

[Click here to view linked References](#)

1 Tradeoffs between variability and local adaptation influence the ecophysiology of the

2 moss, *Sphagnum magellanicum*

3

4

5

6

7 Tobi A. Oke^{1*}, Merritt R. Turetsky², David J. Weston³, A. Jonathan Shaw⁴

8

⁹ ¹Marine Science Institute, The University of Texas Austin, Port Aransas, TX, USA

10 ² Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA

11 ³ Biosciences Division, Oak Ridge National Laboratory, TN, USA

12 ⁴Department of Biology, Duke University, Raleigh, NC, USA

13

14

15

16 *Corresponding author

17 E-mail: oketobi@gmail.com

18

19 Author Contributions : TAO conceived the idea, designed the experiments, collected, and

20 analyzed the data. TAO, MRT, DJW and AJS contributed to data interpretation and writing of
21 the manuscript.

22

23 **Abstract**

24 Bryophytes are a diverse plant group and are functionally different from vascular plants. Yet,
25 their peculiarities are rarely considered in the theoretical frameworks for plants. Currently, we
26 lack information about the magnitude and the importance of intraspecific variability to the
27 ecophysiology of bryophytes and how these might translate to local adaptation—a prerequisite
28 for adaptive evolution. Capitalizing on two ecologically distinct (hummock and hollow)
29 phenotypes of *Sphagnum magellanicum*, we explored the magnitude and pattern intraspecific
30 variability in this species and asked whether the environmental-mediated changes in shoot and
31 physiological traits are due to phenotypic plasticity or local adaptation. Size, pigmentation, and
32 habitat type that distinguished the species in the field did not influence the trait responses under a
33 transplant and factorial experiment. Also, the magnitude and pattern of trait variability changed
34 with the treatments, which suggests that trait responses were due largely to phenotypic plasticity.
35 The trait responses also suggest that the ecophysiological needs for mosses to grow in clumps
36 where they maintain a uniform growth may have an overriding effect over the potential for a
37 fixed adaptive response to environmental heterogeneity, which would constrain local adaptation.
38 We conclude that extending the trait-based framework to mosses or making comparisons
39 between mosses and vascular plants under any theoretical framework would only be meaningful
40 to the extent that growth form and dispersal strategies are considered.

41

42 **Keywords:** bryophytes, plant growth form, local adaptation, phenotypic plasticity, intraspecific
43 trait, morphological integration, environmental heterogeneity

44

45 **Introduction**

46 Bryophytes are a diverse plant group—comprising of 15000–20000 species (Shaw *et al.* 2011)
47 and are functionally different from vascular plants. Yet, plant ecological theories and hypotheses
48 are often presented as universally applicable frameworks. The trait-based ecology is no
49 exception; emphasizing the importance of intraspecific trait variability to plant performance and
50 fitness (Bolnick *et al.* 2011; Violle *et al.* 2012; Siefert *et al.* 2015; Wright *et al.* 2016) but
51 primarily from vascular plants perspective. Bryophytes lack complex morphological and
52 physiological structures (e.g. roots and stomata) through which vascular plants actively interact
53 with their environments for resource acquisition, conservation, and response to environmental
54 heterogeneity (e.g. Hepworth *et al.* 2016). Even traits that seem comparable between bryophytes
55 and vascular plants (e.g., leaf mass per area) are often difficult to quantify. However, bryophytes
56 are capable of using facilitative interactions such as lateral movement (externally) of water
57 across space (Rice 2012) or vertical movement of water through their litter matrices, as a means
58 of responding to change in their moisture environment. This cooperation for resource acquisition
59 and retention means that individuals are buffered from the direct effect of the environment (e.g.
60 Elumeeva *et al.*, 2011). This highly integrated ecophysiological mechanism presents a rather
61 unique inter- and intraspecific interactions where competition for resources such as moisture is
62 weak (e.g., Hayward and Clymo, 1983; Rydin, 1993). Thus, intraspecific variability in this plant
63 group may not necessarily have the same ecological meaning as it is understood for vascular
64 plants.

65 Although there has been considerable research evaluating *Sphagnum* traits in the context
66 of ecosystem function—particularly in linking *Sphagnum* species traits to aspects of water (Titus
67 *et al.*, 1983; Schipperges and Rydin, 1998; Hájek and Beckett, 2008) and carbon cycling
68 (Turetsky *et al.* 2008; Laing *et al.* 2014; Bengtsson *et al.* 2016), only a few studies (Sastad and

69 Flatberg 1993; Sastad *et al.* 1999) have quantified intraspecific variability in traits. This is due to
70 the difficulty in quantifying traits and perhaps also due to determining what constitutes an
71 individual in clonal bryophytes like *Sphagnum*, because functional traits may only be measured
72 at the level of an individual (Violle *et al.* 2007). However, viewing an individual as a structurally
73 unattached, morphologically complete tissue—comprising of the capitulum, branch, and stem—the
74 notion of individual is not complicated. That is, unattached individuals are physiologically
75 independent and therefore, interact independently with their environments.

76 Variability often exists within a population because of sexual reproduction without
77 apparent or immediate ecological benefits or consequences. Thus, intraspecific trait variability at
78 the population level may reflect both the intrinsic genetic variability and phenotypic plasticity.
79 One approach to evaluating the mechanistic importance of intraspecific variability is to explore
80 trait variability in the context of local adaptation (Kawecki and Ebert 2004). Plastic (non-genetic)
81 responses to environmental heterogeneity could cause phenotypic differentiation within and
82 among populations and this phenotypic differentiation may become genetically fixed by
83 mutation and natural selection. Such differentiation on phenotypic responses to environmental
84 heterogeneity is often the basis for local adaptation (Kawecki and Ebert 2004). Additionally,
85 locally adapted individuals would continue to exhibit adaptive responses that make them
86 successful in their home environment even when they are subjected to a new environment where
87 such response is no longer advantageous (Price *et al.* 2003; Kawecki and Ebert 2004).
88 Investigating moss traits within the general framework of local adaptation can be informative in
89 estimating the pattern, magnitude, and importance of intraspecific trait variability in this plant
90 group.

91 Here, we explore the source, magnitude, and importance of intraspecific trait variability in
92 *Sphagnum* moss. We ask whether there are differences in intraspecific trait variability and trait
93 values between conspecifics from contrasting environments and whether the differences are due
94 to adaptation to the conditions in their respective origin (hummock or hollow). That is, whether
95 these differences are due to adaptive differentiation (local adaptation) or phenotypic plasticity.
96 We focus on *S. magellanicum*, which is an ecologically dominant and widely distributed
97 *Sphagnum* species. *S. magellanicum* is typically found in hollows and on low hummocks where
98 moisture availability is high. However, it is also found within the carpets of *S. fuscum* on high
99 hummocks—away from the water table, where a combination of high irradiation and moisture
100 deficit often impacts photosynthesis and growth (Harley *et al.* 1989; Murray *et al.* 1993; McNeil
101 and Waddington 2003). The individuals of *S. magellanicum* found on hummocks often exhibit a
102 reddish-brown pigmentation (as opposed to green), are less physically robust (e.g., slender stem
103 and smaller capitulum) and relatively lower tissue water content compared with individuals
104 found in hollows. This variation in phenotype is good for exploring intraspecific variability in
105 the context of phenotypic plasticity versus local adaptation. Here, we capitalize on the pattern
106 observed in the field to ask how intraspecific trait variability influences the breadth of
107 environments where *S. magellanicum* is found. We test the following hypotheses.

108 • Since strong morphological integration (clump growth) of individuals is necessary for
109 survival on hummocks, which also promotes fast height growth, the hummock-originated
110 individuals would consistently invest in height growth at the expense of biomass when
111 grown in a common garden.

112 • Because green leaves tend to be more efficient for light capturing than red (anthocyanin-
113 rich) leaves under low light (Burger and Edwards 1996), we predict that hummock-

114 originated plants would have lower F_v/F_m under the shade treatment than hollow-
115 originated plants. However, we expect the opposite when the plants are grown under full
116 light on hummock because of the lack of protective pigmentation in the hollow-originated
117 individuals.

118 • We hypothesize that hummock-originated individuals are locally adapted to low moisture
119 availability and high irradiance that are prevalent in hummocks. Therefore we predict that
120 morphological and physiological responses of hummock-originated plants would be less
121 sensitive to light and drought treatments compared with hollow-originated plants.

122

123 **Materials and Methods**

124 In June 2016, we visited Wylde Lake bog in southern Ontario (43.91775, -80.40489) and
125 collected individuals of *Sphagnum magellanicum* Brid. found on high hummocks, which are
126 typically dominated by *S. fuscum* and thus represent an atypical environment for *S.*
127 *magellanicum*. The sampling included plants from several hummocks with more than 100m
128 between some of the hummocks because *S. magellanicum* is not typically found on hummocks
129 and to collect enough samples for the experiments. Similarly, we collected individuals from
130 hollow environments in which *S. magellanicum* was dominant. There was at least a 10m distance
131 between sample collection points. Also, the bog sites within the conservation area have
132 contrasting hydrology, with some closer to the marsh and thus have a high water table. We
133 collected samples across the wet and dry sites, which are about 500m apart. The average vertical
134 **distance between the hummocks and the hollows was 40.4cm**. The *S. magellanicum* from
135 hummocks were smaller and reddish-brown in colour whereas those from hollows were more
136 physically robust and completely green. Hollow samples were kept separately from those

137 collected from hummocks. All samples were immediately transferred to the University of Guelph
138 phytotron where *S. magellanicum* samples from each environment were cut by knife into top 5
139 cm segments to exclude deeper, non-living component of the tissues and to create a standard
140 length for all the plants.

141 We employed two experimental approaches. In the context of local adaptation, each
142 experiment contains aspects of a “home” versus an “away” treatment (Kawecki and Ebert 2004;
143 Blanquart et al. 2013). In the first transplant experiment, hummock individuals transplanted onto
144 the hummock mesocosms represent a “home” treatment while hollow individuals represent an
145 “away” treatment. However, this transplant experiment is an incomplete design but it was not
146 possible for us to maintain hollow mesocosms due to the extremely unconsolidated (low bulk
147 density) nature of hollow surface soils and species homogeneity. The combination of the
148 experiments nonetheless represents a range of environments that the species is typically exposed
149 to and **allows us to at least reduce the potential for superficial conclusions (Kawecki and Ebert**
150 **2004).**

151

152 *Hummock transplant experiment*

153 We extracted four hummock monoliths, which comprised a continuous carpet of *S.*
154 *fuscum* into surface peat to a depth of about 20 cm. The monoliths allowed us to incorporate the
155 ecophysiological peculiarities (e.g. neighbourhood effect and vertical movement of moisture
156 through litter matrices) of our study system into the experiment. Each monolith was gently
157 placed in an 8.83-litre cylindrical pot. Each monolith was partitioned into equal halves with a
158 stick, which was inserted horizontally into the surface of the moss carpet in each pot. Individuals
159 of *S. magellanicum* from the two home environments (hummock versus hollow) were randomly

160 assigned to a monolith and were inserted into the carpet of *S. fuscum*. Specifically, we inserted
161 fifteen *S. magellanicum* hummock-originated individuals into one half of each monolith and
162 fifteen hollow-originated individuals into the other half. Thus, across the four replicate
163 monoliths, we transplanted 60 plants from each plant origin. The hummock transplant
164 experiment represents the breadth of “home” environment for individuals that were collected on
165 hummocks in terms of substrate conditions, while hollow-originated plants in this case, were
166 transplanted onto an “away” substrate. Two monoliths were assigned to a shade treatment and
167 two were assigned to full light treatment. The shade treatment involved two shade boxes of 3.25
168 m × 1.47 m × 0.63 m in dimension, built from PVC pipes. The shade boxes were covered with
169 breathable 50% neutral density shade cloth. We used breathable shade cloth to avoid heat build-
170 up under the shade boxes and in the pots, which would have required frequent watering, which
171 would compromise our drought treatment. The 50% shade approximates the proportion of the
172 photosynthetic photon flux density (PPFD) admitted into the *Sphagnum* carpet by the dominant
173 vascular plant species (*Myrica gale*) at our site. This was obtained by measuring PPFD below
174 and above the canopy using the point sensor of a LI-250 light meter (LI-COR, Lincoln,
175 Nebraska). These measurements were used to compute percentage of light admitted into the
176 moss surface. The above canopy PPFD ranged from 1206 – 2035 $\mu\text{mol m}^{-2} \text{s}^{-1}$ whereas below
177 canopy values ranged from 224 -1714 $\mu\text{mol m}^{-2} \text{s}^{-1}$. We quantified water content in the
178 hummocks at 1, 6, and 12 cm depths from the top and also at the foot of the hummocks using a
179 Hydrosense soil moisture meter (Campbell Scientific, Inc., USA). However, we did not find a
180 difference in the moisture profiles of hummocks sampled along moisture gradient in our site,
181 therefore, we did not vary moisture for this experiment.

182

183 *Factorial light × moisture experiment*

184 Our second experiment involved a 3×2 factorial pot experiment with two plant origins
185 (hummock versus hollow), two light treatments (full light; 50% light) and two water treatments
186 (saturated; low water). This experiment represents the breadth of “home” environment for
187 hollow-originated individuals in terms of substrate conditions, while hummock-originated plants
188 in this case were transplanted onto “away” substrates. The shade treatment was imposed as
189 described above. The drought treatment was created by maintaining treatment pots at an average
190 volumetric water content of about 12%, which is the mean summer volumetric water content at
191 the top 1 cm of moss in the field site. This is close to the condition under which drying of
192 *Sphagnum* tissues can be observed in the field. The saturated water treatment was maintained by
193 monitoring and topping up the experimental pots with water, and volumetric water content
194 consistently exceeded 21%. The water contents across all experimental pots were monitored with
195 a portable Hydrosense soil moisture meter (Campbell Scientific, Inc., USA).

196 The experimental pots were filled with 3 cm of deep peat moss underneath a 1 cm layer
197 of surface peat. The deep peat was from a commercial source while the surface peat was
198 extracted from the field in an area near the *Sphagnum* collections in hollow. The pots were 227.4
199 cm³ in size, with holes at the base through which water was fed into the pots. The pots were
200 placed in trays, which were covered with transparent lids. There were 9 plants (one plant per pot)
201 for each of the four treatment combinations (9 plants \times 2 origin \times 2 light \times 2 moisture
202 treatments), which we replicated twice. Thus, a total of 144 plants were used in the experiment.
203 Because bogs are nutrient-poor and typically fed by rainwater, the plants were not fertilized and
204 were watered exclusively with rainwater that was harvested in Guelph. The experiments were
205 conducted at the University of Guelph greenhouse, which was kept at average 20°C night/26°C

206 day temperatures and 16-h photoperiod. Daylight was supplemented with artificial light on
207 cloudy days and in the evenings.

208

209

210 *Quantification of traits*

211 The two experiments ran fully from July 2016 to January 2017. At the end of the experiments,
212 we measured a suite of traits on individuals from each treatment. We focused on morphological
213 traits and shoot traits in particular because *Sphagnum* is poikilohydric and holds a large
214 proportion of its moisture externally. We quantified two traits related to growth, including height
215 and biomass. We also measured allocation of biomass into capitulum, branch, and stem. The
216 capitulum is taken as the top 1 cm of the plant (Clymo 1970). Branch mass was determined by
217 removing the tissues that line the stem (fascicles). Branch mass comprised of tissues (fascicles)
218 that line the stem. The exposed stem was taken as the stem mass.

219 We also quantified the dark respiration as a measure of metabolic activity. Respiration
220 rates were measured on six individuals per treatment, which were selected at the end of the
221 experiment. For these individuals, we placed the entire plant in a dark glass jar. The jars were
222 sealed with stopcocks and placed under their respective treatment environment. The CO₂ in the
223 jar headspace was drawn three times at 3 hr intervals with gas-tight syringes. The CO₂
224 concentration was analyzed with an EGM-4 infrared gas analyzer (PP Systems, Hitchin,
225 Hertfordshire, UK). We performed linear regressions of CO₂ concentration against time, using
226 the slopes of these relationships as our measurement of respiration rate. We then used the dry
227 mass of the samples to convert the slopes into $\mu\text{mol of CO}_2 \text{ g}^{-1} \text{ minute}^{-1}$.

228 Finally, we measured the dark-adapted fluorescence (F_v/F_m) as a measure of maximal
229 photosynthetic efficiency. The dark-adapted F_v/F_m measurements were taken at the end of the
230 experiment. Individuals from each treatment were placed in the dark for at least 6 hours to ensure
231 that Q_A electron acceptors are fully oxidized and that reaction centers are in the ‘open’ state. We
232 then quantified dark-adapted F_v/F_m on each plant using a pulse-modulated fluorometer (OS1p,
233 Opti-Sciences, Hudson, NH).

234

235 **Statistical analyses**

236 Because the plants in the hummock transplant experiment were grown in only four pots, we
237 tested for differences in trait values using mixed effect models, where we analyzed pot ID as a
238 random effect to account for lack of independence. Multiple mean comparisons were obtained
239 for models with interaction effects using “lsmeans” package in R. We tested for mean trait values
240 in the factorial experiment using 3-way ANOVA and obtained multiple mean comparisons for
241 interaction effects using Tukey HSD. In both analyses, we explored the models' residuals for
242 normality and where there was a departure from normality (e.g., height and branch mass), the
243 data were transformed using a logarithm transformation. We explored patterns of trait variability
244 across experimental treatments by partitioning the variance in the data using the varpart function
245 in R package “Vegan”. We used this approach combined with redundancy analysis to examine
246 how the experimental treatments influenced within-trait variability and total trait variability. All
247 analyses were performed in R 3.2 (R core Development Team 2015) and all statistical tests were
248 conducted at $\alpha = 0.05$.

249

250 **Results**

251 **Hummock-transplant experiment**

252 Hummock-originated plants had lower F_v/F_m than hollow plants (Fig. 1a) with no other
253 significant main effects or interactions (Table 1). Height, capitulum mass, and respiration were
254 consistently higher under the shade than the high light treatment (Fig. 1b & c). Total biomass and
255 stem biomass was influenced by a plant origin \times light interaction (Fig 1d). Hummock plants
256 tended to have lower total and stem biomass than hollow plants but only in the shade treatment.

257

258 We found strong positive correlations between some of the traits. There were correlations for
259 example between height and respiration rate and between respiration rate and biomass for both
260 hummock and hollow plants ($r^2 = 0.24$, $p < 0.05$ and $r^2 = 0.56$, $p < 0.001$) and hollow plants ($r^2 =$
261 0.30 , $p < 0.05$ and $r^2 = 0.73$, $p < 0.001$) (Fig. 2a & b).

262 For most traits, plant origin did not explain a significant amount of variation in individual
263 traits (0–10%), while light explained between 0 and 46% (Table 2). Origin (hummock vs.
264 hollow) explained significant variation for F_v/F_m and stem mass, while light explained significant
265 variation in height, capitulum mass, and total biomass (Table 2). When analyzed for total
266 variability across all traits (respiration, F_v/F_m , capitulum, branch, stem, and total biomass), plant
267 origin only accounted for 2% of the variability ($p > 0.05$) whereas light accounted for 16% ($p <$
268 0.001).

269

270 **Light \times moisture factorial experiment**

271 In the factorial experiment, traits were more generally influenced by the main effects of origin
272 and moisture than their interaction effects or the main effect of light (Table 3). The post-hoc tests

273 showed that capitulum mass was greater in hummock plants than in hollow plants under the high
274 moisture treatment ($p < 0.05$) but did not significantly differ between the plant origins under the
275 low moisture treatment. The opposite trend was true for branch mass as hollow plants had a
276 greater branch mass than hummock plants under the high moisture treatment ($p < 0.05$) but there
277 was no difference in branch mass between the origins under the low moisture treatment. The
278 stem mass of hollow plants subjected to low moisture was greater than stem mass of hummock
279 plants subjected to high moisture ($p < 0.001$). Height was fastest under the high moisture
280 treatments regardless of light (Fig. 3a) compared with the low moisture treatment but lower in
281 the light x low moisture treatment Biomass was greatest at the high light and high moisture
282 treatment and tended to be lowest under the low moisture treatments across both light treatments
283 (Fig. 3b). F_v/F_m was higher in hollow individuals than in hummock individuals.(Fig. 3c).
284 Respiration was higher under high moisture than the low moisture treatment and did not vary
285 with light (Fig. 3d).

286 Consistent with the hummock transplant experiment, we found strong positive
287 correlations between respiration and biomass and between respiration and height for both
288 hummock ($r^2 = 0.25$, $p < 0.001$ and $r^2 = 0.57$, $p < 0.001$) and hollow ($r^2 = 0.53$, $p < 0.001$ and $r^2 =$
289 0.65 , $p < 0.001$) plants (Fig. 4a & b).

290 Plant origin explained the most variation in stem mass (44%) relative to moisture and
291 light. Except for height, the influence of the light treatments explained little or no variation
292 among traits in this experiment. Moisture explained a significant amount of variation in all traits
293 except for capitulum mass and was particularly important for respiration and branch mass
294 variation. Plant origin and moisture explained similar levels of total variation across traits (Table
295 4). The data were also split into two independent datasets based on plant origin and were

296 accordingly explored for variability due to light and moisture effects. Light explained 1% of total
297 variability in hollow plant traits and 4% in hummock plant traits whereas moisture explained
298 22% of variability in hollow plant traits and 13% in hummock plant traits. However, the effect of
299 light on variability of hollow plant traits was not statistically significant.

300

301 **Discussion**

302 We capitalized on two ecologically distinct (hummock and hollow) phenotypes of *S.*
303 *magellanicum* to evaluate the magnitude and the importance of intraspecific variability in this
304 species and asked whether the environmental-mediated changes in shoot and physiological traits
305 are due to phenotypic plasticity or local adaptation. This is not an attempt to characterize
306 *Sphagnum* physiology but rather to explore the importance of trait variability in controlling
307 responses to environmental heterogeneity.

308

309 ***Effect of plant origin (hummock versus hollow) on Sphagnum traits***

310 Although clonality is ubiquitous in bryophytes, their populations can be spatially and
311 genetically diverse as the population of any non-clonal plants (e.g., Stenøien and Sastad 1999;
312 Gunnarsson *et al.* 2007). Our hummock–hollow sampling design assumed that the two
313 phenotypes of *S. magellanicum* used in our experiments are genetically disparate groups that
314 have been shaped by adaptive differentiation (local adaptation). At the same time, a unique
315 characteristic of *Sphagnum* is that it acquires and conserves moisture through stem and canopy
316 integration (clump growth form), especially on hummocks. That is, *S. magellanicum* growing on
317 hummocks may not grow considerably faster or taller than the typical height of *S. fuscum*–
318 derived carpet (Hayward and Clymo 1983). Pure stands of *S. magellanicum* typically grow faster

319 than those of *S. fuscum* (Breeuwer et al. 2008), which implies that *S. magellanicum* plants
320 (regardless of their origin) growing on *S. fuscum*-dominated hummocks may not express their
321 maximum growth rates. Thus, the generally weak effect of plant origin on the traits in the
322 hummock transplant experiment relative to that in the factorial experiment suggests that the trait
323 responses were due largely to phenotypic plasticity as opposed to local adaptation.

324 Indeed, environmental heterogeneity may cause phenotypic changes that are not
325 genetically determined adaptive responses (Kawecki and Ebert 2004). That is, while the
326 appearance of our hummock-dwelling phenotype is undoubtedly shaped by the hummock
327 conditions, its distinguishing characters from the hollow-dwelling phenotype may not have
328 genetic bases. Further, if the ecophysiological needs for morphological integration have an
329 overriding effect over the potential for a fixed adaptive response to environmental heterogeneity,
330 then the clump growth form of *Sphagnum* would likely constrain local adaptation.

331

332 ***Light controls on Sphagnum trait variation***

333 High irradiation is a common source of stress influencing bryophytes performances (Post
334 et al. 1990; Marschall and Proctor, 2004). *Sphagnum* species especially the hummock dwelling
335 species are susceptible to photoinhibition due to the prevalence of low moisture and high
336 irradiation (Murray et al. 1993; Hájek 2014; Bragazza 2008). Thus, because hummock species
337 are rarely completely green except under shade, we considered the pigmentation in the hummock
338 plants a photoprotection feature (Bonnett et al. 2010). Contrary to our predictions, the hummock
339 plants had a relatively lower F_v/F_m across all experimental treatments compared with hollow the
340 plants. Also, under the shade treatments, some of the hummock plants changed from reddish to
341 light pink colour and some with a tint of green, which is consistent with the findings that

342 pigmentation of *S. magellanicum* is plastic (Yousefi et al. 2017). However, Fv/Fm gives an
343 insight into stress (e.g., moisture stress) tolerance of species and an indication of stress-induced
344 damage to the photosynthetic apparatus (Maxwell and Johnson 2000; Manninen et al. 2011).
345 Since *S. magellanicum* is known to occupy a wide range of environments (Breeuwer et al. 2008;
346 Kyrkjeeide et al. 2016; also see Oke and Turetsky 2020) and was able to survive on high
347 hummocks, we cannot attribute the generally low Fv/Fm to low-stress tolerance, which thus
348 implies that damage to its photosynthetic apparatus is likely a cost to occupying the high
349 hummocks; hence the rarity of the species in that habitat. However, we did not find any
350 relationship between Fv/Fm and total biomass, which is often used as a proxy for fitness in plants
351 (Younginger et al. 2017).

352 Shade tends to reduce transpiration (Muthuchelian et al. 1989; Pons et al. 2001; Gent,
353 2007), which would diminish the need for morphological integration. Under the shade treatment
354 of the hummock transplant experiment, the plants were more robust (e.g., bigger capitulum) and
355 the moss canopy was generally rough and loose compared with light treatment, which was
356 relatively smooth and compacted. This disparity in growth response due to the difference in light
357 level likely contributed to the strong effect of light on trait variability in the hummock transplant
358 experiment. Surprisingly, light was less important to trait variation in the factorial experiment.
359 This could be because we only manipulated moisture in the factorial experiment, which is well
360 established as having an important role in *Sphagnum* growth and distribution (McNeil and
361 Waddington 2003; Oke and Hager 2017) and also was the dominant source of trait variation in
362 the factorial experiment.

363

364 ***Implications of trait variability and local adaptation in Sphagnum***

365 Trait variability is considered one of the mechanisms by which plant populations cope
366 with environmental heterogeneity (Jung et al. 2014) and it is deemed the raw material for natural
367 selection (Bolnick et al. 2011). **For instance, high trait variability could aid the persistence of a**
368 **population by allowing optimal response to selective pressures (e.g., Bürger 1999).** In this study,
369 most of the variability remained unexplained by our treatments. However, it is important to note
370 that most traits measured in this study exhibited low levels of variation. It is also important to
371 note that clonality is common in *Sphagnum*, especially at fine scales, which may lead to low
372 phenotypic variation. Low phenotypic variation may be advantageous for morphological
373 integration. Although our sampling design was intended to avoid repeatedly sampling clones, it
374 is not uncommon for a *Sphagnum* population to be dominated by a single clone (Cronberg et al.
375 1997; Gunnarsson et al. 2007), which would then likely be overrepresented in our experiments.

376 Due to the generally low nutrient condition that limits spore germination in peatlands
377 (Sundberg and Rydin 2002), *Sphagnum* populations are maintained largely by clonal growth
378 (Cronberg et al. 1997; Gunnarsson et al. 2007). That is, dispersal by spore in *Sphagnum* is long-
379 distant and random (Whitaker and Edwards 2010). This is true for many moss species (Miles and
380 Longton 1992), which means that there is a low accrueable benefit in passing down the local
381 selective advantage through spores. While the short-distance dispersal through clonal growth is
382 less random, it likely results in low phenotypic variability. The low phenotypic variability may
383 have an ecophysiological value in stem and canopy integration for moisture retention and
384 survival. However, as observed in the field and as demonstrated in the current study,
385 morphological integration is quite common in *Sphagnum* even among species with different
386 growth rates (Clymo and Hayward 1982; Hayward and Clymo 1983; Ingerpuu and Vellak
387 2013). This means that stem and canopy integration is more likely a function of plasticity rather

388 than low phenotypic variability per se. Thus, given their mode of dispersal and the clump
389 growth form, locally adapted growth responses may not be beneficial to mosses. In any case,
390 extending the trait-based framework to mosses or making comparisons between mosses and
391 vascular plants under any theoretical framework would only be meaningful to the extent that
392 growth form (including lack of roots) and dispersal strategies are considered.

393 Our findings that trait responses and variability depend on the prevailing environment
394 highlights the limitation of investigating or drawing conclusions about local adaptation from
395 responses to a single environment. Additionally, because phenotypic changes may not
396 necessarily have a genetic basis, it is possible in a common garden experiment to confuse or
397 conflate adaptive changes arising from phenotypic plasticity with that arising from local
398 adaptation (Gienapp et al. 2008).

399 Finally, there is an on-going taxonomic revision to *S. magellanicum*. The species is
400 considered a complex, comprising at least three species—*S. divinum* and *S. medium* in eastern
401 North America, and *S. magellanicum* sensu stricto in South America (Hassel et al. 2018). These
402 species have distinct morphological, molecular, and distributional characters. The preliminary
403 study suggests that *S. medium* has an amphi-Atlantic distribution while *S. divinum* is circumpolar
404 in its distribution. Since the pigmentation of “*S. magellanicum*” (as we currently know it) lacks
405 genetic basis (Yousefi et al. 2017) and considering the pattern of distribution of these species
406 relative to our field site in Southern Ontario, it is unlikely that we sampled across a mix of *S.*
407 *medium* and *S. divinum* in a way that would bias our findings. Also, considering that origin had
408 little effect on trait variability, a more likely scenario is that we sampled one species or the other.
409 However, because further study is required on the distribution and identification of these

410 subspecies (Hassel et al. 2018), we are unable to accordingly characterize our species and
411 therefore maintain the name *S. magellanicum* for the purpose of this study.

412

413 Conclusion

414 In summary, we explored the magnitude and pattern of trait variability in *S.*
415 *magellanicum* from contrasting habitats in the context of phenotypic plasticity and local
416 adaptation. We found that the trait responses were due largely to phenotypical plasticity with
417 little influence on whether plants originated from hummocks or hollows. We also found that trait
418 variability depends on the prevailing light or moisture environment. However, most trait
419 variation remained unexplained by our experimental treatments. Collectively, our results suggest
420 that using traits to draw inferences about the ecology of *Sphagnum* would require an
421 understanding of the mechanisms driving traits and the pattern of trait variability. Lastly, because
422 morphological integration may have an overriding influence on growth traits, it is not clear under
423 what conditions might local adaptation occur or benefit this plant group. We hope that future
424 studies will further explore this area of inquiry in mosses, with consideration for their growth
425 form and recruitment strategies.

426

427 Acknowledgments

428 The authors thank Mike Mucci and Tannis Slimmon for their technical and material supports in
429 the phytotron. We also thank Sarah McDonald and Rebecca Evans for their assistance with the
430 greenhouse and lab measurements. We thank the two anonymous reviewers and the handling
431 editor for their constructive comments that helped improve the manuscript. This work was
432 supported by a NSERC Discovery grant to MRT.

433 **References**

434 Bengtsson F, Granath G, Rydin H (2016) Photosynthesis, growth, and decay traits in Sphagnum -
435 a multispecies comparison. *Ecol Evol* 6:3325–41. <https://doi.org/10.1002/ece3.2119>

436 Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local
437 adaptation. *Ecol Lett* 16:1195–1205. <https://doi.org/10.1111/ele.12150>

438 Bolnick DI, Amarasekare P, Araújo MS, et al (2011) Why intraspecific trait variation matters in
439 community ecology. *Trends Ecol Evol* 26:183–92.
440 <https://doi.org/10.1016/j.tree.2011.01.009>

441 Bonnett SAF, Ostle N, Freeman C (2010) Short-term effect of deep shade and enhanced nitrogen
442 supply on *Sphagnum capillifolium* morphophysiology. *Plant Ecol* 207:347–358.
443 <https://doi.org/10.1007/s11258-009-9678-0>

444 Breeuwer A, Heijmans MMPD, Robroek BJMM, Berendse F (2008) The effect of temperature
445 on growth and competition between *Sphagnum* species. *Oecologia* 156:155–167.
446 <https://doi.org/10.1007/s00442-008-0963-8>

447 Burger J, Edwards GE (1996) Photosynthetic efficiency, and photodamage by UV and visible
448 Radiation, in red versus green leaf *Coleus* varieties. *Plant Cell Physiol* 37:395–399

449 Bürger R (1999) Evolution of genetic variability and the advantage of sex and recombination in
450 changing environments. *Genetics* 153:1055–1069

451 Clymo, R.S, Hayward P. (1982) The ecology of *Sphagnum*. *Bryophyte ecology*. Dordrecht, The
452 Netherlands

453 Clymo RS (1970) The growth of *Sphagnum*: methods of measurement. *J Ecol* 58:13.
454 <https://doi.org/10.2307/2258168>

455 Cronberg N, Molau U, Sonesson M (1997) Genetic variation in the clonal bryophyte
456 *Hylocomium splendens* at hierarchical geographical scales in Scandinavia. *Heredity (Edinb)*
457 78:293–301. <https://doi.org/10.1038/hdy.1997.44>

458 Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC (2011) The importance of
459 colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte
460 species. *J Veg Sci* 22:152–164. <https://doi.org/10.1111/j.1654-1103.2010.01237.x>

461 Gent MPN (2007) HortScience : a publication of the American Society for Horticultural Science.
462 HortScience 42:514–520

463 Gienapp P, Teplitsky C, Alho JS, et al (2008) Climate change and evolution: disentangling

464 environmental and genetic responses. *Mol Ecol* 17:167–178. <https://doi.org/10.1111/j.1365-294X.2007.03413.x>

465

466 Gunnarsson U, Shaw AJ, Lonn M (2007) Local-scale genetic structure in the peatmoss

467 *Sphagnum fuscum*. *Mol Ecol* 16:305–312. <https://doi.org/10.1111/j.1365-294X.2006.03144.x>

468

469 Hájek T (2014) Physiological ecology of peatland bryophytes. Springer Netherlands, pp 233–252

470 Hájek T, Beckett RP (2008) Effect of water content components on desiccation and recovery in

471 *Sphagnum* Mosses. *Ann Bot* 101:165. <https://doi.org/10.1093/aob/mcm287>

472 Harley PC, Tenhunen JD, Murray KJ, Beyers J (1989) Irradiance and temperature effects on

473 photosynthesis of tussock tundra *Sphagnum* mosses from the foothills of the Philip Smith

474 Mountains, Alaska. *Oecologia* 79:251–259. <https://doi.org/10.1007/BF00388485>

475 Hassel K, Kyrkjeeide MO, Yousefi N, et al (2018) *Sphagnum divinum* (sp. nov.) and *S. medium*

476 Limpr. and their relationship to *S. magellanicum* Brid. *J Bryol* 40:197–222.

477 <https://doi.org/10.1080/03736687.2018.1474424>

478 Hayward PM, Clymo RS (1983) The growth of *Sphagnum*: experiments on, and simulation of,

479 some effects of light flux and water-table depth. *J Ecol* 71:845.

480 <https://doi.org/10.2307/2259597>

481 Hepworth C, Turner C, Landim MG, et al (2016) Balancing Water Uptake and Loss through the

482 Coordinated Regulation of Stomatal and Root Development. *PLoS One* 11:e0156930.

483 <https://doi.org/10.1371/journal.pone.0156930>

484 Ingerpuu N, Vellak K (2013) Growth depends on neighbours: Experiments with three *Sphagnum*

485 l. Species. *J Bryol* 35:27–32. <https://doi.org/10.1179/1743282012Y.0000000034>

486 Jung V, Albert CH, Violle C, et al (2014) Intraspecific trait variability mediates the response of

487 subalpine grassland communities to extreme drought events. *J Ecol* 102:45–53.

488 <https://doi.org/10.1111/1365-2745.12177>

489 Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. *Ecol Lett* 7:.

490 <https://doi.org/10.1111/j.1461-0248.2004.00684.x>

491 Kyrkjeeide MO, Hassel K, Flatberg KI, et al (2016) Spatial genetic structure of the abundant and

492 widespread peatmoss *Sphagnum magellanicum* Brid. *PLoS One* 11:e0148447.

493 <https://doi.org/10.1371/journal.pone.0148447>

494 Laing CG, Granath G, Belyea LR, et al (2014) Tradeoffs and scaling of functional traits in

495 Sphagnum as drivers of carbon cycling in peatlands. *Oikos* 123:817–828.
496 <https://doi.org/10.1111/oik.01061>

497 Manninen S, Woods C, Leith ID, Sheppard LJ (2011) Physiological and morphological effects of
498 long-term ammonium or nitrate deposition on the green and red (shade and open grown)
499 *Sphagnum capillifolium*. *Environ Exp Bot* 72:140–148.
500 <https://doi.org/10.1016/j.envexpbot.2011.02.015>

501 Marschall M, Proctor MCF (2004) Are bryophytes shade plants? photosynthetic light responses
502 and proportions of chlorophyll a, chlorophyll b and total carotenoids. *Ann Bot* 94:593–603.
503 <https://doi.org/10.1093/aob/mch178>

504 Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. *J Exp Bot* 51:659–
505 668. <https://doi.org/10.1093/jexbot/51.345.659>

506 McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO₂ exchange
507 on a cutover bog. *J Appl Ecol* 40:354–367

508 Miles CJ, Longton RE (1992) Deposition of moss spores in relation to distance from parent
509 gametophytes. *J Bryol* 17:355–368. <https://doi.org/10.1179/jbr.1992.17.2.355>

510 Murray KJ, Tenhunen JD, Nowak RS (1993) Photoinhibition as a control on photosynthesis and
511 production of Sphagnum mosses. *Oecologia* 96:200–207.
512 <https://doi.org/10.1007/BF00317733>

513 Muthuchelian K, Paliwal K, Gnanam A (1989) Influence of shading on net photosynthetic and
514 transpiration rates, stomatal diffusive resistance, nitrate reductase and biomass productivity
515 of a woody legume tree species (*Erythrina variegata* Lam.). *Proc Plant Sci* 99:539–546.
516 <https://doi.org/10.1007/bf03053423>

517 Oke TA, Hager HA (2017) Assessing environmental attributes and effects of climate change on
518 Sphagnum peatland distributions in North America using single- and multi-species models.
519 *PLoS One* 12:e0175978. <https://doi.org/10.1371/journal.pone.0175978>

520 Oke TA, Turetsky MR (2020) Evaluating Sphagnum traits in the context of resource economics
521 and optimal partitioning theories. *Oikos* 00:1–12. <https://doi.org/10.1111/oik.07195>

522 Pons TL, Jordi W, Kuiper D (2001) Acclimation of plants to light gradients in leaf canopies:
523 evidence for a possible role for cytokinins transported in the transpiration stream. *J Exp Bot*
524 52:1563–1574. <https://doi.org/10.1093/jexbot/52.360.1563>

525 Post A, Adamson E, Adamson H (1990) Photoinhibition and recovery of photosynthesis in

526 antarctic bryophytes under field conditions. In: Current Research in Photosynthesis.
527 Springer Netherlands, pp 3429–3432

528 Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic
529 evolution. *Proc R Soc London B Biol Sci* 270:1433–1440

530 R Core Development Team, 2015. R: A Language and Environment for Statistical Computing. R
531 Foundation for Statistical Computing, Vienna, Austria

532

533 Rice SK (2012) The cost of capillary integration for bryophyte canopy water and carbon
534 dynamics. *Lindbergia* 35:53–62

535 Rydin H (1993) Interspecific Competition between Sphagnum Mosses on a Raised Bog. *Oikos*
536 66:413. <https://doi.org/10.2307/3544935>

537 Sastad, S.M.; Flatberg K. (1993) Leaf morphology of *Sphagnum strictum* in Norway, related to
538 habitat characteristics. *Lindbergia* 18:71–77

539 Sastad SM, Pedersen B, Digre K (1999) Habitat-specific genetic effects on growth rate and
540 morphology across pH and water level gradients within a population of the moss *Sphagnum*
541 *angustifolium* (Sphagnaceae). *Am J Bot* 86:1687. <https://doi.org/10.2307/2656667>

542 Schipperges B, Rydin H (1998) Response of photosynthesis of Sphagnum species from
543 contrasting microhabitats to tissue water content and repeated desiccation. *New Phytol*
544 140:677–684. <https://doi.org/10.1046/j.1469-8137.1998.00311.x>

545 Shaw AJ, Szövényi P, Shaw B (2011) Bryophyte diversity and evolution: windows into the early
546 evolution of land plants. *Am J Bot* 98:352–69. <https://doi.org/10.3732/ajb.1000316>

547 Siefert A, Violle C, Chalmandrier L, et al (2015) A global meta-analysis of the relative extent of
548 intraspecific trait variation in plant communities. *Ecol Lett* 18:1406–1419.
549 <https://doi.org/10.1111/ele.12508>

550 Stenøien, Sastad (1999) Genetic structure in three haploid peat mosses (*Sphagnum*). *Heredity*
551 (Edinb) 82 Pt 4:391–400

552 Sundberg S, Rydin H (2002) Habitat requirements for establishment of Sphagnum from spores. *J*
553 *Ecol* 90:268–278. <https://doi.org/10.1046/j.1365-2745.2001.00653.x>

554 Titus JE, Wagner DJ, Stephens MD (1983) Contrasting water relations of photosynthesis for two
555 Sphagnum mosses. *Ecology* 64:1109–1115. <https://doi.org/10.2307/1937821>

556 Turetsky MR, Crow SE, Evans RJ, et al (2008) Trade-offs in resource allocation among moss
557 species control decomposition in boreal peatlands. *J Ecol* 96:1297–1305.

558 <https://doi.org/10.1111/j.1365-2745.2008.01438.x>

559 Violette C, Enquist BJ, McGill BJ, et al (2012) The return of the variance: intraspecific variability

560 in community ecology. *Trends Ecol Evol* 27:244–252.

561 <https://doi.org/10.1016/J.TREE.2011.11.014>

562 Violette C, Navas M-L, Vile D, et al (2007) Let the concept of trait be functional! *Oikos* 116:882–

563 892. <https://doi.org/10.1111/j.0030-1299.2007.15559.x>

564 Whitaker DL, Edwards J (2010) Sphagnum moss disperses spores with vortex rings. *Science*

565 (80-) 329:406. <https://doi.org/10.1126/science.1190179>

566 Wright JP, Ames GM, Mitchell RM (2016) The more things change, the more they stay the

567 same? When is trait variability important for stability of ecosystem function in a changing

568 environment. *Philos Trans R Soc Lond B Biol Sci* 371:..

569 <https://doi.org/10.1098/rstb.2015.0272>

570 Younginger BS, Sirová D, Cruzan MB, Ballhorn DJ (2017) Is Biomass a Reliable Estimate of

571 Plant Fitness? *Appl Plant Sci* 1600094. <https://doi.org/10.3732/apps.1600094>

572 Yousefi N, Hassel K, Flatberg KI, et al (2017) Divergent evolution and niche differentiation

573 within the common peatmoss *Sphagnum magellanicum*. *Am J Bot* 104:1060–1072.

574 <https://doi.org/10.3732/ajb.1700163>

575

576

577

578

579

580

581

582

583

584

585

586 Table 1 Results of a mixed effect model for the hummock transplant experiment showing F and
 587 p-values specific to each trait. Bold texts are significant values ($p < 0.05$). O = Origin, L = Light
 588 and DF = treatment and sample degrees of freedom

		Respiration			Total	Capitulum	Branch	Stem
Treatments	DF	(umol ⁻¹ g ⁻¹ min)	F/F _m	Height (cm)	biomass (g)	mass (g)	mass (g)	mass (g)
O	1, 59	0.21, 0.651	4.4, 0.040	2.4, 0.128	2.6, 0.115	1.3, 0.267	0, 0.915	6.8, 0.012
L	1, 59	9.2, 0.038	1.3, 0.264	50.2, <0.0001	12.4, 0.026	21.1, <0.0001	0.77, 0.382	3.1, 0.146
O*L	1, 59	1.5, 0.222	0.1, 0.764	2.5, 0.122	7.1, 0.010	3.9, 0.053	1.9, 0.172	4.1, 0.048

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612
613
614
615
616
617

618 Table 2 The effects of plant origin and light treatment on individual trait variability as well as
619 total trait variability for hummock transplant experiment. Bold figures are statistically significant
620 trait variability values ($p < 0.05$) under each parameter while the p-values are the overall p-
621 values of the model.

Traits	Origin (%)	Light (%)	F-values	P-values
F _v /F _m	6	0	2.9	0.066
Respiration	0	17	2.9	0.067
Height	1	46	24.0	<0.001
Capitulum mass	0	29	10.3	0.002
Branch mass	0	0	0.5	0.651
Stem mass	10	0	4.7	<0.001
Total biomass	3	19	6.9	0.004
Total traits	2	16	6.5	<0.001

622
623
624
625
626
627
628

629

630

631

632

633

634 Table 3 Results of a 3-way ANOVA for the factorial experiment showing F and p-values for the
 635 traits. Bold texts are significant values ($p < 0.05$). O = Origin, L = Light, M = Moisture and DF =
 636 treatment and sample degrees of freedom

Treatments	DF	Respiration		Height (cm)	Total biomass (g)	Capitulum mass (g)	Branch mass (g)	Stem mass (g)
		($\mu\text{mol}^{-1}\text{g}^{-1}\text{min}$)	F_v/F_m					
O	1, 143	0.0, 0.831	14.5, 0.002	4.6, 0.032	8.1, 0.0051	3.3, 0.070	14.8, 0.0001	144.4, <0.0001
L	1, 143	1.1, 0.31	3.5, 0.061	20.5, <0.0001	0.55, 0.459	2.1, 0.145	0.0, 0.930	1.3, 0.251
M	1, 143	16.4, 0.0002	22.8, <0.0001	48.6, <0.0001	32.1, <0.0001	0.1, 0.791	62.8, <0.0001	26.25, <0.0001
O*L	1, 143	3.4, 0.071	2.3, 0.133	1.3, 0.218	0.3, 0.617	0.35, 0.553	0.3, 0.582	2.5, 0.113
O*M	1, 143	0.9, 0.336	2.2, 0.137	1.2, 0.267	0.0, 0.886	15.6, 0.0001	6.7, 0.010	8.4, 0.0041
L*M	1, 143	0.2, 0.625	2.7, 0.098	7.9, 0.0056	4.4, 0.037	2.9, 0.088	2.3, 0.128	7.7, 0.006
O*L*M	1, 143	0.13, 0.721	0.39, 0.529	0.75, 0.385	0.0, 0.869	3.0, 0.082	1.4, 0.241	1.9, 0.172

637

638

639

640

641

642

643

644

645

646

647

648

649 Table 4 Percentage trait variability due to plant origin as well as experimental light and moisture
650 treatments in the factorial experiment. Bold figures are statistically significant trait variability
651 values ($p < 0.05$) under each parameter while the p-values are the overall p-values of the model.

Traits	Origin (%)	Light (%)	Moisture (%)	F-values	P-values
F _v /F _m	7	1	12	12.1	<0.001
Respiration	0	0	26	5.7	0.005
Height	2	8	21	22.0	<0.0001
Capitulum mass	2	0	0	2.0	0.112
Branch mass	6	0	26	21.3	<0.001
Stem mass	44	0	7	46.6	<0.001
Total biomass	3	0	15	10.8	<0.001
Total traits	11	1	14	16.5	<0.001

652

653

654

655

656

657

658

659

660 **Figure legends**

661 Fig.1 Results of mixed effects models examining trait variation in *Sphagnum magellanicum* to
662 treatments in hummock transplant experiments (a) F_v/F_m averaged by plant origin (b) respiration
663 averaged by light treatment (c) height averaged by light treatment (d) biomass averaged by a
664 light \times plant origin treatment interaction. Same letter notation depicts no differences between
665 means based on Tukey HSD post-hoc tests.

666

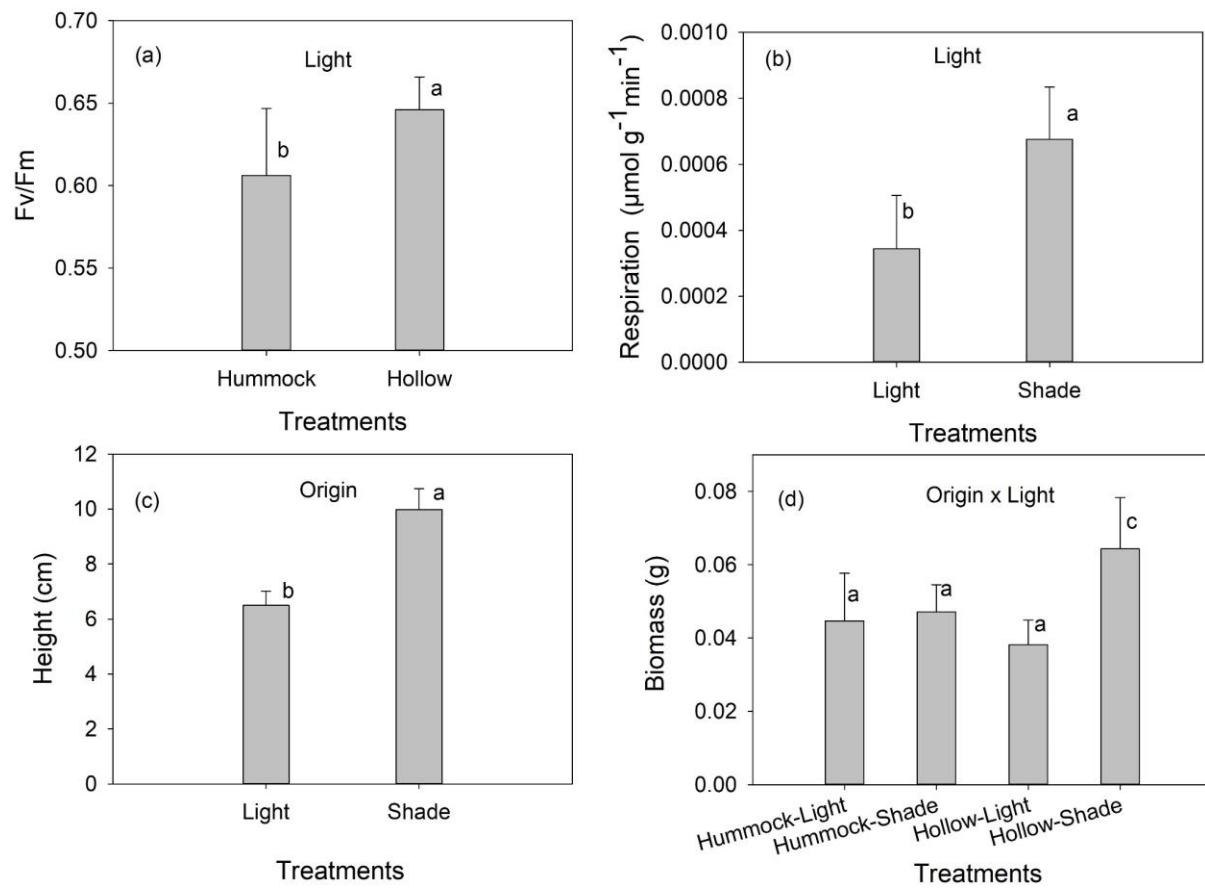
667 Fig. 2 Correlational relationships between respiration and total biomass (a) and the relationship
668 between respiration and height (b) for *Sphagnum magellanicum* in the hummock transplant
669 experiment.

670

671 Fig. 3 Effects of treatments in the factorial experiment on *Sphagnum magellanicum* traits (a)
672 height averaged by a light \times moisture treatment interaction, (b) biomass averaged by a light \times
673 moisture treatment interaction, (c) canopy F_v/F_m averaged by plant origin and moisture
674 treatments, and (d) respiration averaged between the moisture treatments. Same letter notation
675 depicts no differences between means based on post hoc tests. There was no origin \times light
676 interaction on F_v/F_m .

677
678 Fig. 4 Correlational relationships between respiration, biomass, and height for *Sphagnum*
679 *magellanicum* in the factorial experiment for hummock and hollow originated plants.

680


681

682

683

684

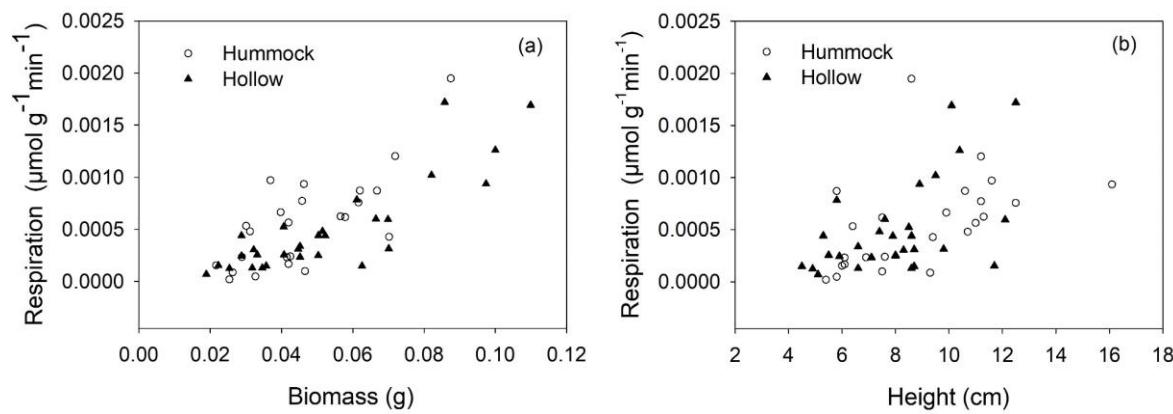
685

686

687 Fig. 1

688

689


690

691

692

693

694

695

696 Fig. 2

697

698

699

700

701

702

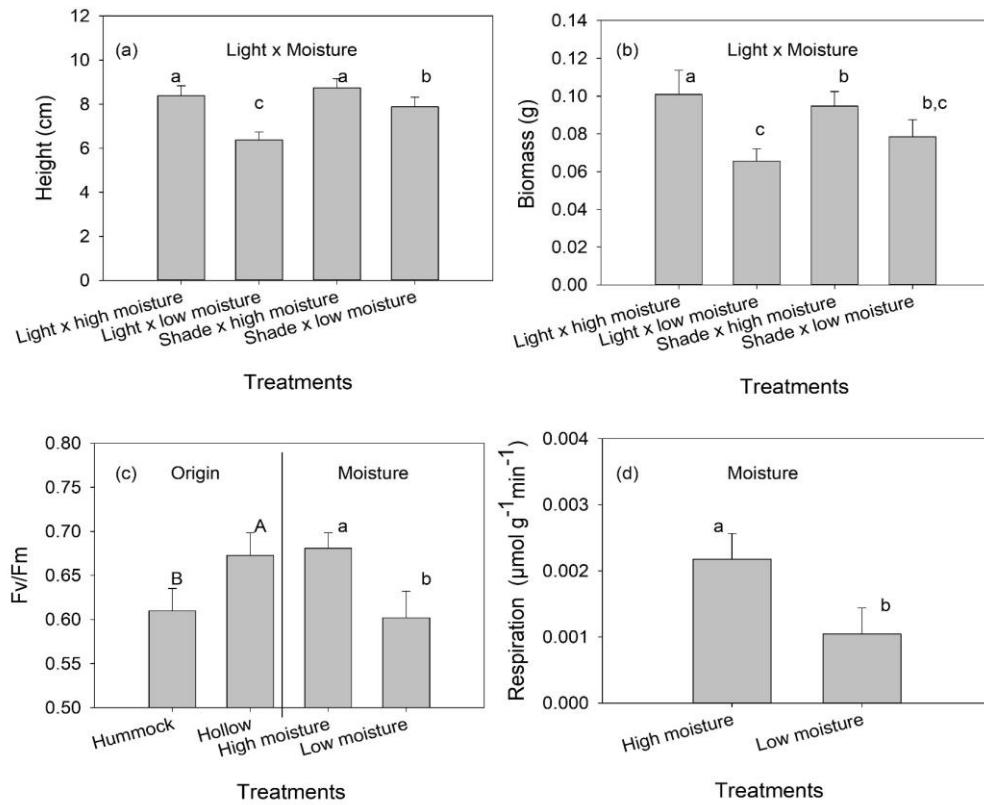
703

704

705

706

707


708

709

710

711

712

713

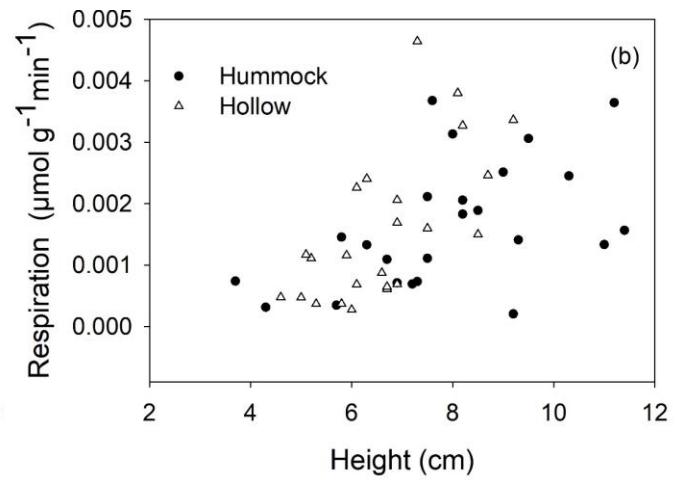
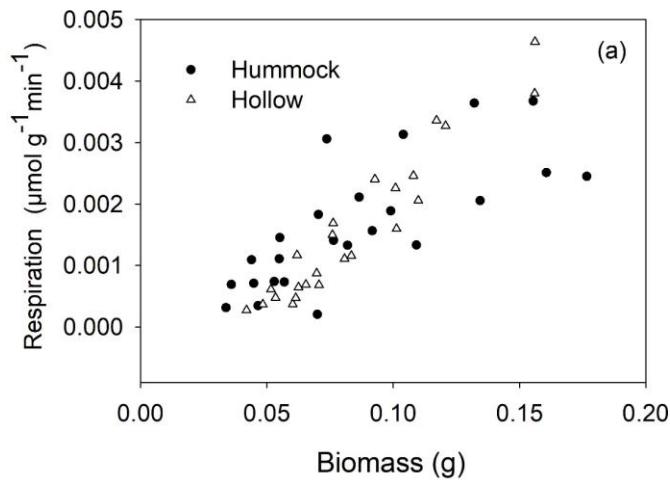
714 Fig. 3

715

716

717

718



719

720

721

722

723

