Learning to Predict Material Structure from Neutron Scattering Data

Cristina Garcia-Cardona®, Ramakrishnan Kannan®, Travis Johnston®, Thomas Proffen®, Katharine Pageb, Sudip K. Seal®
“Los Alamos National Laboratory, “Oak Ridge National Laboratory

Abstract—Understanding structural properties of materials
and how they relate to its atomic structure, while extremely
challenging, is a key scientific quest that has dominated the
landscape of materials research for decades. Neutron and X-ray
scattering is a state-of-the-art method to investigate material
structure on the atomic scale. Traditional methods of processing
neutron scattering data to decipher the structure of target
materials have relied on computing scattering patterns using
physics-based forward models and comparing them with exper-
imentally gathered scattering profiles within a computationally
expensive optimization loop. Here, we report an initial design of
a data-driven machine learning pipeline for material structure
prediction that is computationally faster (once trained) and
potentially more accurate. We describe the architecture of the
ML pipeline and a preliminary benchmarking study of shallow
machine learning models in terms of their prediction accuracy
and limitations. We show that material structure prediction
from neutron scattering data using shallow learning models is
feasible to within 90% prediction accuracy for certain classes
of materials but deeper models are required for more general
material structure predictions.

I. INTRODUCTION

We are witnessing an unprecedented pace in the adoption
of machine learning (ML) methods within a wide variety
of industrial and technological domains. Natural language
processing, autonomous vehicles, image analysis and facial
recognition are some of the often cited application areas in
which ML has been demonstrated to achieve impressive ad-
vances over more traditional methods. ML-based approaches
are generally used to model solutions to problems for
which no closed form analytical understanding exists. The
predictive capabilities of many ML models have been found
to be competitive and, on numerous occasions, superior to
existing state-of-the-art application-specific methodologies.

This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-AC05-000R22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan) A portion of this research used resources at the Spallation
Neutron Source, a DOE Office of Science User Facility operated by the
Oak Ridge National Laboratory. A portion of this research used resources
at the ALCF, a DOE Office of Science User Facility operated by the
Argonne National Laboratory. This research was sponsored by the Exascale
Computing Project, DOE.

While many of the fundamental concepts of ML (and
artificial intelligence) can be traced back several decades,
the data deluge of recent years has enabled an explosive re-
emergence of ML as a dominant methodology in big data
analytics. This is because ML models often require (a) a sub-
stantial amount of data to train on, and (b) large computing
resources, both of which are increasingly becoming available
today. Despite a veritable revolution in big data analytics,
adoption of ML for scientific knowledge discovery at-large
has lagged behind their commercial counterparts such as
information retrieval, image processing and voice assisted
services. One amongst several reasons for this delay can be
attributed to the fact that the size, availability and readiness
of data for ML models to train on differ significantly from
one scientific domain to another. But, new scientific domains
are constantly testing the advantages and limitations of ML
methodologies for knowledge discovery. The work reported
here embodies one of the first large-scale attempts to use ML
approaches for material structure prediction using neutron
scattering data.

A. Motivation

Understanding the atomic structure of materials enables
scientists to unravel the structural, mechanical and thermal
properties of the material and help them design new materi-
als or improve existing ones. Neutron and X-ray diffraction
allow researchers to unravel the atomic structure of complex
materials and provided crucial scientific insight into our cur-
rent understanding of many materials from superconductors
to batteries to protein structures. While neutron and X-ray
diffraction provide complementary information about each
sample, the crystallographic analysis methods of the data
collected by these techniques are very similar. As such, ML
methods developed for the analysis of one kind of data are
applicable for the analysis of the other kind with minimal
modifications.

For the purpose of this paper, we limit the scope of
diffraction analysis to obtaining the average atomic structure
from Bragg scattering of neutrons. Structure determination
and refinement are largely manual processes that require
extensive expert input from scientists making this a bot-
tleneck towards automatic and fast structure determination
from diffraction data. This bottleneck is becoming more
significant as experimental instrumentation continues to im-
prove, producing more data more rapidly at state-of-the-art

Current workflow Proposed workflow
Structure i
Refine A Refine |
structural ~ EEE) .4 <4 QEHLCUE
parameters parameters
(optional)
I - I
08
e °° Predict model
structural _ ¢ from proposed
model 02 trained model
Scientist '"P“'I‘Y‘ w00 4 c0 som 10000 12000 1400 36000

Figure 1: Typical workflow in structure determination and refine-
ment. The loop on the left show the current workflow involving a
domain expert creating a structural model. The loop on the right
is the workflow described here where the structural model and
parameter estimated are obtained from a trained network.

facilities such as the Spallation Neutron Source (SNS) in the
Oak Ridge National Laboratory.

The current workflow for material structure determination
from neutron scattering data is shown on the left in Fig. 1. In
it, a suitable structural model is built by a researcher through
(educated) trial and error which is typically very time-
consuming and quickly becomes a bottleneck in scientific
discovery. The proposed workflow, shown by the right loop
in Fig. 1, is expected to replace the ‘manual’ model building
by interrogating a trained network, as described in this
paper. This approach will ultimately predict likely structural
models with structural parameter estimates. Accordingly, the
primary motivation of the effort reported here is to build
an alternative fast and potentially more accurate data-driven
ML approach for the inverse problem of material structure
determination from neutron scattering data.

B. Related Work and Contributions

ML for neutron scattering data analysis is a nascent area
of research. Earlier this year, the use of principal component
analysis with an artificial neural network to predict neutron
scattering cross-sections to constrain the parameters of a
pre-existing model Hamiltonian was reported in [1] while
[2] reports an unsupervised ML approach to studying phase
transitions in single crystal x-ray diffraction data. An ML-
based approach to classify the local chemical environment of
specific metal families from the simulated K-edge XANES
of a large number of compounds was reported in [3]. To the
best of our knowledge, no effort to use ML techniques to
predict material structure from neutron scattering data has
been reported till date.

The target class of materials used in this study is what
is called a perovskite compound whose general molecular
signature is represented by ABO3; where A and B refer
to general chemical elements but O always represents oxy-
gen. In particular, we use the perovskite barium titanate,
BaTiOs, as our target material. Perovskite materials have
gained world-wode interest in recent years for a variety of
reasons and advances made in faithful perovskite material
structure predcition are expected to be highly impactful to

S
g 3
¢ = o
EEE 7 - = 'u_g
o 2% © 29w @0 29
=~ E® o T La Q (e IR T]
@ = =
e S E 5 E® e 5= E
X T 2EC - 25¢
© - o o [
5= E £ @ = a
T =
= i
-

Figure 2: The proposed ML pipeline.

the global materials science community. It is worth noting
that the overall ML framework presented here is not specific
to perovskites and is equally applicable to any material
sample. Specifically, in this paper, we present:

« the first reported large-scale generation of labelled sets
of neutron scattering data for machine learning models
to train on.

o the design and benchmarking of one of the first classi-
fiers for crystallographic symmetry group prediction.

« the first application of a number of popular regression
models to demonstrate their efficacy and limitations
in predicting the structural parameters of (perovskite)
materials.

Together, these results represent one of the first attempts
to predict material structure directly from their neutron
scattering profiles.

II. PRELIMINARIES

Crystalline materials are characterized by translational
periodicity of the basic unit called the unit cell. Three-
dimensional space allows for arrangements falling into seven
crystal classes and 14 Bravais lattices [S] shown in Fig.

b

Tetragonal

Trigonal / Hexagonal P Trigonal R

a=b=c a=b=c
a=p=y=90° a=p=y=90°

» 5 BN

P 1 F
Cubic

Figure 3: The 14 Bravais lattices and 7 crystal classes that are
compatible with three-dimensional translational periodicity. [4]

3. These seven crystal classes are called cubic, tetragonal,
orthorhombic, hexagonal, trigonal, monoclinic and triclinic.
Each of these classes are characterized by specific con-
straints on the lattice parameters a, b, ¢ defining the length of
the unit cell in each dimension and the unit cell angles «, 8
and . Examples of these constraints and test data generated
are shown for the cubic, trigonal and tetragonal crystal
classes in Table I. Accordingly, the structure determination
of any material is a two step process wherein the Bravais
lattice and ultimately the space group is determined in the
first step. The second step is to determine the unit cell
lengths a, b, c and unit cell angles «, 3,~. The final goal
is the determination of the unit cell content (e.g. atomic
coordinates, atomic displacement parameters) allowing the
researcher to build a complete model of the crystal structure.
The proposed pipeline that accomplishes these two steps is
shown in Fig. 2. The input consists of a Bragg profile and
a description of the instrument that collected the diffraction
data. This information is used by a classifier to predict its
crystallographic class (one of seven). The predicted class,
along with the Bragg diffraction pattern, are then used by a
regressor to predict the lattice parameters and bond angles
of the material.

A major challenge for training classifiers and regressors
for use in the preceding pipeline is a lack of labelled
neutron diffraction data for these ML models to train on.
This challenge is addressed by using a forward surrogate
physics model with low computational cost to simulate
large data sets that sample the complete parameter space
of the inter-atomic distances and bond angles subject to the
crystallographic class relations as exhaustively as possible.
The ML models are then trained on a large subset of these
simulated samples, tested on a held out subset and then
validated against experimentally annotated diffraction data
obtained from NOMAD, the Nanoscale Ordered Materials
Diffractometer at the Spallation Neutron Source, Oak Ridge
National Laboratory [6]. Generation of this training data set
is described next.

IT1I. DATA GENERATION
A. Generation of Training Data

The training data set is generated using the GSAS-II
software tool [7]. GSAS, which stands for Generalized
Structure Analysis System, is a software that is globally
used to determine structures of crystalline solids at all
length scales and compositions (powder or single crystal)
when probed with either neutrons or X-ray. Here, GSAS-
IT is used to compute the diffraction pattern, X, for every
combination of lattice parameters, Y. Here, Y denotes a set
{a,b,c,a, B,v} of lattice parameters and unit cell angles
as defined in Section II. GSAS-II requires an instrument
parameter file to model the physics of the diffractometer
used to generate the diffraction profile. As such, a parameter
specification file corresponding to the NOMAD instrument

Table I: GSAS-II Diffraction Pattern Simulation.

[Class [Parameters [Simulations (n) [Size
Cubic a=b=c 3,000 | 0.13 GB
(predict a) a=p=v=90°
Trigonal a=b=c 579,000 | 25 GB
(predict a, @) | @ = 8 = v # 90°
Tetragonal a=b#c 998,584 | 42 GB
(predict a,c) | a = =~ =90°

is used for the GSAS-II tool to maintain consistency with
the NOMAD-generated experimental data against which the
model predictions are eventually validated.

Each diffraction pattern X is a set of 2807 2-tuples
(y, I(y)) where y is the time-of-flight (ToF), simulated in
the range [1,360us, 18,919us], and I(y) is the corresponding
intensity. As mentioned earlier, the fast GSAS simulations
generate the training samples. These fast simulations en-
able high resolution sampling of the total parameter space
spanned by the lattice parameters and unit cell angles.
Simulation of each diffraction pattern typically takes be-
tween 2s to 17s, depending on the particular combination
of crystallographic symmetry and structural parameters.

Accordingly, labelled training data sets for each crystallo-
graphic class were generated by sweeping the space of lattice
parameters and unit cell angles with step resolution of 0.001
for the lengths and 0.5° for the angles. For cubic class, a
was simulated in the range [2.5, 5.5]. For trigonal class, a
was simulated in the range [2.5, 5.5], while a was simulated
in the ranges [20°, 88°] and [92°, 120°]. For tetragonal
class, a,c were simulated in the range [3.5, 4.5]. The
GSAS-II software is a sequential tool. To enable large-scale
generation of labelled training data with maximum possible
coverage of the total parameter space across all seven
crystallographic classes, an MPI-based parallel framework
was developed to efficiently generate the diffraction patterns
in a concurrent and distributed manner. MPI4Py [8] was
used to implement the distributed framework, with which the
parameter grid is partitioned across a pool of processors after
which each processor locally executes GSAS-II to simulate
the diffraction pattern for every locally owned tuple, and
carried out independently for each of the crystallographic
symmetry classes. Table I summarizes the number of simu-
lations performed and the size of data generated.

B. Experimental Data Annotation

Experimental neutron powder diffraction data of BaTiO3
as a function of temperature was collected on the NOMAD
instrument housed in the Spallation Neutron Source at Oak
Ridge National Laboratory. The sample temperature of the
neutron diffraction experiments ranged from 7" = 100K to
T = 460K and covers phases corresponding to crystal sys-
tems from trigonal — orthorhombic — tetragonal — cubic
respectively. In all cases, ‘traditional’ structure analysis (see
Fig. 1) was carried out to obtain the structural parameters.

Table II: Notations

Notation Description
n Number of training data samples for each crys-
tallographic class
N Total number of samples across all crystallo-
graphic classes
d Number of features or length of I(q)
leR, Number of distinct prediction parameters for
a crystallographic class (1 for cubic system, 6
for triclinic, etc.)
X e Rix‘i Training data
Y e Rixz Regression/Classification labels for data X
W € R4X! | Non-negative solution weight matrix from
NNLS
HAH%7 Frobenius norm, defined as Z” a?j

The crystallographic class and the lattice parameter set
{a,b,c,a, B,v} were used as labels.

IV. MACHINE LEARNING FRAMEWORK

As mentioned earlier, the ML pipeline (see Fig. 2)
presented here has two main components, namely, (a) a
classifier for the prediction of crystallographic classes, and
(b) a regressor to predict the unit cell parameters (lengths and
angles) for the symmetry class predicted by the classifier.

Let a classifier and a regressor be denoted by the functions
fi: X - Yoand fo : X — Y, respectively. Here,
X € RiXd, n is the number of samples, d is the number
of features, ¥ €]R:L_Xl. We define a label Y €]Rﬂ_, where
[€ [1,6] is the number of labels to be predicted by the
regressor. Note that the value of [varies with the symmetry
class predicted by the classfier. For example, [= 1 for a cu-
bic crystallographic class as the unit cell length a completely
defines it. Similarly, [= 6 for a triclinic crystallographic
class, all the six different parameters a, b, ¢, a, 5 and y are
required. The objective, here, is to learn the functions f;
and fo.

Two loss functions are defined. The training loss is defined
as the Ly norm between the estimated parameter set ||Y —
Y'||3 while the inference loss is defined as & — 244 Here,
Ttest 1S @ test sample and fo @ Tyesr — 9. In other words,
y is the label predicted by the model f; on the test data
Tiest- The diffraction pattern, &, is computed by the forward
simulation using the predicted ¢ as its input.

A. Classifier for Crystallographic Symmetry

Here, we describe an initial prototype of a classifier
trained on simulated data, as described in Section III. This
preliminary design is shown to be capable of distinguishing
five of the seven total crystallographic symmetries, namely,
cubic, tetragonal, trigonal, monoclinic, and triclinic. To
understand the relationship between the several classes we
apply multidimensional scaling (MDS) to random subsets
of 500 examples from each class. MDS is a method of
dimensionality reduction; in this case, we transform each
I(Q) vector (Iength 2,807, one vector for each of the 2,500
random examples) into a 2-dimensional vector. The MDS

Cubic
Tetragonal
Trigonal
Monoclinic
Triclinic

@ 0O0O0e

Figure 4: The result of multi-dimensional scaling applied to random
subsets of 500 examples from each class.

process attempts to find lower-dimensional vectors such that
pairwise distances are preserved as much as possible, i.e. if
a@; and @; are two vectors in R?97 and b; and l;j are corre-
sponding vectors in R, then ||@; — a;|| ~ Hl_);—ng Figure 4
shows the results of the MDS; class labels are indicated
by color. While the specific shape resulting from MDS is
irrelevant, it does represent useful information. For example,
well-separated clusters in the MDS map imply that distances
are approximately preserved. As such, one can conclude that
simple distance-based learning algorithms—such as k-nearest
neighbors—would easily distinguish the cubic, tetragonal, and
trigonal classes. However, considerable overlap between the
monoclinic and triclinic classes suggests a poor likelihood
of any similar distance-based algorithm to be effective at
differentiating the two classes.

The learning rate was manually reduced at several
points in training (after 30,000, 45,000, and 60,000 batches
trained). The model was found to converge after train-
ing on 75,000 batches of data. Overall, the network was
demonstrated to be very successful at differentiating cubic,
tetragonal and trigonal classes in the simulated data with a
validation accuracy that reached as high as 97%.

The observation that distance-based metrics are unlikely
to work motivated the design and use of a simple, convo-
lutional neural network (CNN) to learn the distinction. A
simple CNN which applies 1D convolutions directly to the
I(Q) vector was implemented as follows:

e 1D Convolution (16 learned filters, kernel width=3,

stride=1)

e 1D Max Pooling (kernel width=2, stride=2)

e 1D Convolution (32 learned filters, kernel width=4,

stride=2)

o 1D Max Pooling (kernel width=2, stride=2)

« Fully Connected (256 hidden neurons, w/ReLU activa-

tion)

o Fully Connected (5 output neurons, w/Softmax)

This CNN was trained on 10,000 random examples (2,000

—— Training Loss

6 Learning Rate Decay

Training Loss

0 30600 45(')00 60(‘)00
Number of Training Batches

(2)

a == \/alidation Accuracy
© 0.98
> i
8 0.97
< 0.96 -
= 0.95 -
o
=
©
S
©
>
0 30000 45000 60000

Number of Training Batches

(b)

Figure 5: (a) Neural network training on 2,000 examples per class validating on a disjoint subset of 1,000 examples per class. (b) Accuracy

on validation set is top-1.

™ v

s T 5 £

Y & 5 £ 3

g B 2 2 5

°_ v 5 B =

Cubic 0 0 0 0

Tetragonal ﬂ
L

i (@]
Trigonal{ 1 —
[

=]

v

Triclinic4 0 P

Monoclinic{ 0

Predicted Class

Figure 6: Confusion matrix of the trained neural network on the
validation set. The neural network has the most trouble distin-
guishing monoclinic from triclinic examples achieving only 92.65%
accuracy on these classes. It achieves near 100% accuracy on the
other classes.

per class) and validated on a reserved set of 1,000 examples
per class (5,000 total examples). The loss function was cross
entropy loss and the network was trained using stochastic
gradient descent (SGD).

Figure 5a shows the training loss (left) and the validation
accuracy (right) as functions of the number of batches
trained. As expected, the CNN-based classifier differentiates
the cubic, tetragonal, and trigonal classes (just as a nearest
neighbors approach would have been very as well) with near
100% accuracy, only mis-classifying 3 trigonal examples out
of 3,000 total. On the triclinic and monoclinic classes, the
CNN-based classfier, however, showed significant improve-
ment, successfully predicting with about 92.65% accuracy
but still leaving considerable room for improvement at the
same time.

B. Cell Parameter Regressor

As outlined in Fig. 1, a regressor is required to predict
the unit cell parameters corresponding to the particular
symmetry class predicted by the classifier. The purpose of

the regression models is to synthesize a mapping from the
diffraction pattern to the structural parameters. A different
regression model is trained for each of the crystallographic
symmetries studied. To better understand this task, different
machine learning regression models are first compared to
establish a baseline performance to compare potentially
more sophisticated deep learning models in future.

For any symmetry class, answers to the following two
questions are sought, namely: (a) what is the relationship
between the labels Y and the training data X, and (b) what
are the relationships amongst the labels? Additionally, we
need to ascertain if a multilabel regressor is necessary.

To address the former question, principal component anal-
ysis (PCA) results of training matrix X with labels Y for one
parametric cubic and two parametric trigonal symmetries are
presented in Fig. 7. Similar analyses and observations can
be extended up to six parameters triclinic systems without
loss of generality. The simplest case of cubic symmetry
class needs only one lattice parameter a while the trigonal
symmetry class involves two lattice parameters a and «.
A regression model fy is chosen accordingly. Figure 7
illustrates that relationship between the training data X and
the individual labels y; € Y is non-linear suggesting that
a non-linear ML methods like support vector regression
(SVR) is expected to perform better than linear least squares
methods.

The covariance between the labels o and a across 579000
samples was found to be extremely small (N 10’12), es-
tablishing the fact that these labels are uncorrelated. The
lack of covariance is not surprising since the training data
was generated by the forward GSAS II model using input
parameters (unit cell lengths and angles) that were indepen-
dently grid-sampled in the space spanned by the (symmetry)
class-specific parameters in {a,b,c, o, 3,v}. That is, each
training sample was generated by fixing the parameters
y; € Y —{y,}, where j # i, and sampling y; between its
lower and upper bounds by a given step size. As such, the
values of y; are completely independent of the values of y;.

PCA Cubic System

PCATrigonal

PCATrigonal

(b)

(©)

Figure 7: (a) Cubic class. (b) Trigonal class with cell length a. (c) Trigonal class with cell angle a.

Thus, the regression models f, for every y;, can not only
be independent, but also different. Accordingly, we tested
multiple independent models, such as, unconstrained least
squares, multi-label regressor with gradient boosted trees
and support vector machine (regressor), but only present re-
sults from random forest regression (RFR) and non-negative
least squares (NNLS) for f; across all the labels Y in this
paper.

1) Non-negative Least Squares (NNLS): The fundamental
baselines to solve the inverse problem fs is to determine a
weight matrix W € R?*!, Assume that given a test experi-
mental point ;s € RS when multiplied with the weight,
W, yields the estimated labels. That is, § = W 4.4 Finding
the least squares is solving the problem of determining the
weight matrix W, given the training data X and labels Y.
Additionally, if W > 0, where every entry w;; € W > 0,
then the problem is that of computing the non-negative least
square (NNLS). Formally,

W%+ Xel[Wlle, (D)

argmin|| XW — Y||% + |
W>0

Multiple algorithms exist that solve the problem of NNLS.
Chen and Plemmons explain these algorithms briefly in [9].
In this paper, an active set variant of the NNLS problem,
called block principal pivoting [10] by Kim and Park, is
adopted. The /5 regularization on W tames the growth of the
values and ¢; regularization makes it insensitive to outliers.
2) Random Forest Regression (RFR): Random forest
(RF) is a type of ensemble predictors that can solve classifi-
cation or regression problems [11]. The goal behind ensem-
ble methods is to train a group of individual (perhaps weak)
predictors and aggregate the individual results in order to
generate better predictions than any of the individual models.
In general, the aggregation of results yields predictions with
a bias similar to those of individual models but with a lower
variance, which improves the robustness of the ensemble
model and contributes to a better generalization over data

not seen during training.

A random forest, in particular, is an aggregation of deci-
sion trees. Specifically, the Scikit-Learn python package [12]
used to train the random forest regression models, builds
binary decision trees. A decision tree is a construct that
allows to compute predictions by traversing the nodes of
the tree from root to a terminal, childless, node (i.e. leaf).
Each node j in a binary tree, that is not a leaf, has two
children and is characterized by a feature and a threshold
(fj,ts,). For each sample x; in the data set it is possible
to traverse the binary decision tree until a leaf node that
includes a prediction (class or continuous regression value)
is reached. To traverse a node, the value of the f; feature in
the sample point x; is compared to the node’s threshold
ty, and the path continues towards left or right child,
depending on the result of the comparison (i.e. < or >
than the threshold). The prediction computed in each leaf
corresponds to the consolidation of the output values of
all the training samples that land on that specific leaf. In
general, the consolidation corresponds to the most abundant
class in the node (classification), or the mean value of the
output of the training samples associated with it (regression).

To train a decision tree, i.e. building the tree, Scikit-
Learn uses the Classification and Regression Tree (CART)
algorithm [13]. The CART algorithm for regression splits
the training set in two subsets using a single feature f;
and a threshold ¢7,. The threshold and feature are selected
by finding the (f;,ty,) pair that yields the lowest mean
squared error (MSE) (2) weighted by the sizes of the left
and right subsets. The splitting proceeds recursively for each
of the branches of the previous split, until a pre-defined
depth is reached or no further partition reduces the MSE.
Note that this is a greedy, not necessarily optimal, algorithm.
Note also, that in order to keep the computation of the tree
tractable, Scikit-Learn randomly selects the set of features
to evaluate at each node [12], [13].

Ensemble methods exhibit better performance when
the individual predictors have low correlation with each
other [11]. One alternative to achieve this is to train the

individual models using different random subsets of the
training data. Scikit-Learn generally builds a RF model by
bagging, i.e. building the group of decision trees by sampling
random subsets with replacement. Randomly selecting the
features to evaluate at each node, instead of searching for the
very best splitting features, not only contributes to a faster
training, but it also produces greater tree diversity [13]. In
order to control the complexity of the RF and prevent the
model from overfitting, it is common to control the growth
of the trees (e.g. limit the depth of the individual trees or set
a minimum number of sample points per leaf) and control
the ensemble itself (e.g. number of individual trees in the
forest).

V. PERFORMANCE
A. Computational Metrics

The performance for the regression models was compared
in terms of the mean squared error (MSE)

L 1¢ X
MSE(y,5) = — > (i = 9:)° ©))
i=1
where n is the total of samples, y; is the predicted value
of the i-th sample and y; the corresponding true value.
The other performance measure used was the coefficient of
determination (R?), as computed by the scikit-learn python
package [12]:
. i wi—3)? 1
RQ(%y):l_%) y:*Zyi' 3
e (Wi —9) =
This coefficient provides an indication of goodness of fit
with a best possible score of 1.0. Since the error measures
are unnormalized, predictions from RFR and NNLS trained
models can be different.

B. Experimental Data

The phase diagram of BaTiOs establishes a correspon-
dence between its crystallographic classes and the tem-
perature (T). Briefly, this correspondence is as follows.
T < 200K corresponds to trigonal, 200K < T < 270K
is orthorhombic, 270K < T < 400K is tetragonal and
T > 400K is cubic. In all, the experimental data used
to validate the proposed prediction pipeline includes 15
samples. These experimental samples were measured at the
following temperatures: 100K, 300K, 325K, 340K, 355K,
370K, 385K, 390K, 395K, 400K, 405K, 415K, 430K, 445K
and 460K. Accordingly, our experimental data includes: 1
trigonal, 8 tetragonal and 6 cubic samples of BaT'iOs.

The experimental data was preprocessed to subtract the
background (since our simulations are carried out without
background) and to match the x-coordinates that are slightly
different between the two. The background is modelled using
a 12-degree Chebyshev polynomial of the first kind, and the
diffraction patterns are aligned using the closest z-coordinate

from the simulation. The background adjustment is sensitive
to the peaks in the diffraction pattern. Thus a maximum clip
value is used to reduce the peak influence.

C. Quality of Predictions

RFR models were constructed for three crystal classes:
trigonal, tetragonal and cubic, for which experimental mea-
surements were available, as described in the preceding
section. A different regression model was trained for each
of these crystal classes. The input features correspond to
the vector of y-coordinates of each diffraction pattern, i.e.
2,807 features (the vector of x-coordinates is not used since
it is the same for all the simulated diffraction patterns). The
values of different sets of lattice parameters are predicted for
each crystal class (see Table I). For trigonal and tetragonal
classes, the RFR models were trained using a 5-fold cross
validation (CV) scheme, over a random selection of 50%
of the data. Due to the small size of the cubic dataset, a
10-fold CV scheme was used over all the cubic data instead
and 100 trees with maximum depth of 10 and a minimum of
30 samples per leaf were constructed. For the trigonal and
the tetragonal data, 200 trees with maximum depth of 15,
and a minimum of 30 samples per leaf, were constructed. No
optimal hyper-parameter search was made for the algorithm.
Instead, parameters were manually set to obtain good perfor-
mance. The performance was compared in terms of the mean
squared error (MSE) and the coefficient of determination
(R?). A summary of mean and standard deviations for MSE
and R? from the CV runs is reported in Table Il and 1V
using random forest and NNLS respectively. Note that these
are evaluated on the subset of the fold not used for training.

From these tables, we can observe that random forest
outperformed NNLS. This is because, NNLS is good in
capturing linear relationships. However, Figure 7 showed
that the relationships between X and Y are nonlinear.

Table III: Random forest regression on simulated data.

[Class] MSE | R?]
Trigonal | 2.52x1073 £1.74 x 10=% | 0.995 £3.15 x 10—*
Tetragonal | 1.57x107° £ 1.58 x 107 [0.999 £1.92 x 10~
Cubic 1.20x1073 £ 6.53 x 10~% | 0.998 £8.02 x 10~4

Table IV: NNLS on simulated data.

[Class | MSE | R?
Trigonal 5.44x10% £3.71 -0.117 £3.96 x 103
Tetragonal 8.16+1 x 10~2 -96.85 +0.17
Cubic 4.13x1073 +£2.04 x 1073 | 0.9943 £2.91 x 1073

Since RFR was shown to outperform NNLS on simulation
data, only the MSE performance for the diffraction patterns
generated with the RFR predicted values vs. the experi-
mental data is presented in Table V. Figure 8a includes a
comparison between the experimental trigonal measurement
and the diffraction pattern of the RFR predicted parameters:

Diffraction Pattern for Trigonal Class

Diffraction Pattern for Tetragonal Class

Diffraction Pattern for Cubic Class

—— Experimental 1.01 —— Experimental

Predicted a=4.64,a =41.6°
0.8

0.4 1

! L
Li

———T)

_.~.u|h“‘

0.
MLA J LN_A, WA A

2500 5000 7500 10000 12500 15000 17500 20000
ToF

(@)

Predicted a=4.21, c=4.40

W,

2500 5000 7500 10000 12500 15000 17500 20000

ol

10 —— Experimental
Predicted a=4.215

0.6 ‘
0.4 I ‘ l‘
| I
02 J‘ I [‘ | \‘ |
, _—— V1N I (NN LA

2500 5000 7500 10000 12500 15000 17500 20000
ToF

(©)

\A_:_/\._ AN

Figure 8: Diffraction pattern of experimental vs. RFR predicted values for (a) trigonal sample, (b) best matched tetragonal sample and
(c) best matched cubic sample. Time-of-Flight (ToF) in us vs. Intensity, I(ToF).

a = 4.64 and o = 41.6°, which has MSE = 9.52x1073.
The best tetragonal match is shown in Figure 8b, for RFR
predicted parameters of a = 4.21 and ¢ = 4.40, with MSE
= 3.68x1073. The best cubic match is plotted in Figure Sc,
for RFR predicted parameter of ¢ = 4.215, with MSE =
9.53x10~*

Table V: RFR results on experimental data.

[Class | MSE |
Trigonal 9.52x1073
Tetragonal | 7.38x1073 £ 1.4 x 10~3
Cubic 6.63x1073 £ 2.56 x 10~3

VI. DISCUSSION AND FUTURE WORK

Results for RFR show that it is possible to get good lattice
parameter predictions for the experimental measurements
of the cubic crystal class. In contrast, despite having good
performance on the simulated datasets, the lattice param-
eter prediction for the experimental measurements of the
tetragonal and trigonal crystal classes is not as good. The
regression for the parameters of the tetragonal class seems to
generate diffraction patterns that capture most of the peaks,
having a good agreement in intensity and slight mismatches
in position. The regression for the parameters of the trigonal
class generate diffraction patterns that capture some of the
peaks, but with appreciable mismatches in peak position
and intensity. Currently, the shallow models use a relatively
simple set of features that do not take into account the
spatial distribution of peaks explicitly. While this seems to
be enough for simulated data, our results suggest that more
sophisticated models are required to handle experimental
data. Moreover, to apply the machine learning models to
experimental data, it is necessary to deal with practical
issues that do not appear that crucial when using simulated
data. In particular, there is an undesirable sensitivity to the
background fitting procedure that should be improved in the
future, in order to guarantee more robust predictions.

This paper reports the preliminary findings of an ongoing
first-of-its-kind effort to directly predict material structure
from neutron scattering data using trained machine learned
models. The results here not only establish the baseline

performance of shallow machine learning models, but also
exposes their limitations in materials structure prediction
opening up the clear need to test and explore deep learning
methods.

REFERENCES

[1] R. Twyman, S. Gibson, J. Molony, and J. Quintanilla, “A
machine learning approach to magnetic neutron scattering,”
March 2019.

[2] J. Venderley, M. Matty, and E.-A. Kim, “Unsupervised ma-
chine learning of single crystal x-ray diffraction data,” March
2019.

[3] D. Lu, M. Carbone, M. Topsakal, and S. Yoo, “Using machine
learning to predict local chemical environments from x-ray
absorption spectra,” March 2019.

[4] M. Martinez-Ripoll. (2014) Crystallography. Departmento
de Cristalografia y Biologia Estructural. [Online]. Available:
http://www.xtal.igfr.csic.es/Cristalografia/

[5] C. Kittel, Introduction to Solid State Physics, 8th ed. Wiley,
2004.

[6] J. Neuefeind, M. Feygenson, J. Carruth, R. Hoffmann, and
K. Chipley, “The nanoscale ordered materials diffractometer
nomad at the spallation neutron source sns,” Nuclear Instru-
ments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, vol. 287, pp. 68-75,
2012.

[7] B. H. Toby and R. B. Von Dreele, “GSAS-II: the genesis of
a modern open-source all purpose crystallography software
package,” Journal of Applied Crystallography, vol. 46, no. 2,
pp. 544-549, 2013.

[8] L. Dalcin, “MPI for Python,” 2019. [Online]. Available:
https://mpi4py.readthedocs.io/en/stable/

[9] D. Chen and R. J. Plemmons, “Nonnegativity constraints
in numerical analysis,” in The birth of numerical analysis.
World Scientific, 2010, pp. 109-139.

[10] J. Kim and H. Park, “Fast nonnegative matrix factorization:
An active-set-like method and comparisons,” SIAM Journal
on Scientific Computing, vol. 33, no. 6, pp. 3261-3281, 2011.

[11] L. Breiman, “Random forests,” Mach. Learn., vol. 45,
no. 1, pp. 5-32, Oct. 2001. [Online]. Available: https:
//doi.org/10.1023/A:1010933404324

[12] “scikit-learn: Machine Learning in Python,” 2019.
[Online]. Available: https://scikit-learn.org/stable/modules/
model_evaluation.html#r2-score

[13] A. Géron, Hands-On Machine Learning with Scikit-Learn &
TensorFlow, 1st ed. O’Reilly, 2017.

