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Abstract

Bryophytes are a diverse plant group and are functionally different from vascular plants. Yet,
their peculiarities are rarely considered in the theoretical frameworks for plants. Currently, we
lack information about the magnitude and the importance of intraspecific variability to the
ecophysiology of bryophytes and how these might translate to local adaptation—a prerequisite
for adaptive evolution. Capitalizing on two ecologically distinct (hummock and hollow)
phenotypes of Sphagnum magellanicum, we explored the magnitude and pattern intraspecific
variability in this species and asked whether the environmental-mediated changes in shoot and
physiological traits are due to phenotypic plasticity or local adaptation. Size, pigmentation, and
habitat type that distinguished the species in the field did not influence the trait responses under a
transplant and factorial experiment. Also, the magnitude and pattern of trait variability changed
with the treatments, which suggests that trait responses were due largely to phenotypic plasticity.
The trait responses also suggest that the ecophysiological needs for mosses to grow in clumps
where they maintain a uniform growth may have an overriding effect over the potential for a
fixed adaptive response to environmental heterogeneity, which would constrain local adaptation.
We conclude that extending the trait-based framework to mosses or making comparisons
between mosses and vascular plants under any theoretical framework would only be meaningful

to the extent that growth form and dispersal strategies are considered.

Keywords: bryophytes, plant growth form, local adaptation, phenotypic plasticity, intraspecific

trait, morphological integration, environmental heterogeneity
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Introduction

Bryophytes are a diverse plant group—comprising of 15000-20000 species (Shaw et al. 2011)
and are functionally different from vascular plants. Yet, plant ecological theories and hypotheses
are often presented as universally applicable frameworks. The trait-based ecology is no
exception; emphasizing the importance of intraspecific trait variability to plant performance and
fitness (Bolnick et al. 2011; Violle et al. 2012; Siefert et al. 2015; Wright et al. 2016) but
primarily from vascular plants perspective. Bryophytes lack complex morphological and
physiological structures (e.g. roots and stomata) through which vascular plants actively interact
with their environments for resource acquisition, conservation, and response to environmental
heterogeneity (e.g. Hepworth et al. 2016). Even traits that seem comparable between bryophytes
and vascular plants (e.g., leaf mass per area) are often difficult to quantify. However, bryophytes
are capable of using facilitative interactions such as lateral movement (externally) of water
across space (Rice 2012) or vertical movement of water through their litter matrices, as a means
of responding to change in their moisture environment. This cooperation for resource acquisition
and retention means that individuals are buffered from the direct effect of the environment (e.g.
Elumeeva et al., 2011). This highly integrated ecophysiological mechanism presents a rather
unique inter- and intraspecific interactions where competition for resources such as moisture is
weak (e.g., Hayward and Clymo, 1983; Rydin, 1993). Thus, intraspecific variability in this plant
group may not necessarily have the same ecological meaning as it is understood for vascular
plants.

Although there has been considerable research evaluating Sphagnum traits in the context
of ecosystem function—particularly in linking Sphagnum species traits to aspects of water (Titus
et al., 1983; Schipperges and Rydin, 1998; Hajek and Beckett, 2008) and carbon cycling

(Turetsky et al. 2008; Laing et al. 2014; Bengtsson et al. 2016), only a few studies (Sastad and
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Flatberg 1993; Sastad ef al. 1999) have quantified intraspecific variability in traits. This is due to
the difficulty in quantifying traits and perhaps also due to determining what constitutes an
individual in clonal bryophytes like Sphagnum, because functional traits may only be measured
at the level of an individual (Violle et al. 2007). However, viewing an individual as a structurally
unattached, morphologically complete tissue—comprising of the capitulum, branch, and stem—
the notion of individual is not complicated. That is, unattached individuals are physiologically
independent and therefore, interact independently with their environments.

Variability often exists within a population because of sexual reproduction without
apparent or immediate ecological benefits or consequences. Thus, intraspecific trait variability at
the population level may reflect both the intrinsic genetic variability and phenotypic plasticity.
One approach to evaluating the mechanistic importance of intraspecific variability is to explore
trait variability in the context of local adaptation (Kawecki and Ebert 2004). Plastic (non-genetic)
responses to environmental heterogeneity could cause phenotypic differentiation within and
among populations and this phenotypic differentiation may become genetically fixed by
mutation and natural selection. Such differentiation on phenotypic responses to environmental
heterogeneity is often the basis for local adaptation (Kawecki and Ebert 2004). Additionally,
locally adapted individuals would continue to exhibit adaptive responses that make them
successful in their home environment even when they are subjected to a new environment where
such response is no longer advantageous (Price et al. 2003; Kawecki and Ebert 2004).
Investigating moss traits within the general framework of local adaptation can be informative in

estimating the pattern, magnitude, and importance of intraspecific trait variability in this plant

group.
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Here, we explore the source, magnitude, and importance of intraspecific trait variability in
Sphagnum moss. We ask whether there are differences in intraspecific trait variability and trait
values between conspecifics from contrasting environments and whether the differences are due
to adaptation to the conditions in their respective origin (hummock or hollow). That is, whether
these differences are due to adaptive differentiation (local adaptation) or phenotypic plasticity.
We focus on S. magellanicum, which is an ecologically dominant and widely distributed
Sphagnum species. S. magellanicum is typically found in hollows and on low hummocks where
moisture availability is high. However, it is also found within the carpets of S. fuscum on high
hummocks—away from the water table, where a combination of high irradiation and moisture
deficit often impacts photosynthesis and growth (Harley et al. 1989; Murray et al. 1993; McNeil
and Waddington 2003). The individuals of S. magellanicum found on hummocks often exhibit a
reddish-brown pigmentation (as opposed to green), are less physically robust (e.g., slender stem
and smaller capitulum) and relatively lower tissue water content compared with individuals
found in hollows. This variation in phenotype is good for exploring intraspecific variability in
the context of phenotypic plasticity versus local adaptation. Here, we capitalize on the pattern
observed in the field to ask how intraspecific trait variability influences the breadth of
environments where S. magellanicum is found. We test the following hypotheses.

e Since strong morphological integration (clump growth) of individuals is necessary for
survival on hummocks, which also promotes fast height growth, the hummock-originated
individuals would consistently invest in height growth at the expense of biomass when
grown in a common garden.

e Because green leaves tend to be more efficient for light capturing than red (anthocyanin-

rich) leaves under low light (Burger and Edwards 1996), we predict that hummock-



114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

originated plants would have lower F,/Fy, under the shade treatment than hollow-
originated plants. However, we expect the opposite when the plants are grown under full
light on hummock because of the lack of protective pigmentation in the hollow-originated
individuals.

e We hypothesize that hummock-originated individuals are locally adapted to low moisture
availability and high irradiance that are prevalent in hummocks. Therefore we predict that
morphological and physiological responses of hummock-originated plants would be less

sensitive to light and drought treatments compared with hollow-originated plants.

Materials and Methods

In June 2016, we visited Wylde Lake bog in southern Ontario (43.91775, -80.40489) and
collected individuals of Sphagnum magellanicum Brid. found on high hummocks, which are
typically dominated by S. fuscum and thus represent an atypical environment for S.
magellanicum. The sampling included plants from several hummocks with more than 100m
between some of the hummocks because S. magellanicum is not typically found on hummocks
and to collect enough samples for the experiments. Similarly, we collected individuals from
hollow environments in which S. magellanicum was dominant. There was at least a 10m distance
between sample collection points. Also, the bog sites within the conservation area have
contrasting hydrology, with some closer to the marsh and thus have a high water table. We
collected samples across the wet and dry sites, which are about 500m apart. The average vertical
distance between the hummocks and the hollows was 40.4cm. The S. magellanicum from
hummocks were smaller and reddish-brown in colour whereas those from hollows were more

physically robust and completely green. Hollow samples were kept separately from those
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collected from hummocks. All samples were immediately transferred to the University of Guelph
phytotron where S. magellanicum samples from each environment were cut by knife into top 5
cm segments to exclude deeper, non-living component of the tissues and to create a standard
length for all the plants.

We employed two experimental approaches. In the context of local adaptation, each
experiment contains aspects of a “home” versus an “away” treatment (Kawecki and Ebert 2004;
Blanquart et al. 2013). In the first transplant experiment, hummock individuals transplanted onto
the hummock mesocosms represent a “home” treatment while hollow individuals represent an
“away” treatment. However, this transplant experiment is an incomplete design but it was not
possible for us to maintain hollow mesocosms due to the extremely unconsolidated (low bulk
density) nature of hollow surface soils and species homogeneity. The combination of the
experiments nonetheless represents a range of environments that the species is typically exposed
to and allows us to at least reduce the potential for superficial conclusions (Kawecki and Ebert

2004).

Hummock transplant experiment

We extracted four hummock monoliths, which comprised a continuous carpet of S.
fuscum into surface peat to a depth of about 20 cm. The monoliths allowed us to incorporate the
ecophysiological peculiarities (e.g. neighbourhood effect and vertical movement of moisture
through litter matrices) of our study system into the experiment. Each monolith was gently
placed in an 8.83-litre cylindrical pot. Each monolith was partitioned into equal halves with a
stick, which was inserted horizontally into the surface of the moss carpet in each pot. Individuals

of S. magellanicum from the two home environments (hummock versus hollow) were randomly
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assigned to a monolith and were inserted into the carpet of S. fuscum. Specifically, we inserted
fifteen S. magellanicum hummock-originated individuals into one half of each monolith and
fifteen hollow-originated individuals into the other half. Thus, across the four replicate
monoliths, we transplanted 60 plants from each plant origin. The hummock transplant
experiment represents the breadth of “home” environment for individuals that were collected on
hummocks in terms of substrate conditions, while hollow-originated plants in this case, were
transplanted onto an “away” substrate. Two monoliths were assigned to a shade treatment and
two were assigned to full light treatment. The shade treatment involved two shade boxes of 3.25
m X 1.47 m X 0.63 m in dimension, built from PVC pipes. The shade boxes were covered with
breathable 50% neutral density shade cloth. We used breathable shade cloth to avoid heat build-
up under the shade boxes and in the pots, which would have required frequent watering, which
would compromise our drought treatment. The 50% shade approximates the proportion of the
photosynthetic photon flux density (PPFD) admitted into the Sphagnum carpet by the dominant
vascular plant species (Myrica gale) at our site. This was obtained by measuring PPFD below
and above the canopy using the point sensor of a LI-250 light meter (LI-COR, Lincoln,
Nebraska). These measurements were used to compute percentage of light admitted into the
moss surface. The above canopy PPFD ranged from 1206 — 2035 pmol m?s™! whereas below
canopy values ranged from 224 -1714 pmol m2s™!. We quantified water content in the
hummocks at 1, 6, and 12 cm depths from the top and also at the foot of the hummocks using a
Hydrosense soil moisture meter (Campbell Scientific, Inc., USA). However, we did not find a
difference in the moisture profiles of hummocks sampled along moisture gradient in our site,

therefore, we did not vary moisture for this experiment.
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Factorial light x moisture experiment

Our second experiment involved a 3 x 2 factorial pot experiment with two plant origins
(hummock versus hollow), two light treatments (full light; 50% light) and two water treatments
(saturated; low water). This experiment represents the breadth of “home” environment for
hollow-originated individuals in terms of substrate conditions, while hummock-originated plants
in this case were transplanted onto “away” substrates. The shade treatment was imposed as
described above. The drought treatment was created by maintaining treatment pots at an average
volumetric water content of about 12%, which is the mean summer volumetric water content at
the top 1 cm of moss in the field site. This is close to the condition under which drying of
Sphagnum tissues can be observed in the field. The saturated water treatment was maintained by
monitoring and topping up the experimental pots with water, and volumetric water content
consistently exceeded 21%. The water contents across all experimental pots were monitored with
a portable Hydrosense soil moisture meter (Campbell Scientific, Inc., USA).

The experimental pots were filled with 3 cm of deep peat moss underneath a 1 cm layer
of surface peat. The deep peat was from a commercial source while the surface peat was
extracted from the field in an area near the Sphagnum collections in hollow. The pots were 227.4
cm’® in size, with holes at the base through which water was fed into the pots. The pots were
placed in trays, which were covered with transparent lids. There were 9 plants (one plant per pot)
for each of the four treatment combinations (9 plants X 2 origin x 2 light X 2 moisture
treatments), which we replicated twice. Thus, a total of 144 plants were used in the experiment.
Because bogs are nutrient-poor and typically fed by rainwater, the plants were not fertilized and
were watered exclusively with rainwater that was harvested in Guelph. The experiments were

conducted at the University of Guelph greenhouse, which was kept at average 20°C night/26°C
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day temperatures and 16-h photoperiod. Daylight was supplemented with artificial light on

cloudy days and in the evenings.

Quantification of traits

The two experiments ran fully from July 2016 to January 2017. At the end of the experiments,
we measured a suite of traits on individuals from each treatment. We focused on morphological
traits and shoot traits in particular because Sphagnum is poikilohydric and holds a large
proportion of its moisture externally. We quantified two traits related to growth, including height
and biomass. We also measured allocation of biomass into capitulum, branch, and stem. The
capitulum is taken as the top 1 cm of the plant (Clymo 1970). Branch mass was determined by
removing the tissues that line the stem (fascicles). Branch mass comprised of tissues (fascicles)
that line the stem. The exposed stem was taken as the stem mass.

We also quantified the dark respiration as a measure of metabolic activity. Respiration
rates were measured on six individuals per treatment, which were selected at the end of the
experiment. For these individuals, we placed the entire plant in a dark glass jar. The jars were
sealed with stopcocks and placed under their respective treatment environment. The CO; in the
jar headspace was drawn three times at 3 hr intervals with gas-tight syringes. The CO>
concentration was analyzed with an EGM-4 infrared gas analyzer (PP Systems, Hitchin,
Hertfordshire, UK). We performed linear regressions of CO> concentration against time, using
the slopes of these relationships as our measurement of respiration rate. We then used the dry

mass of the samples to convert the slopes into pmol of CO2 g'minute™.
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Finally, we measured the dark-adapted fluorescence (Fv/Fum) as a measure of maximal
photosynthetic efficiency. The dark-adapted F./Fn measurements were taken at the end of the
experiment. Individuals from each treatment were placed in the dark for at least 6 hours to ensure
that Qa electron acceptors are fully oxidized and that reaction centers are in the ‘open’ state. We
then quantified dark-adapted F./Fmn on each plant using a pulse-modulated fluorometer (OS1p,

Opti-Sciences, Hudson, NH).

Statistical analyses

Because the plants in the hummock transplant experiment were grown in only four pots, we
tested for differences in trait values using mixed effect models, where we analyzed pot ID as a
random effect to account for lack of independence. Multiple mean comparisons were obtained
for models with interaction effects using “Ismeans” package in R. We tested for mean trait values
in the factorial experiment using 3-way ANOVA and obtained multiple mean comparisons for
interaction effects using Tukey HSD. In both analyses, we explored the models' residuals for
normality and where there was a departure from normality (e.g., height and branch mass), the
data were transformed using a logarithm transformation. We explored patterns of trait variability
across experimental treatments by partitioning the variance in the data using the varpart function
in R package “Vegan”. We used this approach combined with redundancy analysis to examine
how the experimental treatments influenced within-trait variability and total trait variability. All
analyses were performed in R 3.2 (R core Development Team 2015) and all statistical tests were

conducted at oo = 0.05.
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Results

Hummock-transplant experiment

Hummock-originated plants had lower F./Fi, than hollow plants (Fig. 1a) with no other
significant main effects or interactions (Table 1). Height, capitulum mass, and respiration were
consistently higher under the shade than the high light treatment (Fig. 1b & c). Total biomass and
stem biomass was influenced by a plant origin X light interaction (Fig 1d). Hummock plants

tended to have lower total and stem biomass than hollow plants but only in the shade treatment.

We found strong positive correlations between some of the traits. There were correlations for
example between height and respiration rate and between respiration rate and biomass for both
hummock and hollow plants (r* = 0.24, p < 0.05 and r* = 0.56, p < 0.001) and hollow plants (r*=
0.30, p <0.05 and r* = 0.73, p < 0.001) (Fig. 2a & b).

For most traits, plant origin did not explain a significant amount of variation in individual
traits (0—10%), while light explained between 0 and 46% (Table 2). Origin (hummock vs.
hollow) explained significant variation for Fy/Fm, and stem mass, while light explained significant
variation in height, capitulum mass, and total biomass (Table 2). When analyzed for total
variability across all traits (respiration, Fy/Fu, capitulum, branch, stem, and total biomass), plant
origin only accounted for 2% of the variability (p > 0.05) whereas light accounted for 16% (p <

0.001).

Light x moisture factorial experiment
In the factorial experiment, traits were more generally influenced by the main effects of origin

and moisture than their interaction effects or the main effect of light (Table 3). The post-hoc tests
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showed that capitulum mass was greater in hummock plants than in hollow plants under the high
moisture treatment (p < 0.05) but did not significantly differ between the plant origins under the
low moisture treatment. The opposite trend was true for branch mass as hollow plants had a
greater branch mass than hummock plants under the high moisture treatment (p < 0.05) but there
was no difference in branch mass between the origins under the low moisture treatment. The
stem mass of hollow plants subjected to low moisture was greater than stem mass of hummock
plants subjected to high moisture (p < 0.001). Height was fastest under the high moisture
treatments regardless of light (Fig. 3a) compared with the low moisture treatment but lower in
the light x low moisture treatment Biomass was greatest at the high light and high moisture
treatment and tended to be lowest under the low moisture treatments across both light treatments
(Fig. 3b). Fv/Fin was higher in hollow individuals than in hummock individuals.(Fig. 3c).
Respiration was higher under high moisture than the low moisture treatment and did not vary
with light (Fig. 3d).

Consistent with the hummock transplant experiment, we found strong positive
correlations between respiration and biomass and between respiration and height for both
hummock (1> = 0.25, p < 0.001 and r* = 0.57, p < 0.001) and hollow (r>= 0.53, p < 0.001 and r* =
0.65, p <0.001) plants (Fig. 4a & b).

Plant origin explained the most variation in stem mass (44%) relative to moisture and
light. Except for height, the influence of the light treatments explained little or no variation
among traits in this experiment. Moisture explained a significant amount of variation in all traits
except for capitulum mass and was particularly important for respiration and branch mass
variation. Plant origin and moisture explained similar levels of total variation across traits (Table

4). The data were also split into two independent datasets based on plant origin and were
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accordingly explored for variability due to light and moisture effects. Light explained 1% of total
variability in hollow plant traits and 4% in hummock plant traits whereas moisture explained
22% of variability in hollow plant traits and 13% in hummock plant traits. However, the effect of

light on variability of hollow plant traits was not statistically significant.

Discussion

We capitalized on two ecologically distinct (hummock and hollow) phenotypes of S.
magellanicum to evaluate the magnitude and the importance of intraspecific variability in this
species and asked whether the environmental-mediated changes in shoot and physiological traits
are due to phenotypic plasticity or local adaptation. This is not an attempt to characterize
Sphagnum physiology but rather to explore the importance of trait variability in controlling

responses to environmental heterogeneity.

Effect of plant origin (hummock versus hollow) on Sphagnum traits

Although clonality is ubiquitous in bryophytes, their populations can be spatially and
genetically diverse as the population of any non-clonal plants (e.g., Stenoien and Sastad 1999;
Gunnarsson ef al. 2007). Our hummock—hollow sampling design assumed that the two
phenotypes of S. magellanicum used in our experiments are genetically disparate groups that
have been shaped by adaptive differentiation (local adaptation). At the same time, a unique
characteristic of Sphagnum is that it acquires and conserves moisture through stem and canopy
integration (clump growth form), especially on hummocks. That is, S. magellanicum growing on
hummocks may not grow considerably faster or taller than the typical height of S. fuscum-

derived carpet (Hayward and Clymo 1983). Pure stands of S. magellanicum typically grow faster
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than those of S. fuscum (Breeuwer et al. 2008), which implies that S. magellanicum plants
(regardless of their origin) growing on S. fuscum-dominated hummocks may not express their
maximum growth rates. Thus, the generally weak effect of plant origin on the traits in the
hummock transplant experiment relative to that in the factorial experiment suggests that the trait
responses were due largely to phenotypic plasticity as opposed to local adaptation.

Indeed, environmental heterogeneity may cause phenotypic changes that are not
genetically determined adaptive responses (Kawecki and Ebert 2004). That is, while the
appearance of our hummock-dwelling phenotype is undoubtedly shaped by the hummock
conditions, its distinguishing characters from the hollow-dwelling phenotype may not have
genetic bases. Further, if the ecophysiological needs for morphological integration have an
overriding effect over the potential for a fixed adaptive response to environmental heterogeneity,

then the clump growth form of Sphagnum would likely constrain local adaptation.

Light controls on Sphagnum trait variation

High irradiation is a common source of stress influencing bryophytes performances (Post
et al. 1990; Marschall and Proctor, 2004). Sphagnum species especially the hummock dwelling
species are susceptible to photoinhibition due to the prevalence of low moisture and high
irradiation (Murray et al. 1993; Hajek 2014; Bragazza 2008). Thus, because hummock species
are rarely completely green except under shade, we considered the pigmentation in the hummock
plants a photoprotection feature (Bonnett et al. 2010). Contrary to our predictions, the hummock
plants had a relatively lower F./Fn across all experimental treatments compared with hollow the
plants. Also, under the shade treatments, some of the hummock plants changed from reddish to

light pink colour and some with a tint of green, which is consistent with the findings that
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pigmentation of S. magellanicum is plastic (Yousefi et al. 2017). However, Fv/Fm gives an
insight into stress (e.g., moisture stress) tolerance of species and an indication of stress-induced
damage to the photosynthetic apparatus (Maxwell and Johnson 2000; Manninen et al. 2011).
Since S. magellanicum is known to occupy a wide range of environments (Breeuwer et al. 2008;
Kyrkjeeide et al. 2016; also see Oke and Turetsky 2020) and was able to survive on high
hummocks, we cannot attribute the generally low Fy/Fm to low-stress tolerance, which thus
implies that damage to its photosynthetic apparatus is likely a cost to occupying the high
hummocks; hence the rarity of the species in that habitat. However, we did not find any
relationship between Fy/Fr, and total biomass, which is often used as a proxy for fitness in plants
(Younginger et al. 2017).

Shade tends to reduce transpiration (Muthuchelian et al. 1989; Pons et al. 2001; Gent,
2007), which would diminish the need for morphological integration. Under the shade treatment
of the hummock transplant experiment, the plants were more robust (e.g., bigger capitulum) and
the moss canopy was generally rough and loose compared with light treatment, which was
relatively smooth and compacted. This disparity in growth response due to the difference in light
level likely contributed to the strong effect of light on trait variability in the hummock transplant
experiment. Surprisingly, light was less important to trait variation in the factorial experiment.
This could be because we only manipulated moisture in the factorial experiment, which is well
established as having an important role in Sphagnum growth and distribution (McNeil and
Waddington 2003; Oke and Hager 2017) and also was the dominant source of trait variation in

the factorial experiment.

Implications of trait variability and local adaptation in Sphagnum
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Trait variability is considered one of the mechanisms by which plant populations cope
with environmental heterogeneity (Jung et al. 2014) and it is deemed the raw material for natural
selection (Bolnick et al. 2011). For instance, high trait variability could aid the persistence of a
population by allowing optimal response to selective pressures (e.g., Biirger 1999). In this study,
most of the variability remained unexplained by our treatments. However, it is important to note
that most traits measured in this study exhibited low levels of variation. It is also important to
note that clonality is common in Sphagnum, especially at fine scales, which may lead to low
phenotypic variation. Low phenotypic variation may be advantageous for morphological
integration. Although our sampling design was intended to avoid repeatedly sampling clones, it
is not uncommon for a Sphagnum population to be dominated by a single clone (Cronberg et al.
1997; Gunnarsson et al. 2007), which would then likely be overrepresented in our experiments.

Due to the generally low nutrient condition that limits spore germination in peatlands
(Sundberg and Rydin 2002), Sphagnum populations are maintained largely by clonal growth
(Cronberg et al. 1997; Gunnarsson et al. 2007). That is, dispersal by spore in Sphagnum is long-
distant and random (Whitaker and Edwards 2010). This is true for many moss species (Miles and
Longton 1992), which means that there is a low accruable benefit in passing down the local
selective advantage through spores. While the short-distance dispersal through clonal growth is
less random, it likely results in low phenotypic variability. The low phenotypic variability may
have an ecophysiological value in stem and canopy integration for moisture retention and
survival. However, as observed in the field and as demonstrated in the current study,
morphological integration is quite common in Sphagnum even among species with different
growth rates (Clymo and Hayward 1982; Hayward and Clymo 1983; Ingerpuu and Vellak

2013). This means that stem and canopy integration is more likely a function of plasticity rather



388  than low phenotypic variability per se. Thus, given their mode of dispersal and the clump

389  growth form, locally adapted growth responses may not be beneficial to mosses. In any case,
390 extending the trait-based framework to mosses or making comparisons between mosses and
391  vascular plants under any theoretical framework would only be meaningful to the extent that
392  growth form (including lack of roots) and dispersal strategies are considered.

393 Our findings that trait responses and variability depend on the prevailing environment
394  highlights the limitation of investigating or drawing conclusions about local adaptation from
395 responses to a single environment. Additionally, because phenotypic changes may not

396  necessarily have a genetic basis, it is possible in a common garden experiment to confuse or
397  conflate adaptive changes arising from phenotypic plasticity with that arising from local

398  adaptation (Gienapp et al. 2008).

399 Finally, there is an on-going taxonomic revision to S. magellanicum. The species is

400  considered a complex, comprising at least three species—S. divinum and S. medium in eastern
401  North America, and S. magellanicum sensu stricto in South America (Hassel et al. 2018). These
402  species have distinct morphological, molecular, and distributional characters. The preliminary
403  study suggests that S. medium has an amphi-Atlantic distribution while S. divinum is circumpolar
404  in its distribution. Since the pigmentation of “S. magellanicum” (as we currently know it) lacks
405  genetic basis (Yousefi et al. 2017) and considering the pattern of distribution of these species
406 relative to our field site in Southern Ontario, it is unlikely that we sampled across a mix of S.
407  medium and S. divinum in a way that would bias our findings. Also, considering that origin had
408 little effect on trait variability, a more likely scenario is that we sampled one species or the other.

409  However, because further study is required on the distribution and identification of these
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subspecies (Hassel et al. 2018), we are unable to accordingly characterize our species and

therefore maintain the name S. magellanicum for the purpose of this study.

Conclusion

In summary, we explored the magnitude and pattern of trait variability in S.
magellanicum from contrasting habitats in the context of phenotypic plasticity and local
adaptation. We found that the trait responses were due largely to phenotypical plasticity with
little influence on whether plants originated from hummocks or hollows. We also found that trait
variability depends on the prevailing light or moisture environment. However, most trait
variation remained unexplained by our experimental treatments. Collectively, our results suggest
that using traits to draw inferences about the ecology of Sphagnum would require an
understanding of the mechanisms driving traits and the pattern of trait variability. Lastly, because
morphological integration may have an overriding influence on growth traits, it is not clear under
what conditions might local adaptation occur or benefit this plant group. We hope that future
studies will further explore this area of inquiry in mosses, with consideration for their growth

form and recruitment strategies.
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and DF = treatment and sample degrees of freedom

Table 1 Results of a mixed effect model for the hummock transplant experiment showing F and

p-values specific to each trait. Bold texts are significant values (p < 0.05). O = Origin, L = Light

Total
biomass

(€]

Capitulum

mass

(€]

Branch

mass

(€]

Stem

mass

®

2.6,0.115

12.4,0.026

7.1, 0.010

1.3,0.267
21.1, <0.0001

3.9,0.053

0,0.915
0.77,0.382

1.9,0.172

6.8,0.012
3.1,0.146

4.1, 0.048
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617
618  Table 2 The effects of plant origin and light treatment on individual trait variability as well as

619 total trait variability for hummock transplant experiment. Bold figures are statistically significant
620 trait variability values (p < 0.05) under each parameter while the p-values are the overall p-

621  values of the model.

Traits Origin (%) Light (%) F-values P-values
Fv/Fm 6 0 2.9 0.066
Respiration 0 17 2.9 0.067
Height 1 46 24.0 <0.001
Capitulum mass 0 29 10.3 0.002
Branch mass 0 0 0.5 0.651
Stem mass 10 0 4.7 <0.001
Total biomass 3 19 6.9 0.004
Total traits 2 16 6.5 <0.001
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Table 3 Results of a 3-way ANOVA for the factorial experiment showing F and p-values for the

traits. Bold texts are significant values (p < 0.05). O = Origin, L = Light, M = Moisture and DF =

treatment and sample degrees of freedom

Respiration Total Capitulum Branch Stem
X Height
Treatments DF (umol'g” Fy/Fr biomass mass mass mass
(cm)

'min) ® (2 (2) ®
(0] 1,143 0.0, 0.831 14.5, 0.002 4.6, 0.032 8.1, 0.0051 3.3,0.070 14.8, 0.0001 144.4, <0.0001
L 1,143 1.1,0.31 3.5,0.061 20.5, <0.0001 0.55, 0.459 2.1,0.145 0.0, 0.930 1.3,0.251
M 1,143 16.4, 0.0002 22.8,<0.0001 48.6,<0.0001 32.1, <0.0001 0.1,0.791 62.8, <0.0001 26.25, <0.0001
O*L 1,143 3.4,0.071 2.3,0.133 1.3,0.218 0.3,0.617 0.35, 0.553 0.3,0.582 2.5,0.113
O*M 1, 143 0.9,0.336 2.2,0.137 1.2,0.267 0.0, 0.886 15.6, 0.0001 6.7,0.010 8.4, 0.0041
L*M 1,143 0.2,0.625 2.7,0.098 7.9, 0.0056 4.4,0.037 2.9,0.088 2.3,0.128 7.7, 0.006
O*L*M 1, 143 0.13,0.721 0.39, 0.529 0.75, 0.385 0.0, 0.869 3.0, 0.082 1.4,0.241 1.9,0.172
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649  Table 4 Percentage trait variability due to plant origin as well as experimental light and moisture
650 treatments in the factorial experiment. Bold figures are statistically significant trait variability

651  values (p < 0.05) under each parameter while the p-values are the overall p-values of the model.

Traits Origin (%)  Light (%) Moisture (%)  F-values  P-values
Fv/Fm - 1 12 12.1 <0.001
Respiration 0 0 26 5.7 0.005
Height 2 8 21 22.0 <0.0001
Capitulum mass 2 0 0 2.0 0.112
Branch mass 6 0 26 21.3 <0.001
Stem mass 44 0 7 46.6 <0.001
Total biomass 3 0 15 10.8 <0.001
Total traits 11 1 14 16.5 <0.001
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Figure legends

Fig.1 Results of mixed effects models examining trait variation in Sphagnum magellanicum to
treatments in hummock transplant experiments (a) Fv/Fi, averaged by plant origin (b) respiration
averaged by light treatment (c) height averaged by light treatment (d) biomass averaged by a
light % plant origin treatment interaction. Same letter notation depicts no differences between

means based on Tukey HSD post-hoc tests.

Fig. 2 Correlational relationships between respiration and total biomass (a) and the relationship
between respiration and height (b) for Sphagnum magellanicum in the hummock transplant

experiment.

Fig. 3 Effects of treatments in the factorial experiment on Sphagnum magellanicum traits (a)
height averaged by a light X moisture treatment interaction, (b) biomass averaged by a light x
moisture treatment interaction, (c) canopy Fv/Fn averaged by plant origin and moisture
treatments, and (d) respiration averaged between the moisture treatments. Same letter notation
depicts no differences between means based on post hoc tests. There was no origin x light

interaction on Fv/Fm.

Fig. 4 Correlational relationships between respiration, biomass, and height for Sphagnum

magellanicum in the factorial experiment for hummock and hollow originated plants.
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