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Abstract—Demand-side management is a fundamental up-to-
date strategy that transforms the traditional power grid to a
modern smart grid where the flexible pricing mechanisms play
a critical role in its successful implementation. In this paper, the
pricing-demand response between a distribution system
operator (DSO) and load aggregators (LAs) is modeled as a
Stackelberg game, where the DSO is the price maker that
adjusts its strategy based on observed responses from LAs. With
the concerns of computational cost and privacy protection, two
distributed solution approaches, particle swarm optimization
and pattern search algorithm, are investigated and compared
with the classical centralized backward induction approach.
Numerical results on a small case study demonstrate the
effectiveness of the proposed distributed solution approaches in
leveraging flexible demand response potential.
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I. INTRODUCTION

Being a measure of demand-side management, the
demand response (DR) is defined by the U.S. Department of
Energy as “changes in electric usage by end-use customers
from their normal consumption patterns in response to
changes in the price of electricity over time, or to incentive
payments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability is
jeopardized” [1]. Many advantages, such as load shifting and
peak reduction, can be achieved with more participation of
end-use customers. Different DR incentive approaches have
been explored, including time-of-use (TOU) tariff, real-time
tariff, critical peak tariff, demand-side bidding, interruptible
load, and direct load control.

Extensive research has been conducted with regarding to
different electricity pricing schemes, especially game-
theoretic based approaches. For instance, in the two-step game
with the objective of reducing electricity demand peak-to-
average ratio (PAR) [1], the power companies pull consumers
repeatedly in a round-robin fashion and provide them energy
prices, then each customer optimizes its own schedule and

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

updates it to the supplier. A one-leader, N-follower
Stackelberg game has been formulated in [2], [3] to model the
interaction between a utility company and multiple customers
aiming at balancing supply and demand as well as smoothing
the aggregated load. An M-leader and N-follower Stackelberg
model is used in [4] to model the peer-to-peer energy trading
process among prosumers in a community. A Nash-
bargaining based cooperative model is formulated in [5] to let
a distribution system operator (DSO) and demand load
aggregators (LAs) collaboratively decide energy trade amount
and allocate collective benefits fairly among participants.

With regards to solution approaches, the centralized
backward induction (BI) approach [6] has been widely used
since the establishment of game theory. It determines the next-
to-last move by taking the last player’s action as given. For
example, in the pricing game between a utility company and
different buildings [2], the price variable from the utility
company is assumed as a given parameter to derive the best
load response from buildings. In this paper, with the concerns
of computational cost and privacy protection in centralized
approaches, we explore distributed solution approaches for a
pricing game where DSOs broadcast price and LAs adjust
their actual loads accordingly. Unlike centralized solution
approaches where all information from LAs is collected at a
central unit to make global decisions, each LA in distributed
solution approaches makes its own decision in a distributed
way without revealing local information, while the DSO will
make its next move based on the aggregated load feedback
from all LAs.

The main contributions of this research are:

1. Investigating a heuristic distributed approach based on
the particle swarm optimization (PSO) method to solve
the pricing Stackelberg game.

2. Investigating a deterministic distributed approach
based on the pattern search algorithm (PSA) to solve the
pricing Stackelberg game.

3. Comparing the performance of the proposed two
distributed approaches with the centralized BI solution
approach.

The remainder of this paper is structured as follows.
Section II presents the Stackelberg pricing model between a
DSO and multiple LAs, while Section III presents three
different solution approaches for the pricing model including
one centralized and two distributed methods. Section IV
presents detailed numerical results to validate the performance



of the different solution approaches. Finally, Section V
provides the summary and conclusion.

II. STACKELBERG PRICING MODEL

In this section, a bi-level model is developed for the
Stackelberg pricing game between a DSO and several LAs.
There are several advantages to consider load aggregators
instead of individual customers, for example, the dynamics of
an aggregated load are slower and therefore more predictable.
In addition, the communication burden in the electric
distribution system will be reduced.

Generally, in DR programs, loads might be controlled
(curtailed) during some periods of time by a system operator
or customers might adjust their demand in response to real-
time electricity price. In this study, the DSO is modeled as a
leader while LAs are modeled as followers in a Stackelberg
game model. The bi-level model of the Stackelberg pricing
game is formulated in Eqs. (1)-(5), where at the upper level
Uy is the total utility value to be maximized for the DSO, and
at the lower level U, is the total utility value to be maximized
for LAs. n,t are indices for number of LAs and time (in
hours), respectively. L,, and L,, are the min and max
demand limits for the nth LA at time step ¢ C; is the
incremental marginal cost and P is the max price reference. p,
and l,, are the price and demand response variables,
respectively, to be solved.
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The objective function (Eq. (1)) has four terms. The first
term is the total revenue from sold electricity. The second term
is the cost of electricity to the DSO, different cost functions
could be used, e.g. quadratic function [2], [7], [8]. The third
term is the overall satisfaction value coming from LAs (in
lower level). The fourth term is the penalty for peak demand.
Note that w and 6 are weight factors for the customers’
satisfaction and peak demand, respectively. The constraint in
Eq. (3) makes sure the peak demand m = max ;e Yo Ly ¢ 18
greater than the total aggregated load at all times. The peak-

to-average ratio is calculated by PAR = ———.
TZntlnt
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The function S(l,,¢) = Ly - P+ (1 — e_an't-(m)) is used
to represent monetary value of customers’ satisfaction.
D, ; is the nominal demand of LA »n, which can be obtained
from historical energy load profiles. This exponential utility
function f(x) = 1 — e ** is a concave increasing function
commonly adopted in utility theory to model users’ preference
[9]. Its value trend is illustrated in Fig. 1 with different
preference coefficients a € {0.5, 2, 4}. The parameter a
could be treated as the sensitivity towards energy

consumption curtailment, for instance, the utility value of a
relatively large value of @ = 4 reaches about 0.8 when [, , =
0.5D,, ;, while it is only 0.2 for @ = 0.5.
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Figure 1. Utility value for different user preferences.

III.  SOLUTION APPROACHES

In this section, we initially present the BI centralized
solution approach to the Stackelberg pricing game (Egs. (1)-
(5)). Then, we present two distributed solutions, based on
PSO and PSA, for this pricing game problem.

A. Backward Induction (BI)

The classical BI method is a centralized approach to solve
for the equilibrium solution of the Stackelberg pricing game
(Egs. (1)-(5)) by following the following two steps:

1. Derive optimal demand response to price.

The electricity price p; from the DSO is assumed as a
parameter, then the best load response I}, ; is obtained by the
first-order derivative of LAs’ objective functions. The

LneP
constant —— can be redefined as a parameter.
n,t
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2. Derive optimal price based on user response.

After the optimal load I} ;, is obtained, it can then be
plugged into the upper level and convert the bi-level model
into a single level model with p, as the only variable. Eq. (6)
needs to be substituted into Eq. (5) to get an additional range
for p;. If a fixed price structure is adopted, an additional
constraint p; = p;_;,t = 2 should be added to the model.

Although the BI method provides elegant explicit solution
for the optimization problem, it does suffer serious challenges
including heavy computation cost for large-scale
implementation, all information needs to be collected and
privacy is not protected, less robust decisions due to natural
uncertainties or information infidelity [10]. In the sequel, two
distributed approaches will be introduced to overcome such
challenges.

B. Particle Swarm Optimization (PSO)

The PSO is a widely used swarm intelligence-based
approach, which mimics a flock of birds that communicate
together as they fly across the solution space. It is adopted here
because of its outstanding performance in nonlinear
continuous solution space [10], [11], [12]. Its proposed
distributed solving process is summarized as follows:



1. Randomly initialize vector p, in the range of Eq. (2).
2. Given p;, each LA computes U,, as in Eq. (4). Check
[, ¢ in the range of Eq. (5), if not, adjust p, upward or
downward accordingly.

3. LAs pass their [, and S(I,, ;) to the DSO. U, is then
computed as fitness for particle swarm.

4. Update velocity and position for each particle, check
mutation and stop criteria.

C. Pattern Search Algorithm (PSA)

The PSA belongs to a set of direct search algorithms that
do not use derivatives or approximations of derivatives to
solve the problem [13]. Thus, it can be applied for non-
differentiable non-continuous problems. For our case, in the
p: searching process of PSA, the corresponding load
responses from LAs can be computed in a distributed way.
PSA updates current iteration by sampling the objective
function at a finite number of points along a suitable set of
search directions with the aim of finding a decrease in the
function value.

The following steps are used to solve for the Stackelberg
pricing game in Eqs. (1)-(5) using the PSA [14]:

1. Perform the optional SEARCH step in order to find an
improved point p;; this step evaluates U, on a finite number
of trial points on the mesh.

2. If the SEARCH step fails to generate an improved
point, create the poll directions set {p; + A-d,d € ['}(Ais
the length and I' is the finite direction set) and perform the
POLL step again in order to find an improved point.

3. If an improved point ¢ is found, update the current best
point p; and A.

The pattern search with the implicit filtering algorithm in
[15] is adopted in this study.

IV. NUMERICAL EXPERIMENTS

A. Data Setting

Day-ahead hourly optimization is considered with three
aggregators (nl, n2, n3). The nominal demand D, ¢, a;,, in
the satisfaction function (same for all aggregators), and
marginal cost C; are shown in Figs. 2 - 4. The parameter P is
assumed to be constant equals to 30. The weight combination
(w, 8) in Eq. (1) is set to be (3,1). These settings are applied
to the proposed three solution approaches. Here, we assume
all aggregators have the same price determined by the DSO.
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Figure 2. Nominal demand of aggregators.
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Figure 3. User preference in satisfaction.
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Figure 4. Incremental marginal cost of electricity.

B. Experimental Results

For the parameter setting of the PSO algorithm, w is set to
be 0.6 and updated as (0.5 + unif(0,1))/2 in every iteration i,
c1 =c, is set to be 1.49 and updated by following the
nonlinear acceleration strategy [10].

The maximum allowed iteration number is 100, swarm
size is 30, total run time is set to 50. If the best fitness is not
improved in consecutive 10 iterations, a random disturbance
between [-0.5, 0.5] is added to the current position of each
particle to mutate current particles. If the best fitness is not
improved in successive 30 iterations, stop the algorithm.

The obtained price signals from PSO in 50 runs are shown
in Fig. 5, and the corresponding DSO objective values are
shown in Fig. 6, where the red line is the optimal objective
value $8316.39 obtained from the BI approach; see results
summary in Table L.

Prices for multiple runs of PSO
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Figure 5. Prices for 50 runs of PSO.



DSO objectives for multiple runs of PSO
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Figure 6. DSO objective values for 50 runs of PSO.

Since PSA is a direct search method and doesn’t rely on
derivative information, its performance greatly depends on the
maximum allowable function evaluation number (here, one
function evaluation means one complete negotiation process
between a DSO and LAs). For instance, the objective iteration
is shown in Fig. 7 with function evaluation number of 2000.
The final objective value approaches the optimal value after
about 40 iterations. The final objective value and solving time
are shown in Fig. 8 along with a function evaluation number
from 100 to 2000.

Iter. of PSA with function evaluation num. = 2000
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Figure 7. Iteration process of PSA with function evaluation number of
2000.
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Figure 8. DSO objective and computational time of PSA with different
function evaluation numbers.

For comparison purposes, the BI approach is implemented
using a non-commercial nonlinear solver SCIP [16]. Both
fixed price (FIX) and Time-of-Use (TOU) price structures are
tested. The average price in multiple runs are calculated and
the best price is picked based on the best objective value for
PSO. Overall, as indicated by the price comparison in Fig. 9,
the TOU prices are blow the fixed price before 11am and after
23pm, which will motivate LAs to shift demand from
relatively peak hours 1lam-23pm (see Fig. 2) or high
generation cost hours (see Fig. 4) to off-peak hours before
11am. This is supported by the aggregated demand response
outcome shown in Fig. 10. Note that this peak-load shifting
effect is greatly determined by wusers’ preference on
satisfaction (see Fig. 3 and Fig. 1); small value of a before
I1lam means more load or regulation flexibility, and large
value of a means that users are reluctant to the price response
in that period.

Resulted prices from different solution approaches
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Figure 9. Resulted prices from the different solution approaches.

Aggregated load from different solution approaches

Norminal load
Fixed price, Bl

-
~
v

Aggregated load kwh
S
o

—
%
o

-
N
v

TOU price, Bl
Average price, PSO
Best price, PSO

Final price, PSA

»—-4||||

100

P 8 12 6 20 24

hours

Figure 10. Resulted aggregated loads from the different solution
approaches.

To better compare the different solution approaches, the
detailed experimental results are summarized in Table I. The
best price for PSO is used, and the function evaluation number
is fixed as 2000 for PSA. Compared with fixed price, TOU
prices from BI, PSO, and PSA have a lower PAR value and
higher overall social welfare (objective sum of DSO and LAs)
for one-day operation. The average price for each aggregator
% The BI (TOU) and PSO (Best)

tint
provide customers with a lower average price which means

is calculated by



they could consume more energy with a similar bill payment
and satisfaction level. The average price of PSA is higher than
BI and PSO mainly due to the limitation of the function
evaluation number.

As a centralized approach, BI will need to collect all
sensitive information from customers, such as their load
profile, satisfaction preference, etc. And its computational
cost (solver SCIP) is higher than the distributed algorithms
(PSO and PSA), for instance, it takes 300 seconds to reach a
relative gap of 2.88% and 600 seconds to reach a relative gap
0f 2.69% for this small case study. Each iteration in PSO takes
about 0.3 seconds for parallel execution and it will need
around 30 seconds for max 100 iterations limit. Seen from Fig.
6, it starts to converge around 50 iterations. The solving time
for PSA is shown in Fig. 8. Although PSO performs slightly
better than PSA in Table I, its performance is not stable due to
its stochastic nature and it requires a parameter tuning process
and a large number of repetitions. On the other hand, PSA is
a deterministic method and its convergence property is
guaranteed given enough function evaluations.

TABLE L PROFIT AND COST IN SUMMARY (PRICE: CENT,
COST/REVENUE/SATISFACTION: $), (CUSTERMOR SATISFACTION: PEAK
PENALTY =3:1).

DSO Level BI (FIX) | BI (TOU) | PSO (Best) | PSA (Final)
Peak Load 255.43 243.69 243.72 244.30
PAR Value 1.17 1.09 1.09 1.10
Total Satisfaction | 2593.66 | 2600.74 2600.79 2597.71
DSO Revenue 790.33 780.87 780.70 786.89
DSO Gen. Cost 193.32 193.60 193.67 191.85
DSO Profit 597.01 587.27 587.03 595.03
DSO Objective 8301.39 | 8316.39 8316.31 8314.90
Aggregator Level | BI (FIX) | BI (TOU) | PSO (Best) | PSA (Final)
nl Average Price 15.11 14.63 14.61 14.84

n2 Average Price 15.11 14.57 14.56 14.79

n3 Average Price 15.11 14.76 14.76 15.02

nl Bill Payment 206.15 203.57 203.48 205.05
n2 Bill Payment 293.70 289.45 289.37 291.59
n3 Bill Payment 290.46 287.85 287.84 290.24
nl Satisfaction 682.23 684.70 684.71 684.14
n2 Satisfaction 955.92 959.30 959.41 958.35
n3 Satisfaction 955.50 956.73 956.67 955.21

V. CONCLUSION

In this paper, a Stackelberg pricing model is formulated
for a DSO and LAs, where in the upper level, the DSO
maximizes its profit as well as its social obligation to
customers, while in the lower level, LAs minimize their
electricity bill payment and discomfort. To accelerate the
solving process and protect sensitive information, two
distributed algorithms, PSO and PSA, are implemented and

compared. Numerical results show that the performance of the
proposed distributed approaches is in close proximity to the
optimal solution. The problem of how the committed
aggregated demand response can be allocated to each
individual customer will be explored in a future paper.
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