on observed responses from LAs. With 
the concerns of computational cost and privacy protection, two 
distributed solution approaches, particle swarm optimization 
and pattern search algorithm, are investigated and compared 
with the classical centralized backward induction approach. 
Numerical results on a small case study demonstrate the 
effectiveness of the proposed distributed solution approaches in 
leveraging flexible demand response potential. 

Keywords-Smart grid; transactive energy; demand response; 
particle swarm; Stackelberg game; pattern search; distribution 
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I.  INTRODUCTION  
Being a measure of demand-side management, the 

demand response (DR) is defined by the U.S. Department of 
Energy as “changes in electric usage by end-use customers 
from their normal consumption patterns in response to 
changes in the price of electricity over time, or to incentive 
payments designed to induce lower electricity use at times of 
high wholesale market prices or when system reliability is 
jeopardized” [1]. Many advantages, such as load shifting and 
peak reduction, can be achieved with more participation of 
end-use customers. Different DR incentive approaches have 
been explored, including time-of-use (TOU) tariff, real-time 
tariff, critical peak tariff, demand-side bidding, interruptible 
load, and direct load control. 

Extensive research has been conducted with regarding to 
different electricity pricing schemes, especially game-
theoretic based approaches. For instance, in the two-step game 
with the objective of reducing electricity demand peak-to-
average ratio (PAR) [1], the power companies pull consumers 
repeatedly in a round-robin fashion and provide them energy 
prices, then each customer optimizes its own schedule and 

updates it to the supplier. A one-leader, N-follower 
Stackelberg game has been formulated in [2], [3] to model the 
interaction between a utility company and multiple customers 
aiming at balancing supply and demand as well as smoothing 
the aggregated load. An M-leader and N-follower Stackelberg 
model is used in [4] to model the peer-to-peer energy trading 
process among prosumers in a community. A Nash-
bargaining based cooperative model is formulated in [5] to let 
a distribution system operator (DSO) and demand load 
aggregators (LAs) collaboratively decide energy trade amount 
and allocate collective benefits fairly among participants.  

With regards to solution approaches, the centralized 
backward induction (BI) approach [6] has been widely used 
since the establishment of game theory. It determines the next-
to-last move by taking the last player’s action as given. For 
example, in the pricing game between a utility company and 
different buildings [2], the price variable from the utility 
company is assumed as a given parameter to derive the best 
load response from buildings. In this paper, with the concerns 
of computational cost and privacy protection in centralized 
approaches, we explore distributed solution approaches for a 
pricing game where DSOs broadcast price and LAs adjust 
their actual loads accordingly. Unlike centralized solution 
approaches where all information from LAs is collected at a 
central unit to make global decisions, each LA in distributed 
solution approaches  makes its own decision in a distributed 
way without revealing local information, while the DSO will 
make its next move based on the aggregated load feedback 
from all LAs. 

The main contributions of this research are: 
1. Investigating a heuristic distributed approach based on 

the particle swarm optimization (PSO) method to solve 
the pricing Stackelberg game. 

2. Investigating a deterministic distributed approach 
based on the pattern search algorithm (PSA) to solve the 
pricing Stackelberg game. 

3. Comparing the performance of the proposed two 
distributed approaches with the centralized BI solution 
approach. 

The remainder of this paper is structured as follows. 
Section II presents the Stackelberg pricing model between a 
DSO and multiple LAs, while Section III presents three 
different solution approaches for the pricing model including 
one centralized and two distributed methods. Section IV 
presents detailed numerical results to validate the performance 
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of the different solution approaches. Finally, Section V 
provides the summary and conclusion.  

II. STACKELBERG PRICING MODEL  
In this section, a bi-level model is developed for the 

Stackelberg pricing game between a DSO and several LAs. 
There are several advantages to consider load aggregators 
instead of individual customers, for example, the dynamics of 
an aggregated load are slower and therefore more predictable. 
In addition, the communication burden in the electric 
distribution system will be reduced. 

Generally, in DR programs, loads might be controlled 
(curtailed) during some periods of time by a system operator 
or customers might adjust their demand in response to real-
time electricity price. In this study, the DSO is modeled as a 
leader while LAs are modeled as followers in a Stackelberg 
game model. The bi-level model of the Stackelberg pricing 
game is formulated in Eqs. (1)-(5), where at the upper level 
𝑈𝑈0 is the total utility value to be maximized for the DSO, and 
at the lower level 𝑈𝑈𝑛𝑛 is the total utility value to be maximized 
for LAs. 𝑛𝑛, 𝑡𝑡  are indices for number of LAs and time (in 
hours), respectively. 𝐿𝐿𝑛𝑛,𝑡𝑡  and 𝐿𝐿�𝑛𝑛,𝑡𝑡  are the min and max 
demand limits for the nth LA at time step t. 𝐶𝐶𝑡𝑡  is the 
incremental marginal cost and 𝑃𝑃� is the max price reference. 𝑝𝑝𝑡𝑡  
and 𝑙𝑙𝑛𝑛,𝑡𝑡  are the price and demand response variables, 
respectively, to be solved. 

 

max
𝑝𝑝𝑡𝑡, 𝑙𝑙𝑛𝑛,𝑡𝑡

𝑈𝑈0 =∑ 𝑝𝑝𝑡𝑡 ∙ 𝑙𝑙𝑛𝑛,𝑡𝑡𝑛𝑛,𝑡𝑡 − ∑ 𝐶𝐶𝑡𝑡 ∙ 𝑙𝑙𝑛𝑛,𝑡𝑡 + 𝜔𝜔 ∙𝑛𝑛,𝑡𝑡

∑ 𝑆𝑆�𝑙𝑙𝑛𝑛,𝑡𝑡�𝑛𝑛,𝑡𝑡 − 𝜃𝜃 ∙ 𝑃𝑃� ∙ 𝑚𝑚  
(1) 

s.t.  𝐶𝐶𝑡𝑡 ≤ 𝑝𝑝𝑡𝑡 ≤ 𝑃𝑃�, ∀𝑡𝑡 (2) 
𝑚𝑚 ≥ ∑ 𝑙𝑙𝑛𝑛,𝑡𝑡𝑛𝑛 ,∀𝑡𝑡  (3) 

max
𝑙𝑙𝑛𝑛,𝑡𝑡

 𝑈𝑈𝑛𝑛 = ∑ 𝑆𝑆(𝑙𝑙𝑛𝑛,𝑡𝑡)𝑡𝑡 − ∑ 𝑝𝑝𝑡𝑡 ∙ 𝑙𝑙𝑛𝑛,𝑡𝑡𝑡𝑡   (4) 
s.t.       𝐿𝐿𝑛𝑛,𝑡𝑡 ≤ 𝑙𝑙𝑛𝑛,𝑡𝑡 ≤  𝐿𝐿�𝑛𝑛,𝑡𝑡 , ∀𝑛𝑛 (5) 

The objective function (Eq. (1)) has four terms. The first 
term is the total revenue from sold electricity. The second term 
is the cost of electricity to the DSO, different cost functions 
could be used, e.g. quadratic function [2], [7], [8]. The third 
term is the overall satisfaction value coming from LAs (in 
lower level). The fourth term is the penalty for peak demand. 
Note that 𝜔𝜔  and 𝜃𝜃  are weight factors for the customers’ 
satisfaction and peak demand, respectively. The constraint in 
Eq. (3) makes sure the peak demand 𝑚𝑚 = max 𝑡𝑡∈𝑇𝑇 ∑ 𝑙𝑙𝑛𝑛,𝑡𝑡𝑛𝑛  is 
greater than the total aggregated load at all times. The peak-
to-average ratio is calculated by PAR = 𝑚𝑚

1
𝑇𝑇∙∑ 𝑙𝑙𝑛𝑛,𝑡𝑡𝑛𝑛,𝑡𝑡

. 

The function 𝑆𝑆(𝑙𝑙𝑛𝑛,𝑡𝑡) = 𝐿𝐿�𝑛𝑛,𝑡𝑡 ∙ 𝑃𝑃� ∙ (1 − 𝑒𝑒
−𝛼𝛼𝑛𝑛,𝑡𝑡∙(

𝑙𝑙𝑛𝑛,𝑡𝑡
𝐷𝐷𝑛𝑛,𝑡𝑡

)
) is used 

to represent monetary value of customers’ satisfaction.  
𝐷𝐷𝑛𝑛,𝑡𝑡 is the nominal demand of LA n, which can be obtained 
from historical energy load profiles. This exponential utility 
function 𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒−𝛼𝛼∙𝑥𝑥  is a concave increasing function 
commonly adopted in utility theory to model users’ preference 
[9]. Its value trend is illustrated in Fig. 1 with different 
preference coefficients 𝛼𝛼 ∈  {0.5, 2, 4}. The parameter 𝛼𝛼 
could be treated as the sensitivity towards energy 

consumption curtailment, for instance, the utility value of a 
relatively large value of 𝛼𝛼 = 4 reaches about 0.8 when 𝑙𝑙𝑛𝑛,𝑡𝑡 = 
0.5𝐷𝐷𝑛𝑛,𝑡𝑡, while it is only 0.2 for 𝛼𝛼 = 0.5. 

 
Figure 1.  Utility value for different user preferences. 

III. SOLUTION APPROACHES 
In this section, we initially present the BI centralized 

solution approach to the Stackelberg pricing game (Eqs. (1)-
(5)). Then, we present two distributed solutions, based on 
PSO and PSA, for this pricing game problem. 

A. Backward Induction (BI) 
The classical BI method is a centralized approach to solve 

for the equilibrium solution of the Stackelberg pricing game 
(Eqs. (1)-(5)) by following the following two steps:  

1.   Derive optimal demand response to price. 
The electricity price 𝑝𝑝𝑡𝑡  from the DSO is assumed as a 

parameter, then the best load response 𝑙𝑙𝑛𝑛,𝑡𝑡
∗  is obtained by the 

first-order derivative of LAs’ objective functions. The 
constant 𝐿𝐿

�𝑛𝑛,𝑡𝑡∙𝑃𝑃�

𝐷𝐷𝑛𝑛,𝑡𝑡
 can be redefined as a parameter.  

𝑙𝑙𝑛𝑛,ℎ
∗ =

𝐷𝐷𝑛𝑛,𝑡𝑡

𝛼𝛼𝑛𝑛,𝑡𝑡
∙ ln

𝛼𝛼𝑛𝑛,𝑡𝑡 ∙ 𝐿𝐿�𝑛𝑛,𝑡𝑡 ∙ 𝑃𝑃�
𝑝𝑝𝑡𝑡 ∙ 𝐷𝐷𝑛𝑛,𝑡𝑡

 (6) 

2.   Derive optimal price based on user response. 
After the optimal load 𝑙𝑙𝑛𝑛,ℎ

∗  is obtained, it can then be 
plugged into the upper level and convert the bi-level model 
into a single level model with 𝑝𝑝𝑡𝑡  as the only variable. Eq. (6) 
needs to be substituted into Eq. (5) to get an additional range 
for 𝑝𝑝𝑡𝑡 . If a fixed price structure is adopted, an additional 
constraint 𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡−1, 𝑡𝑡 ≥ 2 should be added to the model. 

Although the BI method provides elegant explicit solution 
for the optimization problem, it does suffer serious challenges 
including heavy computation cost for large-scale 
implementation, all information needs to be collected and 
privacy is not protected, less robust decisions due to natural 
uncertainties or information infidelity [10]. In the sequel, two 
distributed approaches will be introduced to overcome such 
challenges. 

B. Particle Swarm Optimization (PSO) 
The PSO is a widely used swarm intelligence-based 

approach, which mimics a flock of birds that communicate 
together as they fly across the solution space. It is adopted here 
because of its outstanding performance in nonlinear 
continuous solution space [10], [11], [12]. Its proposed 
distributed solving process is summarized as follows: 



1. Randomly initialize vector  𝑝𝑝𝑡𝑡  in the range of Eq. (2). 
2. Given 𝑝𝑝𝑡𝑡 , each LA computes 𝑈𝑈𝑛𝑛 as in Eq. (4). Check 
𝑙𝑙𝑛𝑛,𝑡𝑡  in the range of Eq. (5), if not, adjust 𝑝𝑝𝑡𝑡  upward or 
downward accordingly.  
3. LAs pass their 𝑙𝑙𝑛𝑛,𝑡𝑡  and 𝑆𝑆(𝑙𝑙𝑛𝑛,𝑡𝑡) to the DSO. 𝑈𝑈0  is then 
computed as fitness for particle swarm. 
4. Update velocity and position for each particle, check 
mutation and stop criteria. 

C. Pattern Search Algorithm (PSA) 
The PSA belongs to a set of direct search algorithms that 

do not use derivatives or approximations of derivatives to 
solve the problem [13]. Thus, it can be applied for non-
differentiable non-continuous problems. For our case, in the 
𝑝𝑝𝑡𝑡  searching process of PSA, the corresponding load 
responses from LAs can be computed in a distributed way. 
PSA updates current iteration by sampling the objective 
function at a finite number of points along a suitable set of 
search directions with the aim of finding a decrease in the 
function value. 

The following steps are used to solve for the Stackelberg 
pricing game in Eqs. (1)-(5) using the PSA [14]: 

1. Perform the optional SEARCH step in order to find an 
improved point 𝑝𝑝𝑡𝑡; this step evaluates 𝑈𝑈0  on a finite number 
of trial points on the mesh. 

2. If the SEARCH step fails to generate an improved 
point, create the poll directions set {𝑝𝑝𝑡𝑡 + ∆ ∙ 𝑑𝑑, 𝑑𝑑 ∈ Γ}(∆ is 
the length and Γ is the finite direction set) and perform the 
POLL step again in order to find an improved point. 

3. If an improved point 𝜉𝜉 is found, update the current best 
point 𝑝𝑝𝑡𝑡  and ∆. 

The pattern search with the implicit filtering algorithm in 
[15] is adopted in this study. 

IV. NUMERICAL EXPERIMENTS 

A. Data Setting 
Day-ahead hourly optimization is considered with three 

aggregators (n1, n2, n3). The nominal demand 𝐷𝐷𝑛𝑛,𝑡𝑡 , 𝛼𝛼𝑛𝑛,𝑡𝑡  in 
the satisfaction function (same for all aggregators), and 
marginal cost 𝐶𝐶𝑡𝑡 are shown in Figs. 2 - 4. The parameter 𝑃𝑃� is 
assumed to be constant equals to 30. The weight combination 
(𝜔𝜔,𝜃𝜃) in Eq. (1) is set to be (3,1). These settings are applied 
to the proposed three solution approaches. Here, we assume 
all aggregators have the same price determined by the DSO. 

 
Figure 2.  Nominal demand of aggregators. 

 
Figure 3.  User preference in satisfaction. 

 
Figure 4.  Incremental marginal cost of electricity. 

B. Experimental Results 
For the parameter setting of the PSO algorithm, 𝑤𝑤 is set to 

be 0.6 and updated as (0.5 + unif(0,1))/2 in every iteration 𝑖𝑖, 
𝑐𝑐1 = 𝑐𝑐2  is set to be 1.49 and updated by following the 
nonlinear acceleration strategy [10]. 

The maximum allowed iteration number is 100, swarm 
size is 30, total run time is set to 50. If the best fitness is not 
improved in consecutive 10 iterations, a random disturbance 
between [-0.5, 0.5] is added to the current position of each 
particle to mutate current particles. If the best fitness is not 
improved in successive 30 iterations, stop the algorithm. 

The obtained price signals from PSO in 50 runs are shown 
in Fig. 5, and the corresponding DSO objective values are 
shown in Fig. 6, where the red line is the optimal objective 
value $8316.39 obtained from the BI approach; see results 
summary in Table I. 

 

 
Figure 5.  Prices for 50 runs of PSO. 



 
Figure 6.  DSO objective values for 50 runs of PSO. 

Since PSA is a direct search method and doesn’t rely on 
derivative information, its performance greatly depends on the 
maximum allowable function evaluation number (here, one 
function evaluation means one complete negotiation process 
between a DSO and LAs). For instance, the objective iteration 
is shown in Fig. 7 with function evaluation number of 2000. 
The final objective value approaches the optimal value after 
about 40 iterations. The final objective value and solving time 
are shown in Fig. 8 along with a function evaluation number 
from 100 to 2000. 

 
Figure 7.  Iteration process of PSA with function evaluation number of 

2000. 

 
Figure 8.  DSO objective and computational time of PSA with different 

function evaluation numbers. 

For comparison purposes, the BI approach is implemented 
using a non-commercial nonlinear solver SCIP [16]. Both 
fixed price (FIX) and Time-of-Use (TOU) price structures are 
tested. The average price in multiple runs are calculated and 
the best price is picked based on the best objective value for 
PSO. Overall, as indicated by the price comparison in Fig. 9, 
the TOU prices are blow the fixed price before 11am and after 
23pm, which will motivate LAs to shift demand from 
relatively peak hours 11am-23pm (see Fig. 2) or high 
generation cost hours (see Fig. 4) to off-peak hours before 
11am. This is supported by the aggregated demand response 
outcome shown in Fig. 10. Note that this peak-load shifting 
effect is greatly determined by users’ preference on 
satisfaction (see Fig. 3 and Fig. 1); small value of 𝛼𝛼 before 
11am means more load or regulation flexibility, and large 
value of 𝛼𝛼 means that users are reluctant to the price response 
in that period.  

 
Figure 9.  Resulted prices from the different solution approaches. 

 
Figure 10.  Resulted aggregated loads from the different solution 

approaches. 

To better compare the different solution approaches, the 
detailed experimental results are summarized in Table I. The 
best price for PSO is used, and the function evaluation number 
is fixed as 2000 for PSA. Compared with fixed price, TOU 
prices from BI, PSO, and PSA have a lower PAR value and 
higher overall social welfare (objective sum of DSO and LAs) 
for one-day operation. The average price for each aggregator 
is calculated by ∑ 𝑝𝑝𝑡𝑡∙𝑙𝑙𝑛𝑛,𝑡𝑡

∗
𝑡𝑡
∑ 𝑙𝑙𝑛𝑛,𝑡𝑡

∗
𝑡𝑡

. The BI (TOU) and PSO (Best) 
provide customers with a lower average price which means 



they could consume more energy with a similar bill payment 
and satisfaction level. The average price of PSA is higher than 
BI and PSO mainly due to the limitation of the function 
evaluation number.  

As a centralized approach, BI will need to collect all 
sensitive information from customers, such as their load 
profile, satisfaction preference, etc. And its computational 
cost (solver SCIP) is higher than the distributed algorithms 
(PSO and PSA), for instance, it takes 300 seconds to reach a 
relative gap of 2.88% and 600 seconds to reach a relative gap 
of 2.69% for this small case study. Each iteration in PSO takes 
about 0.3 seconds for parallel execution and it will need 
around 30 seconds for max 100 iterations limit. Seen from Fig. 
6, it starts to converge around 50 iterations. The solving time 
for PSA is shown in Fig. 8. Although PSO performs slightly 
better than PSA in Table I, its performance is not stable due to 
its stochastic nature and it requires a parameter tuning process 
and a large number of repetitions. On the other hand, PSA is 
a deterministic method and its convergence property is 
guaranteed given enough function evaluations. 

TABLE I.  PROFIT AND COST IN SUMMARY (PRICE: CENT, 
COST/REVENUE/SATISFACTION: $), (CUSTERMOR SATISFACTION: PEAK 

PENALTY = 3:1). 

DSO Level BI (FIX) BI (TOU) PSO (Best) PSA (Final) 

Peak Load 255.43 243.69 243.72 244.30 

PAR Value 1.17 1.09 1.09 1.10 

Total Satisfaction 2593.66 2600.74 2600.79 2597.71 

DSO Revenue  790.33 780.87 780.70 786.89 

DSO Gen. Cost  193.32 193.60 193.67 191.85 

DSO Profit  597.01 587.27 587.03 595.03 

DSO Objective 8301.39 8316.39 8316.31 8314.90 

Aggregator Level BI (FIX) BI (TOU) PSO (Best) PSA (Final) 

n1 Average Price  15.11 14.63 14.61 14.84 

n2 Average Price  15.11 14.57 14.56 14.79 

n3 Average Price 15.11 14.76 14.76 15.02 

n1 Bill Payment  206.15 203.57 203.48 205.05 

n2 Bill Payment  293.70 289.45 289.37 291.59 

n3 Bill Payment 290.46 287.85 287.84 290.24 

n1 Satisfaction 682.23 684.70 684.71 684.14 

n2 Satisfaction 955.92 959.30 959.41 958.35 

n3 Satisfaction 955.50 956.73 956.67 955.21 

V. CONCLUSION 
In this paper, a Stackelberg pricing model is formulated 

for a DSO and LAs, where in the upper level, the DSO 
maximizes its profit as well as its social obligation to 
customers, while in the lower level, LAs minimize their 
electricity bill payment and discomfort. To accelerate the 
solving process and protect sensitive information, two 
distributed algorithms, PSO and PSA, are implemented and 

compared. Numerical results show that the performance of the 
proposed distributed approaches is in close proximity to the 
optimal solution. The problem of how the committed 
aggregated demand response can be allocated to each 
individual customer will be explored in a future paper. 
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