

1 **Hydrogenation of Pyrolysis Oil from Loblolly Pine Residue**

2 Ajoy Kanti Mondal^{1,6}, Chengrong Qin², Arthur J. Ragauskas^{3,4}, Yonghao Ni^{1,5,*},
3 Fang Huang^{1,2,*}

4 1. College of Material Engineering, Fujian Agriculture and Forestry University,
5 Fuzhou, Fujian Province, 350108, China

6 2. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control,
7 Nanning, Guangxi Zhuang Autonomous Region, 530004, China

8 3. Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon,
9 University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, USA

10 4. Joint Institute for Biological Science, Biosciences Division, Oak Ridge National
11 Laboratory, Oak Ridge, Tennessee 37831, USA

12 5. Department of Chemical Engineering, University of New Brunswick, Fredericton,
13 E3B 5A3, Canada

14 6. Institute of Fuel Research and Development, Bangladesh Council of Scientific and
15 Industrial Research, Dhaka-1205, Bangladesh

Ajoy Kanti Mondal, PhD Candidate; E-mail: ajoymondal325@yahoo.com

Yonghao Ni, professor, PhD tutor; research interest: science & engineering in

biobased materials; E-mail: yonghao@unb.ca

Fang Huang, professor, PhD tutor; research interest: biomass pretreatment, biomass energy and R&D of chemicals; E-mail: huangfanghg@gmail.com

16 **Abstract**

17 Loblolly pine residue prepared with and without zeolite ZSM-5 was pyrolyzed at 600°C
18 and the pyrolysis oil was hydrogenated using formic acid as a hydrogen source, in the
19 presence of a Ru/activated carbon catalyst. As indicated by the pyrolysis yield,
20 addition of the zeolite ZSM-5 increased the yield of light oil but decreased the yield
21 of heavy oil. The pyrolysis oils were analyzed by ^{13}C , ^{31}P , ^{19}F , and heteronuclear
22 single quantum coherence or heteronuclear single quantum correlation nuclear
23 magnetic resonance (HSQC-NMR), demonstrating that the zeolite ZSM-5 could
24 efficiently induce decarboxylation reactions and decreased the content of aliphatic
25 hydroxyl groups in the heavy oil by 57%. After hydrogenation of the bio-oil, the
26 aromatic carbon content decreased by 78%, with a significant increase in the aliphatic
27 carbon content.

28 **Keywords:** hydrogenation; pyrolysis oil; Loblolly pine residue; zeolite ZSM-5

29

30 **1 Introduction**

31 To cope with the increasing global energy consumption and limited petroleum
32 resources, new processes for the production of renewable fuels and chemicals must be
33 developed^[1-2]. One logical choice is to convert renewable biomass sources to fuels
34 that can be used to replace oil. Biomass fuels are not like fossil fuels as the former

35 derive carbon from the atmosphere during growth, which is then returned to the
36 atmosphere during combustion. This process maintains the carbon cycle with no net
37 rise in the atmospheric CO₂ levels^[3].

38 The pyrolysis of Loblolly pine residue to produce bio-oil is not only an efficient
39 means of utilizing forestry residue, but also provides a source of renewable fuel.
40 Some unexpected properties of bio-oil such as thermal instability, corrosiveness, cold
41 flow problems, high viscosity, and poor volatility are the main obstructions to its use
42 as a substitute fuel^[4]. Thus, bio-oils must be upgraded prior to use as replacement
43 fuels. The fuel properties of pyrolysis oil can be improved by hydrogenation using H₂
44 gas in the presence of a catalyst. However, H₂ gas is flammable upon contact with air,
45 its production and compression costs are very high, and storage and transportation are
46 difficult, all of which hinder the use of H₂ gas^[5]. Unearthing hydrogen donor
47 molecules as non-H₂-gas hydrogen sources to reduce various unsaturated compounds
48 and produce value-added chemicals is a major research challenge^[6-10]. Various
49 hydrogen donors such as sodium formate^[11], formic acid^[12], and alcohols^[13-14] have
50 been applied to the transfer-hydrogenation of compounds such as ketones^[12],
51 esters^[12], phenols^[15], and aldehydes^[11, 16].

52 Vispute et al^[17] applied a two-step hydrogenation process to pine wood pyrolysis oil
53 to produce gasoline-type compounds. They used hydrogen gas as the hydrogen source
54 and applied different catalysts, temperatures, and hydrogen pressures in different
55 steps. Wild et al^[18] studied the pyrolysis of five lignin samples, with subsequent
56 catalytic hydrogenation of the resulting pyrolysis oils, and achieved 15 wt% of
57 monomeric aromatics with minimum solid formation during the hydrogenation
58 process. Recently, Shafaghat et al^[5] examined the feasibility of different types of
59 primary and secondary alcohols as hydrogen donors to replace H₂ gas in the
60 hydrogenation of pyrolysis oil. They used Pd/C as a catalyst in the hydrogenation of
61 guaiacol and found that only the secondary alcohols can act as H-donors for guaiacol
62 transformation over Pd/C^[5]. Horáček et al^[19] used a β -zeolite-supported platinum
63 catalyst for the hydrogenation and deoxygenation of pyrolysis oil model compounds

64 such as, phenol, *o*-, *m*- and *p*-cresols, guaiacol, and eugenol and found that phenol is
65 suitable for hydrogenation and deoxygenation. They also reported that cresol and
66 methyl-substituted phenol were less reactive towards hydrogenation because the
67 methoxy group was proven to hamper hydrogenation and deoxygenation.

68 Our group successfully produced gasoline-range oil from the hydrogenation of
69 pyrolysis oil made from pine wood ethanol organosolv lignin. A two-step
70 hydrogenation process was conducted in presence of a Ru/C catalyst. It was found
71 that the ether bonds and methoxy groups of the heavy oil were broken in the first step
72 to produce simple aromatic molecules. The carbon yield was 35% and 33% for the 1st-
73 and 2nd-step hydrogenation processes^[20].

74 Based on prior study, herein we investigated the pyrolysis of Loblolly pine residue,
75 instead of Loblolly pine, to optimize the utilization of waste biomass. Formic acid
76 was used as a hydrogen donor for the hydrogenation of pyrolysis heavy oil, instead of
77 hydrogen gas, as the former is safe, easy to handle, and inexpensive. Pyrolysis was
78 performed in the presence and absence of a ZSM-5 zeolite catalyst, and the
79 subsequent pyrolysis heavy oil was analyzed by ¹³C, ³¹P, ¹⁹F, HSQC-NMR, and gel
80 permeation chromatography for determination of its molecular weight. The physical
81 properties of the pyrolysis oil were also examined, and the hydrogenated oil was
82 characterized by ¹H-NMR.

83 **2 Materials and methods**

84 **2.1 Materials**

85 All chemicals and reagents were purchased from VWR International or
86 Sigma-Aldrich (St. Louis, MO, USA) and used in this study without further
87 purification. The Loblolly pine residue sample was collected from a plantation in
88 Macon (Georgia, USA). The sample was milled through a Wiley mill to pass through
89 a 2-mm screen based on TAPPI method T257 cm-02. The zeolite ZSM-5 (CBV
90 3020E) was purchased from [Zeolyst International](#) (USA). Ru/activated carbon catalyst
91 (Product No. 7440-18-8) was purchased from Alfa Aesar (Ward Hill, USA).

92 **2.2 Preparation of pyrolysis sample**

93 The pyrolysis samples were prepared by mechanically stirring the pine residue and
94 zeolites in a 1:1 ratio (*w/w*). The zeolites were activated in the pyrolysis tube at 500°C
95 under nitrogen for 6 h. A blank pine sample (R) was also prepared for comparison. A
96 detailed description of the zeolites used in this study is given in Table 1.

97 **Table 1 Detailed description of zeolites used in this work**

Physical properties	CBV 3020E
SiO ₂ /Al ₂ O ₃ mole ratio	30
Framework	MFI
Code name	Z
Pore dimension	3
Pore size/nm	0.54

98 **2.3 Pyrolysis of Loblolly pine residue**

99 The pyrolysis experiments were performed in a quartz pyrolysis tube that was heated
100 in a split tube furnace^[21]. In general, 6.0 g of sample was used for pyrolysis. The
101 sample was kept in a quartz sample boat, which centered in a pre-heated pyrolysis
102 tube. During pyrolysis, a thermocouple was immersed in the powder sample to
103 measure the heating rate. The furnace was pre-heated at 600°C and the pyrolysis tube
104 was inserted into the furnace after flushing with N₂ gas at a flow rate of 500 mL/min.
105 After completion of pyrolysis, the pyrolysis tube was removed from the furnace and
106 allowed to cool down to room temperature under constant N₂ flow. The condensers
107 were then removed from the liquid N₂ and the pyrolysis products (oil and char) were
108 collected for subsequent chemical analysis. Generally, the liquid fraction comprised
109 heavy and light oil and formed two immiscible phases. The light oil was collected by
110 decantation of the upper portion and the reactor was washed thoroughly with acetone,
111 followed by evaporation under reduced pressure to recover the heavy oil. The char
112 yield and gas formation was calculated gravimetrically and from the mass difference,
113 respectively.

114 **2.4 Hydrogenation of pyrolysis oil**

115 The hydrogenation of pyrolysis heavy oil was carried out as reported^[22]. In brief, the
116 hydrogenation reaction was carried out in a 300 mL Parr 4520 Micro Stirred Reactor.

117 In this process, 150 mg of heavy oil, 50 mL of DI water, and 0.5 g of formic acid
118 were loaded into a glass liner with 15 mg of 5 wt% Ru/activated carbon catalyst.
119 Formic acid dissociates in the presence of DI water to exhibit acidic behavior. The
120 stirring rate in the reactor was adjusted to approximately 200 r/min. To remove the air
121 present in the reaction vessel, the reactor was purged five times with N₂ gas. The
122 reactor was heated to 250±3°C and the temperature was maintained for 4 h; the
123 pressure in the vessel was ~10 MPa. Once the reaction time was reached, the reactor
124 was cooled in an ice-water bath to release the pressure in the vessel. After the
125 hydrogenation process, a 0.45-μm syringe filter was used to remove the catalyst from
126 the heavy oil solution. The aqueous phase of the hydrogenation products (50 mL) was
127 extracted with 2.0 mL CDCl₃. The CDCl₃ phase was dried with MgSO₄ and filtered
128 through a 0.45-μm syringe filter. The relaxation reagent chromium(III)
129 acetylacetone (0.01 mol/L) was added to the CDCl₃ filtrate to provide complete
130 relaxation of all nuclei, and the CDCl₃ solution was used as the NMR sample for the
131 hydrogenation product.

132 **2.5 Characterization of pyrolysis oil by gel permeation chromatography (GPC)**

133 The weight average molecular weight (M_w) of the heavy oils after each pyrolysis step
134 was determined by GPC according to literature methods^[9]. Before the GPC analysis, a
135 solution of the sample was prepared by dissolving the oil in THF (1 mg/mL) and
136 filtering the solution through a syringe filter (0.45 μm). The sample solution was then
137 injected into a Polymer Standards Service (PSS) Security 1200 system with an
138 Agilent High-Performance Liquid Chromatography (HPLC) vacuum degasser,
139 isocratic pump, refractive index (RI) detector, and UV detector (270 nm). Separation
140 was carried out with four different Waters Styragel columns (HR0.5, HR2, HR4,
141 HR6); tetrahydrofuran (THF) was used as the mobile phase (1.0 mL/min) with an
142 injection volume of 30 μL. Data analysis was performed with PSS WinGPC Unity
143 software. A calibration curve was constructed and the molecular weight (M_w) was
144 calibrated using this curve. The calibration curve was fitted to a third-order
145 polynomial equation and the retention volumes obtained from a series of narrow

146 molecular weight distribution polystyrene standards (i.e., 7.21×10^3 , 4.43×10^3 ,
147 1.39×10^3 , 5.80×10^2 Da), dioctyl phthalate ($M_w=390$ g/mol),
148 2,29-dihydroxy-4,49-dimethoxyl-benzophenone ($M_w=274$ g/mol),
149 2-phenylhydroquinone ($M_w=186$ g/mol), phenol ($M_w=94$ g/mol), and acetone ($M_w=58$
150 g/mol). The R^2 value for the curve fit was 0.998.

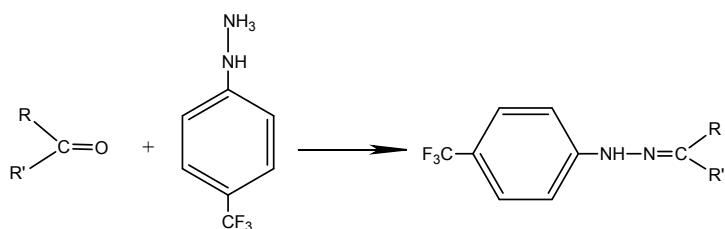
151 **2.6 Characterization of pyrolysis oil by NMR**

152 *2.6.1 Quantitative ^{31}P -NMR*

153 Before the quantitative ^{31}P -NMR analysis, the samples were prepared in the following
154 manner: 10.0 mg of heavy oil was derivatized *in situ* with
155 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) in a solution of (1.6:1
156 *V/V*) pyridine/CDCl₃, chromium acetylacetone (relaxation agent), and
157 endo-*N*-hydroxy-5-norbornene-2,3-dicarboximide (NHND, internal standard).
158 ^{31}P -NMR spectral data were acquired at room temperature by applying an
159 inverse-gated decoupling pulse sequence with a pulse angle of 90° and a 25 s pulse
160 cycle; 128 scans were used and the LB was 4.0 Hz.

161 *2.6.2 Quantitative ^{13}C -NMR*

162 A Bruker Avance/DMX 400 MHz NMR spectrometer was used to perform all NMR
163 spectral studies. Quantitative ^{13}C -NMR was performed by dissolving 100.0 mg of
164 heavy oil in 450 μ L of dimethyl sulfoxide-*d*₆ (DMSO-*d*₆) and applying a
165 reverse-gated decoupling pulse sequence with a 90° pulse angle, a pulse delay of 20 s,
166 and 6000 scans, at room temperature, with a line-broadening (LB) of 5.0 Hz.
167 Chromium acetylacetone (1 mg/mL, a relaxation reagent) was added to the solutions
168 to reduce the measurement time.


169 *2.6.3 HSQC-NMR*

170 HSQC-NMR analysis was performed with the same sample preparation used for the
171 ^{13}C -NMR analysis. The HSQC-NMR data were acquired by applying a standard
172 Bruker pulse sequence “hsqcetgpsi.2” with a pulse angle of 90°, 1.5 s pulse cycle,
173 0.11 s acquisition time, $^1J_{C-H}$ of 145 Hz, 48 scans, and acquisition of 1024 data points
174 (for 1H), and 256 increments (for ^{13}C). The pulse widths and spectral widths of 1H and

175 ^{13}C were $\text{p1}=11.30\ \mu\text{s}$, $\text{p3}=10.00\ \mu\text{s}$, and $13.02\ \text{ppm}$ and $220.00\ \text{ppm}$, respectively.
176 The chemical shift was calibrated relative to the central solvent peak. MestReNova
177 v7.1.0 software was used with a default processing template and automatic phase and
178 baseline correction; HSQC-NMR data processing and plots were implemented using
179 the same software.

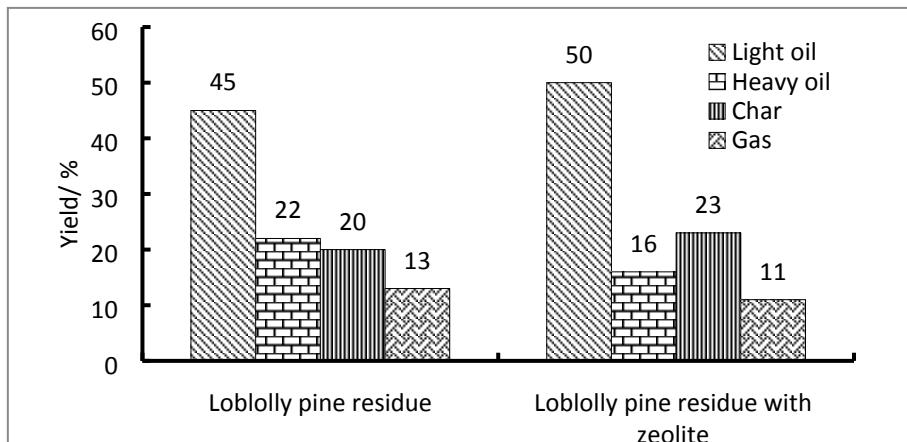
180 2.6.4 $^{19}\text{F-NMR}$

181 Carbonyl-containing compounds, i.e., pyrolysis oil, can react with
182 trifluoromethylphenylhydrazine as follows (Scheme 1):

185 The derivatives were directly analyzed by $^{19}\text{F-NMR}$ spectroscopy. The $^{19}\text{F-NMR}$ was
186 used to quantitatively analyze the carbonyl content in the aldehyde and ketone
187 compounds within the pyrolysis oil. The pyrolysis oil was derivatized as follows: the
188 pyrolysis oil (~60 mg) was dissolved in 500 μL DMF; 1 mL of 50/50 DMF/water
189 (V/V) containing 110 mg of 4-trifluoromethylphenylhydrazine was then added. To
190 complete the reaction, the mixture was kept in the dark with continuous stirring at
191 room temperature for 24 h. Thereafter, the derivatized pyrolysis oil sample was
192 precipitated by adding ~20 mL dilute hydrochloric acid (pH value=2.0) and then
193 frozen. Upon melting of the frozen sample at room temperature, the aqueous layer
194 was discarded and the precipitate was vacuum-dried. The dried precipitate was
195 dissolved in 450 μL of $\text{DMSO-}d_6$ containing 3-trifluoromethoxybenzoic acid (10 mg
196 /mL, Lancaster Synthesis Incorporated) as an internal standard for the $^{19}\text{F-NMR}$
197 analysis. A 90° pulse without proton decoupling, 10 s pulse delay, and ~400
198 acquisitions were used for the quantitative $^{19}\text{F-NMR}$ analysis. Integration was
199 accomplished by using MestReNova v7.1.0 software.

200 2.6.5 *Quantitative ¹H-NMR*

201 The quantitative ¹H-NMR data were acquired with 16 transients and 1 s pulse delay.
202 The sampling procedure used for ¹H-NMR was the same as that used for the
203 quantitative ¹³C-NMR.


204 2.7 Determination of physical properties of bio-oils

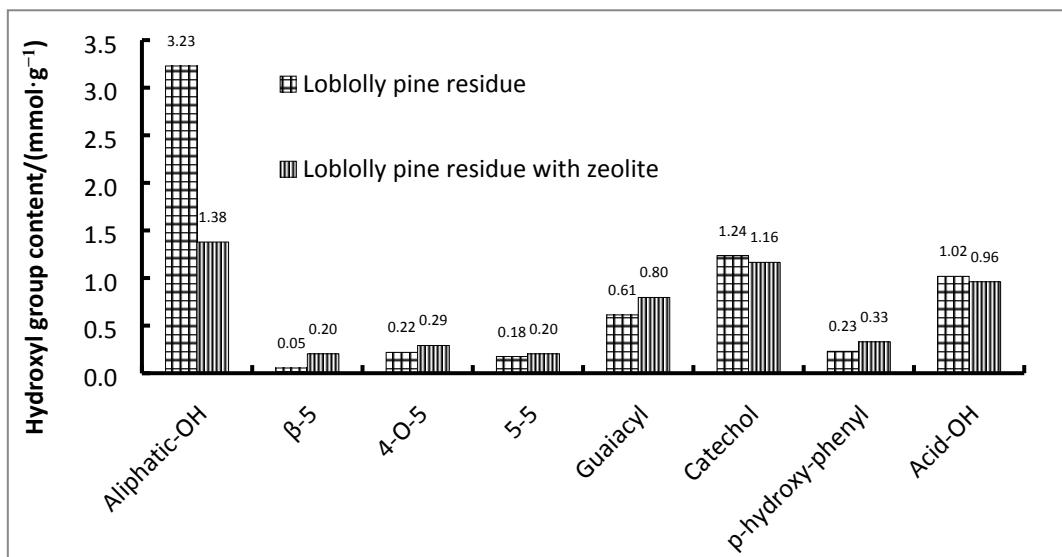
205 The pour-points and cloud-points of the pyrolysis heavy oils were measured with a
206 70Xi cloud-, pour-, and freeze-point lab analyzer manufactured by Phase Technology.
207 All the tests were performed with the manufacturer's default methods and the data
208 were processed by the analyzer. The cetane number of the pyrolysis oil was measured
209 with a ZX-101XL portable octane/cetane analyzer (Zeltex, Inc., USA). The pH value
210 of the pyrolysis oil was determined with a pH meter (Mettler Toledo FE28-Meter,
211 Zurich, Switzerland). The specific gravity of the liquid pyrolysis oil was determined
212 by pycnometry according to ASTM standards^[23]. C, H, O, and N analysis was
213 performed with a PerkinElmer Optima 7300 DV inductively coupled plasma-optical
214 emission spectrometer (ICP-OES). The flash-point of the bio-oil was determined by
215 the small-scale closed cup method according to ASTM D3828^[24]. The viscosity of the
216 bio-oil was measured with a viscometer (Brookfield, DV-3TTJC, Middleboro, USA).
217 The higher heating value (HHV) of the bio-oil was determined by using an
218 oxygen-bomb colorimeter (Parr 6400, USA) based on a literature method^[25].

219 **3 Results and discussion**

220 **3.1 Pyrolysis yield**

221 The yields from the zeolite-assisted pyrolysis of Loblolly pine residue are
222 summarized in Fig.1. The results show that addition of the zeolite increased the
223 production of light oil and char, but decreased the yield of heavy oil and gas. This is
224 because the zeolite induces secondary reaction of the heavy oil to generate light oil
225 and char^[26]. Thus, the production of heavy oil decreased and the fraction of light oil
226 and gas increased after using the zeolite. A similar observation was reported^[27] for the
227 catalytic pyrolysis of pinewood sawdust.

228

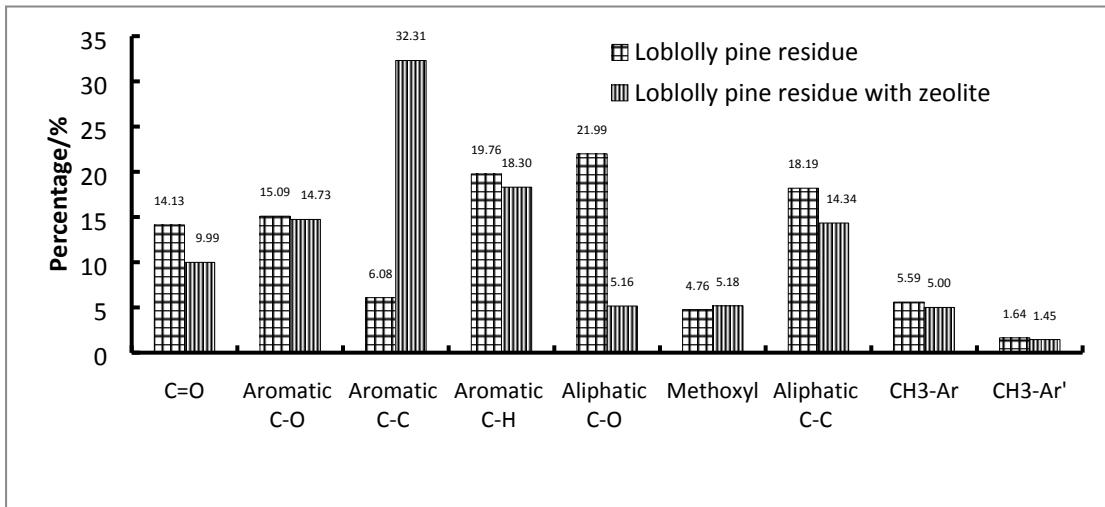

229 Fig.1 Yields (wt%) of light oil, heavy oil, char (excludes the weight of zeolite), and
 230 gas for the pyrolysis of Loblolly pine residue (R) with 1.0/1.0 ($W_{\text{additive}}/W_{\text{lignin}}$) of
 231 zeolite

232 **3.2 Quantitative ^{31}P -NMR analysis of pyrolysis oil**

233 Quantitative ^{31}P -NMR is one of the best processes for assay of the hydroxyl
 234 functional groups in heavy oils^[28-29]. The integrated ^{31}P -NMR data for the heavy oils
 235 are summarized in Fig.2. As shown in Fig.2, the zeolite could decrease the aliphatic
 236 hydroxyl group content of the heavy oils by 57%. The results show that the pyrolysis
 237 oils formed by the zeolite-assisted process contained very little water. After use of the
 238 zeolites, the carboxylic acid content also decreased slightly. This result indicates that
 239 the zeolites could induce decarboxylation reactions to a small extent.

240

241

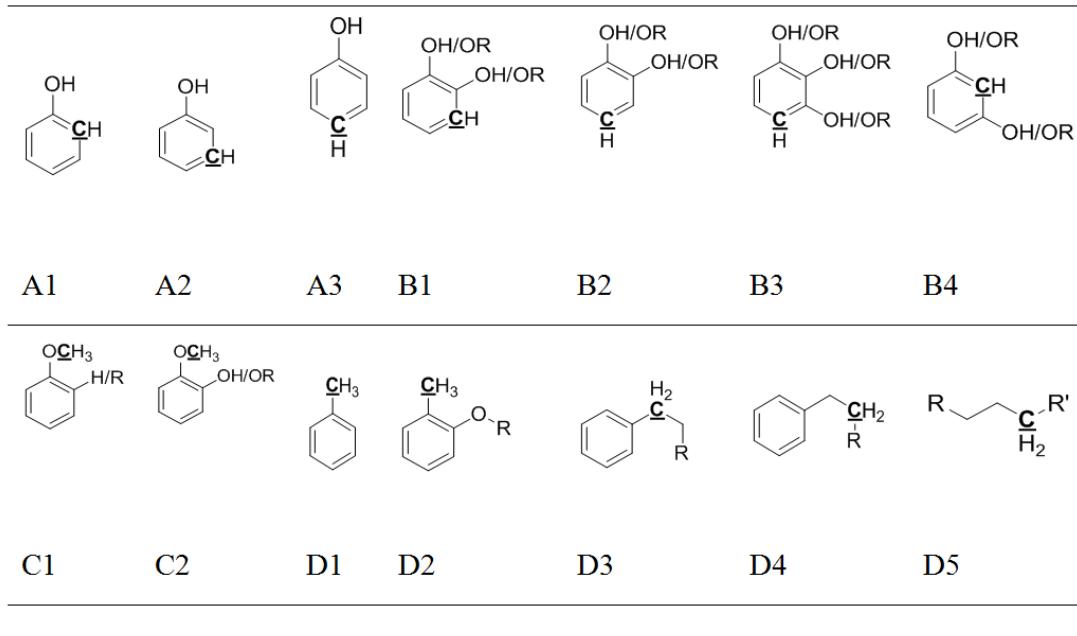


242

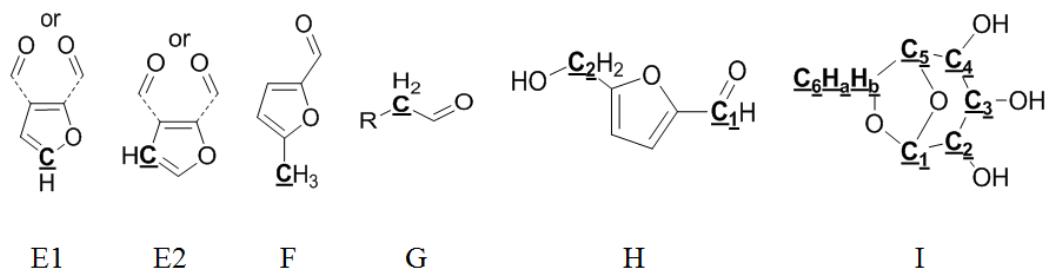
243 **Fig.2** Hydroxyl group content of different heavy oils produced by pyrolysis of
 244 Loblolly pine residue

245 **3.3 Quantitative ^{13}C -NMR analysis of pyrolysis oil**

246 To fully characterize the functional groups in the heavy oils, detailed analysis was
 247 accomplished by using ^{13}C -NMR. Fig.3 shows the quantitative integrated ^{13}C -NMR
 248 data for the pyrolysis heavy oil. The content of carbonyl groups decreased by 29%,
 249 indicative of lower acidity of the pine residue pyrolysis oil. Another trend observed
 250 from ^{13}C -NMR data is that the pyrolysis oils from zeolite-assisted process contained
 251 remarkably more aromatic C—C bonds compared to the pyrolysis oils from the
 252 non-assisted zeolite process. In addition, the content of aliphatic C—C bonds in the
 253 bio-oils from zeolite-assisted pyrolysis was lower than that in the bio-oil from
 254 non-zeolite assisted pyrolysis, which indicates that the zeolite could improve cleavage
 255 of the aliphatic C—C bonds. Interestingly, the percentage of aromatic C—C bonds in
 256 the oils from the zeolite-assisted process was much higher than the aliphatic C—C
 257 bonds, which indicates that the increase in the aromatic C—C bonds arises primarily
 258 from polyaromatic hydrocarbons or biphenyl structures. Addition of the zeolite
 259 diminishes the number of carbonyl groups in the bio-oils, but increases the number of
 260 aromatic C—C bonds.

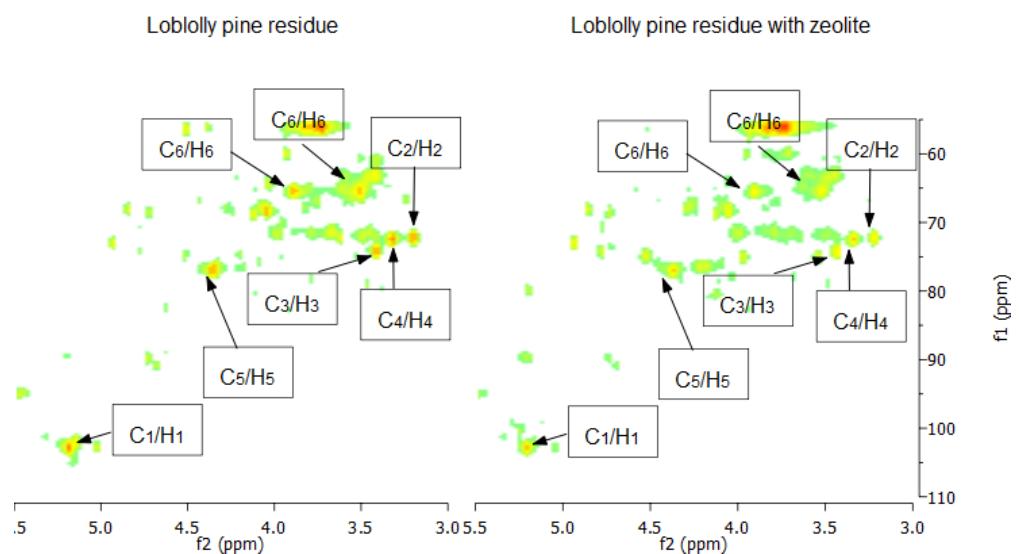

261

262 **Fig.3** Quantitative ¹³C-NMR integration data for heavy oils produced from Loblolly
263 pine residue (the results are shown as the percentage of total carbon)


264 **3.4** HSQC-NMR analysis of pyrolysis oil

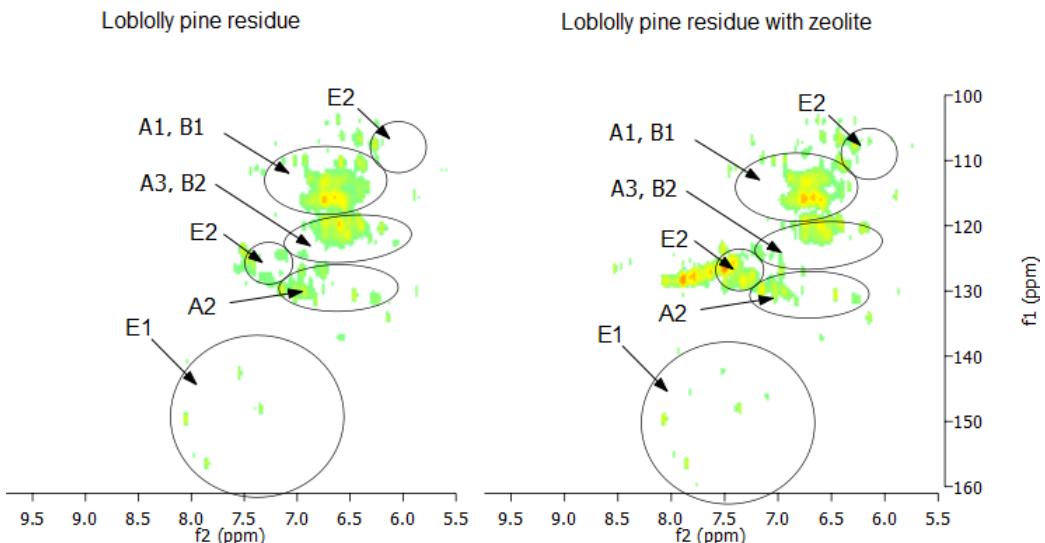
265 HSQC-NMR (2D NMR) is a modern technique that can be applied to the
266 semi-quantitative analysis of more than thirty different C—H bonds^[30-32], and was
267 applied herein to the analysis of the different C—H bonds in pyrolysis oil. Analysis of
268 the different C—H bonds in pyrolysis oil using HSQC-NMR is a well-studied
269 technique, and some limitations of ¹³C-NMR can be overcome using this method. The
270 Loblolly pine residue contains significant amount of lignin and cellulose^[33], therefore,
271 it is necessary to understand the pyrolysis compounds from these wood fractions.
272 Based on the ¹H- and ¹³C-NMR chemical shifts of the compounds in the pyrolysis
273 oils^[30], the detailed HSQC-NMR assignments for the compounds in the pyrolysis oil
274 produced from Loblolly pine residue Kraft lignin and cellulose are summarized in
275 Fig.4 and Fig.5, respectively. The HSQC-NMR spectra of the pyrolysis oils formed in
276 the presence of the zeolites are shown in Fig.6~ Fig.9. Levoglucosan (Compound I in
277 Fig. 5) is one of the major components present in the Loblolly pine residue pyrolysis
278 oil, and was mainly derived from the pyrolysis of cellulose and hemicellulose in the
279 Loblolly pine residue. Fig.6 shows the HSQC-NMR spectra and the assignments of
280 each carbon for levoglucosan in the Loblolly pine residue pyrolysis oils. The content
281 of levoglucosan decreased after zeolite-assisted pyrolysis. These results indicate that

282 the zeolite could significantly promote the decomposition of cellulose and
 283 hemicellulose during the pyrolysis process, which is consistent with previous
 284 reports^[22]. Fig.7 shows the signals of the aromatic C—H bonds in the HSQC-NMR
 285 spectra of the Loblolly pine residue pyrolysis oils. The data indicate that the major
 286 aromatic components in the Loblolly pine residue pyrolysis oils contained A1, A2,
 287 A3, B1, and B2 types (shown in Fig.4) of aromatic C—H bonds, similar to lignin
 288 pyrolysis oils. In addition, the content of E2 and B1 type (shown in Fig.4 and Fig.5)
 289 aromatic C—H bonds decreased significantly during zeolite-assisted pyrolysis, which
 290 is mainly attributed to the decomposition of lignin^[21]. Fig.8 indicates that the
 291 methoxyl groups (compounds C1 and C2 in Fig.4) increased in the zeolite-upgraded
 292 samples, which is consistent with the results shown in Fig.3. Fig.9 shows that the
 293 content of aliphatic C—H bonds was not significantly different in the samples from
 294 the zeolite-assisted and non-zeolite-assisted pyrolysis processes.


295
 296 **Fig.4** Detailed structures and assignments from HSQC-NMR analysis of pyrolysis oil
 297 produced from Loblolly pine residue Kraft lignin

298

299 Fig.5 Detailed structures and assignments from HSQC-NMR analysis of pyrolysis oil
300 produced from Loblolly pine residue cellulose
301


302

303

304 Fig.6 HSQC-NMR spectra and assignments of each carbon in levoglucosan in
pyrolysis oils

305

306

Fig.7 Aromatic C—H signals in HSQC-NMR spectra of pyrolysis oils

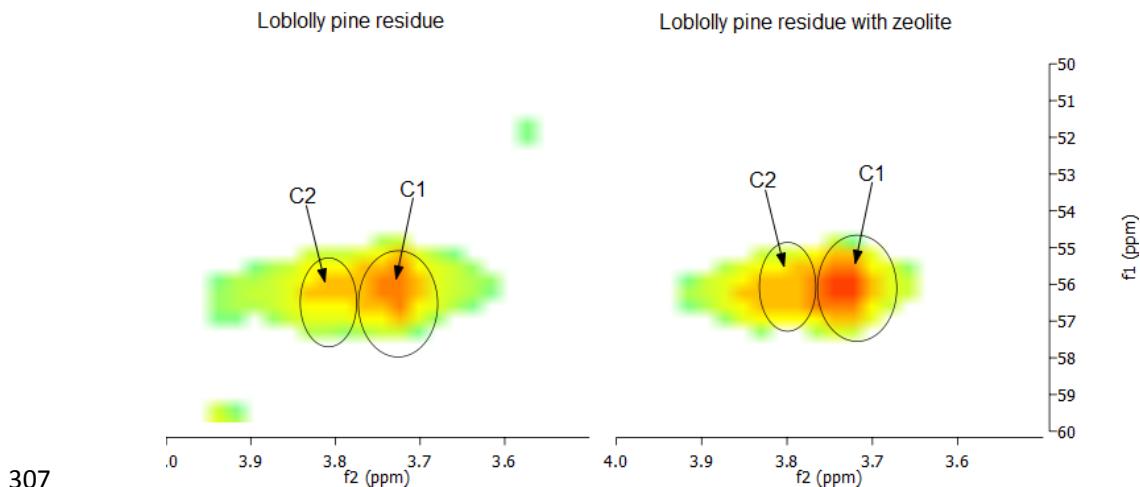


Fig.8 Methoxyl signals in HSQC-NMR spectra of pyrolysis oils

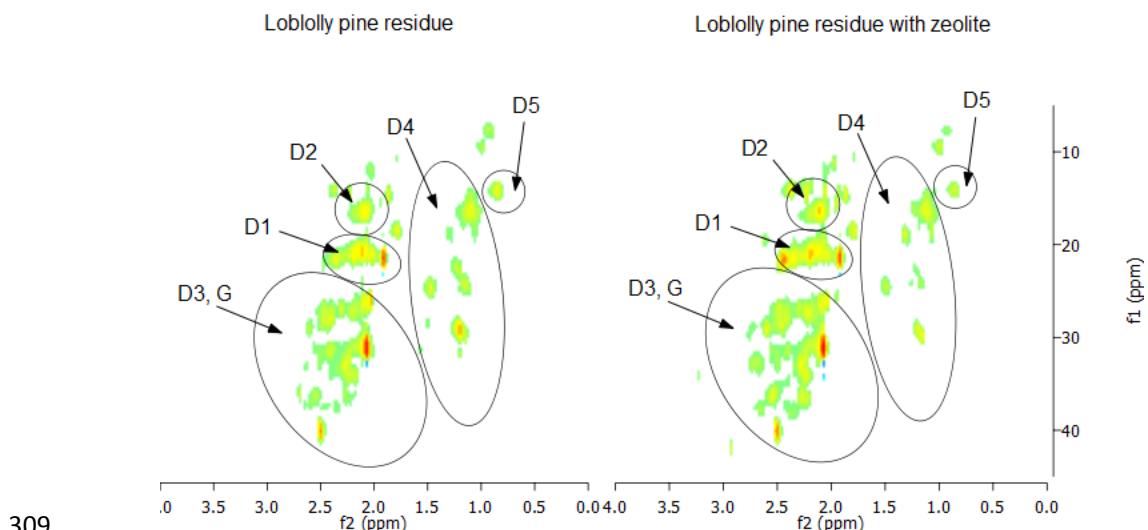
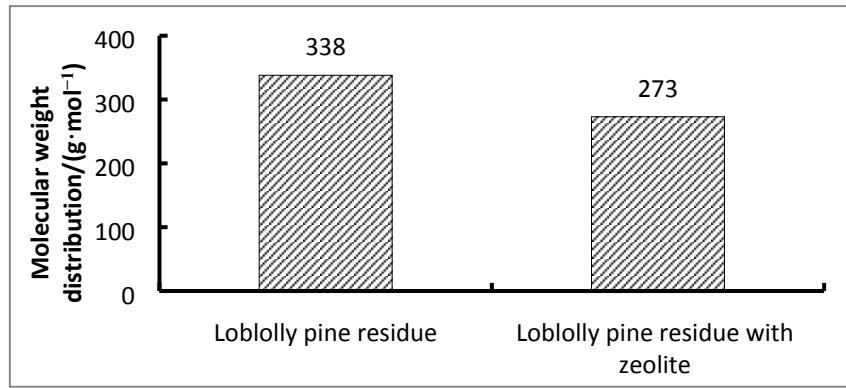



Fig.9 Aliphatic C—H signals in HSQC-NMR spectra of pyrolysis oils

311 **3.5 Molecular weight of pyrolysis oil**

312 The average molecular weights (M_w) of the heavy oils produced by pyrolysis of
 313 Loblolly pine residue with the zeolites at 600°C are summarized in Fig.10. Addition
 314 of the zeolite decreased the M_w of the pyrolysis oil by 19%. This indicates that the
 315 zeolite could induce catalytic degradation and produce lower molecular weight bio-oil.
 316 A similar result was reportedly achieved by using ZSM-5 zeolite for catalytic
 317 pyrolysis^[34].

318

319 Fig. 10 Molecular weight distribution (M_w) of heavy oils produced by pyrolysis of
 320 Loblolly pine residue

321 **3.6** ^{19}F -NMR analysis of pyrolysis oil

322 Table 2 shows the ^{19}F -NMR analysis of the carbonyl groups in the pyrolysis oils.
 323 Addition of the zeolite decreased the carbonyl group content by 11% and the quinone
 324 content by 25%. This tendency is in good agreement with the ^{13}C -NMR data (Fig.3).

325 **Table 2** ^{19}F -NMR analysis of carbonyl groups in the pyrolysis oils

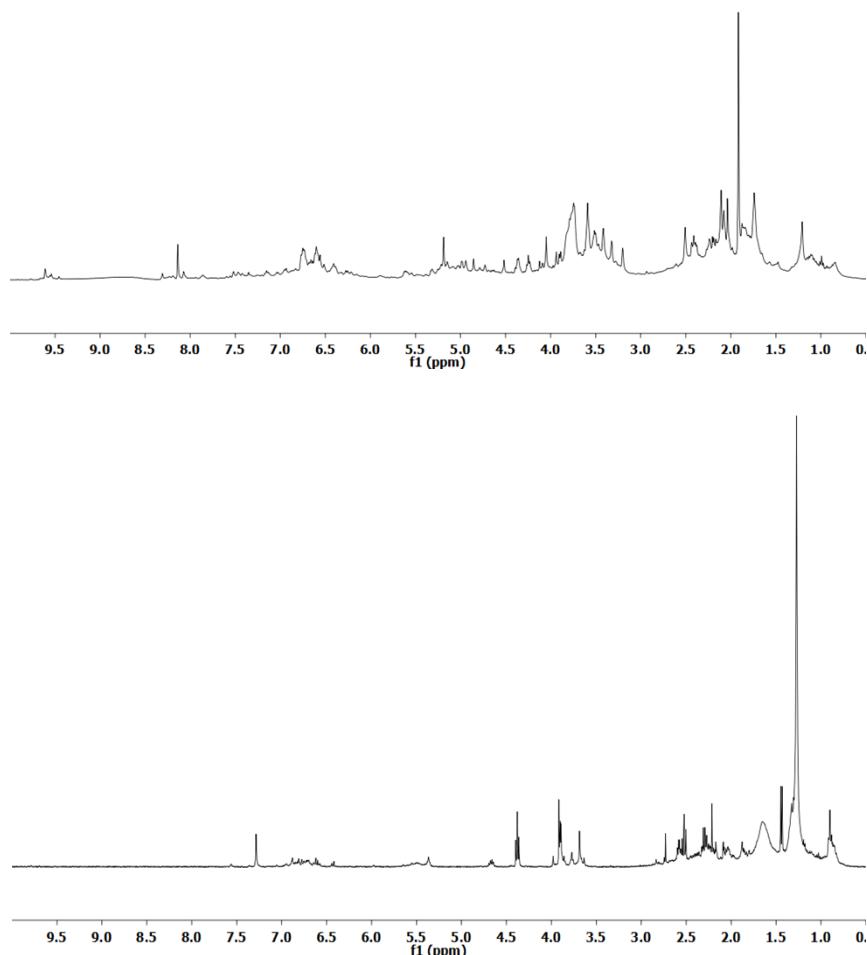
Samples	^{19}F -NMR analysis	
	Carbonyl (aldehyde and ketone) (mmol·g ⁻¹)	Quinone (mmol·g ⁻¹)
Loblolly pine residue pyrolysis oil	4.31	0.83
Zeolite-assisted Loblolly pine residue pyrolysis oil	3.85	0.62

326

327 **3.7** Physical properties of pyrolysis oil

328 The physical properties of the pyrolysis oil produced from Loblolly pine residue are
 329 summarized in Table 3. The pour point of the pyrolysis oil from the zeolite-assisted
 330 process was lower than that of the pyrolysis oil from the non-zeolite-assisted process.
 331 This is because the zeolite could enhance the decomposition of carbonyl groups, as
 332 shown in Fig.3. It should be noted that the cloud points for all types of heavy oils
 333 were undetectable by this cold flow property analyzer. A possible reason is the dark
 334 color of the bio-oil, which makes the observation difficult^[35]. The cetane numbers
 335 were lower than the bio-oil range due to the significant content of aromatic
 336 compounds^[36] in the pyrolysis oil. This value is expected to fall in the bio-oil range

337 after refining the pyrolysis oil. In contrast, the cetane number increased slightly after
338 using the zeolite. The zeolite could enhance the degradation of lignin, leading to a
339 relatively higher cetane number for the bio-oils compared with that obtained after
340 non-zeolite-assisted pyrolysis oil. The other properties of the pyrolysis oil with
341 ZSM-5 were similar to those achieved with non-zeolite-assisted pyrolysis oil.

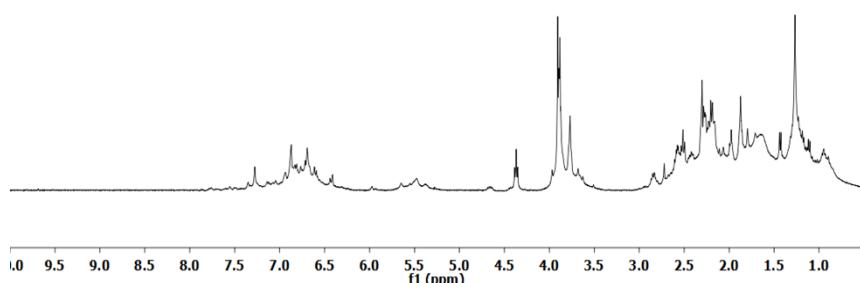
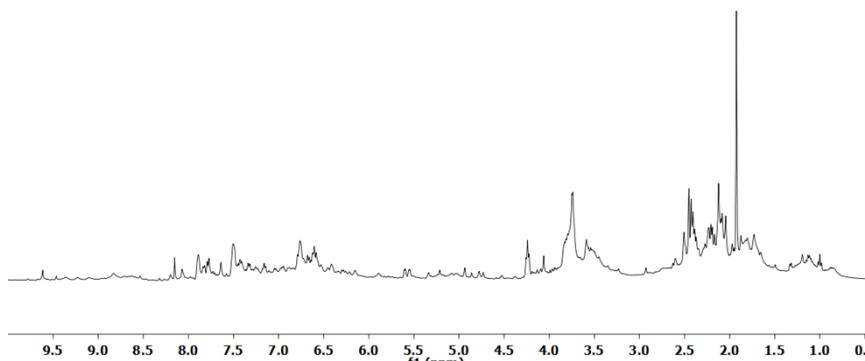

342 **Table 3 Physical properties of pyrolysis oils and bio-oil**

Physical properties	Pyrolysis oil without zeolite	Pyrolysis oil with zeolite	Bio-oil ^[35, 37-39]
Pour point/°C	-12.0	-22.5	(-36)~(-9)
Cetane number	14.3	16.9	49~62
pH value	2.5	2.4	2.0~4.0
Relative density	1.2	1.2	1.1~1.3
C/%	54.3	55.8	54~58
H/%	5.6	6.1	5.5~7.0
O/%	35.2	35.6	35.0~40.0
N/%	0.1	0.1	0.0~0.2
Flash point/°C	80	78	50~100
Viscosity (at 50°C)/(mPa•S)	105	95	40~100
HHV/(MJ·kg ⁻¹)	16.2	16.8	16~19

343 **3.8 Analysis of hydrogenated pyrolysis oil**

344 Fig.11 shows the ¹H-NMR spectra of the Loblolly pine residue pyrolysis oil and
345 hydrogenated Loblolly pine residue pyrolysis oil. The integration results are shown in
346 Table 4. The hydrogenation process eliminated 78% of the aromatic protons, and 74%
347 of the protons was derived from the aliphatic protons with no oxygen attached to the
348 α -carbon. This indicates that the majority of carbon in the hydrogenated pyrolysis oils
349 was aliphatic carbons. In addition, the hydrogenated pyrolysis oils have a relatively
350 low oxygen content, and thus represent a potential resource for bio-gasoline. Fig.12
351 shows the ¹H-NMR spectra of the pyrolysis oil from ZSM-5-assisted treatment of
352 Loblolly pine residue and hydrogenated pyrolysis oil from ZSM-5-assisted treatment
353 of Loblolly pine residue. The integration results are shown in Table 5. The

354 hydrogenation process significantly increased the content of aliphatic carbons and
355 decreased the content of aromatic carbons.



356
357 Fig.11 ^1H -NMR spectra of Loblolly pine residue pyrolysis oil and hydrogenated
Loblolly pine residue pyrolysis oil (from top to bottom)

360 Table 4 ^1H -NMR chemical shift assignment ranges and functional group
361 contributions for the Loblolly pine residue pyrolysis oils

Types of protons	Range/ppm ^a	Loblolly pine residue pyrolysis oil	Hydrogenated Loblolly pine residue pyrolysis oil
$-\text{CHO}$, $-\text{COOH}$	10~9.6	0.53 ^b	0.04
ArH , $\text{HC}=\text{C}$	8.2~6.0	13.27	2.80
$-\text{CH}_n-\text{O}-$, $\text{CH}_n-\text{O}-$	6.0~3.0	38.60	10.06
$-\text{CH}_3$, $-\text{CH}_n-$	3.0~0.5	47.60	87.10

362 ^aAssignment ranges are on the basis of literature reports^[29, 40].

363 ^bResults are shown as percentage hydrogen.

368 **Fig.12** ^1H -NMR spectra of pyrolysis oil from zeolite-assisted treatment of Loblolly
 369 pine residue and hydrogenated pyrolysis oil from zeolite-assisted treatment of
 370 Loblolly pine residue (from top to bottom)

371 **Table 5** ^1H -NMR chemical shift assignment ranges and functional group
 372 contributions for the zeolite-assisted pyrolysis oils

Types of protons	Range/ppm	Zeolite-assisted Loblolly pine residue pyrolysis oil	Zeolite-assisted hydrogenated Loblolly pine pyrolysis oil
$-\text{CHO}$, $-\text{COOH}$	10~9.6	0.31	0
ArH , $\text{HC}=\text{C}$	8.2~6.0	24.17	13.13
$-\text{CH}_n-\text{O}-$, $\text{CH}_n-\text{O}-$	6.0~3.0	25.94	15.25
$-\text{CH}_3$, $-\text{CH}_n-$	3.0~0.5	49.58	71.62

373 **4 Conclusions**

374 The pyrolysis of Loblolly pine residue was carried out in the presence of ZSM-5
 375 zeolite, and the pyrolysis oil was hydrogenated using formic acid as a source of
 376 hydrogen. NMR analysis proved that the zeolite effectively induced decarboxylation
 377 reactions and decreased the content of aliphatic hydroxyl groups in the heavy oil by
 378 57%. The zeolite decreased the molecular weight of the pyrolysis oil by 19%. After
 379 hydrogenation, the aromatic carbon content decreased by 78%, whilst the aliphatic

380 carbon content increased significantly.

381 **Declaration of interests:** None

382 **Acknowledgements**

383 This work was supported by the US Department of Energy (DOE) (project:
384 DE-EE0003144), the National Key Research and Development Program of China (no.
385 2017YFB0307900), and the Foundation (no. KF201713) of Guangxi Key Laboratory
386 of Clean Pulp & Papermaking and Pollution Control (China).

387 **References**

388 [1] Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C
389 A, et al. The path forward for biofuels and biomaterials. *science*, 2006,
390 311(5760): 484-489.

391 [2] Demirbas M F. Biorefineries for biofuel upgrading: a critical review. *Applied
392 Energy*, 2009, 86: S151-S61.

393 [3] Xiu S, Shahbazi A. Bio-oil production and upgrading research: A review.
394 *Renewable and Sustainable Energy Reviews*, 2012, 16(7): 4406-4414.

395 [4] Jacobson K, Maheria K C, Dalai A K. Bio-oil valorization: a review.
396 *Renewable and Sustainable Energy Reviews*, 2013, 23: 91-106.

397 [5] Shafaghat H, Lee I G, Jae J, Jung S C, Park Y K. Pd/C catalyzed transfer
398 hydrogenation of pyrolysis oil using 2-propanol as hydrogen source. *Chemical
399 Engineering Journal*, 2019, 377: 119986.

400 [6] Wei Y, Wu X, Chao W, Xiao J. Transfer hydrogenation in aqueous media.
401 *Catalysis Today*, 2015, 247(7): 104-116.

402 [7] Denizaltı S, Mercan D, Şen B, Gökçe A G, Çetinkaya B. Asymmetric transfer
403 hydrogenation reaction in water: Comparison of chiral proline amide/amine
404 ruthenium(II) complexes. *Journal of Organometallic Chemistry*, 2015,
405 779(25): 62-66.

406 [8] Takao I, A John B. Asymmetric transfer hydrogenation of ketones with
407 bifunctional transition metal-based molecular catalysts. *Accounts of Chemical*

408 *Research*, 2007, 40(12): 1300-1308.

409 [9] Samec J S M, Jan E B C, Andersson P G, Peter B. Mechanistic aspects of
410 transition metal-catalyzed hydrogen transfer reactions. *Chemical Society
411 Reviews*, 2006, 35(3): 237-248.

412 [10] Clapham S E, Hadzovic A, Morris R H. Mechanisms of the H₂-hydrogenation
413 and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride
414 complexes. *Coordination Chemistry Reviews*, 2004, 248(21): 2201-2237.

415 [11] Liu R, Yu W, Cheng H, Yu Y, Zhao F, Arai M. Reduction of citral in water
416 under typical transfer hydrogenation conditions—Reaction mechanisms with
417 evolution of and hydrogenation by molecular hydrogen. *Journal of Molecular
418 Catalysis A Chemical*, 2013, 366(1): 315-320.

419 [12] Vilches-Herrera M, Werkmeister S, Junge K, Börner A, Beller M. Selective
420 catalytic transfer hydrogenation of nitriles to primary amines using Pd/C.
421 *Catalysis Science & Technology*, 2014, 4(3): 629-632.

422 [13] Elie M R, Clausen C A, Geiger C L. Reduction of benzo[α]pyrene with
423 acid-activated magnesium metal in ethanol: a possible application for
424 environmental remediation. *Journal of Hazardous Materials*, 2012, 203(4):
425 77-85.

426 [14] Farhadi S, Kazem M, Siadatnasab F. NiO nanoparticles prepared via thermal
427 decomposition of the bis(dimethylglyoximato)nickel(II) complex: A novel
428 reusable heterogeneous catalyst for fast and efficient microwave-assisted
429 reduction of nitroarenes with ethanol. *Polyhedron*, 2011, 30(4): 606-613.

430 [15] Shafaghat H, Rezaei P S, Wan M A W D. Using decalin and tetralin as
431 hydrogen source for transfer hydrogenation of renewable lignin-derived
432 phenolics over activated carbon supported Pd and Pt catalysts. *Journal of the
433 Taiwan Institute of Chemical Engineers*, 2016, 65: 91-100.

434 [16] Gao Y, Jaenicke S, Chuah G K. Highly efficient transfer hydrogenation of
435 aldehydes and ketones using potassium formate over AlO(OH)-entrapped
436 ruthenium catalysts. *Applied Catalysis A General*, 2014, 484(10): 51-58.

437 [17] Vispute T P, Huiyan Z, Aimaro S, Rui X, Huber G W. Renewable chemical
438 commodity feedstocks from integrated catalytic processing of pyrolysis oils.
439 *Science*, 2010, 330(6008): 1222-1227.

440 [18] Wild P J D, Huijgen W J J, Kloekhorst A, Chowdari R K, Heeres H J.
441 Biobased alkylphenols from lignins via a two-step pyrolysis –
442 Hydrodeoxygenation approach. *Bioresource Technology*, 2017, 229: 160-168.

443 [19] Horáček J, Št’ávová G, Kelbichová V, Kubička D. Zeolite-Beta-supported
444 platinum catalysts for hydrogenation/hydrodeoxygenation of pyrolysis oil
445 model compounds. *Catalysis Today*, 2013, 204: 38-45.

446 [20] Ben H, Wei M, Deng Y, Ragauskas A J. Production of renewable gasoline
447 from aqueous phase hydrogenation of lignin pyrolysis oil. *Fuel*, 2013, 103(1):
448 1148-1153.

449 [21] Ben H, Ragauskas A J. NMR Characterization of Pyrolysis Oils from Kraft
450 Lignin. *Energy Fuels*, 2011, 25(5): 2322-232.

451 [22] Ben H. Thermal conversion of biomass and biomass components to biofuels
452 and bio-chemicals. PhD thesis, Georgia Institute of Technology, USA, 2012.

453 [23] ASTM D. *4052 Standard test method for density and relative density of*
454 *liquids by digital density meter*. American Society for Testing and Materials,
455 Easton, MD, USA, 1988.

456 [24] ASTM International. Products ACD-oP, Lubricants. *Standard Test Methods*
457 *for Flash Point by Small Scale Closed Cup Tester*. ASTM International, West
458 Conshohocken, PA, USA, 2009.

459 [25] Demirbas A. Biofuels securing the planet’s future energy needs. *Energy*
460 *conversion and management*, 2009, 50(9): 2239-2249.

461 [26] Ben H, Ragauskas A J. Pyrolysis of Kraft Lignin with Additives. *Energy &*
462 *Fuels*, 2011, 25(10): 4662-4668.

463 [27] Özbay G. Catalytic Pyrolysis of Pine Wood Sawdust to Produce Bio-oil:
464 Effect of Temperature and Catalyst Additives. *Journal of Wood Chemistry &*
465 *Technology*, 2015, 35(4): 302-313.

466 [28] David K, Haoxi B, Muzzy J, Feik C, Iisa K, Ragauskas A. Chemical
467 characterization and water content determination of bio-oils obtained from
468 various biomass species using ^{31}P NMR spectroscopy. *Biofuels*, 2012, 3(2):
469 123-128.

470 [29] Kosa M, Ben H, Theliander H, Ragauskas A J. Pyrolysis oils from CO_2
471 precipitated Kraft lignin. *Green Chemistry*, 2011, 13(11): 3196-3202.

472 [30] Ben H, Ragauskas A J. Heteronuclear Single-Quantum Correlation-Nuclear
473 Magnetic Resonance (HSQC-NMR) Fingerprint Analysis of Pyrolysis Oils.
474 *Energy & Fuels*, 2011, 25(12): 5791-5801.

475 [31] Reichel S, Yunqiao P, Babu R, Ragauskas A J. Structural characterization and
476 comparison of switchgrass ball-milled lignin before and after dilute acid
477 pretreatment. *Appl Biochem Biotechnol*, 2010, 162(1): 62-74.

478 [32] Anika S, Luca Z, Marco O, Fabiana Z, Graziano E. Structural characterization
479 and antioxidant activity evaluation of lignins from rice husk. *Journal of*
480 *Agricultural & Food Chemistry*, 2010, 58(18): 10049-10055.

481 [33] Huang F, Singh P M, Ragauskas A J. Characterization of Milled Wood Lignin
482 (MWL) in Loblolly Pine Stem Wood, Residue, and Bark. *Journal of*
483 *Agricultural & Food Chemistry*, 2011, 59(24): 12910-12916.

484 [34] Williams P T, Nugranad N. Comparison of products from the pyrolysis and
485 catalytic pyrolysis of rice husks. *Energy*, 2000, 25(6): 493-513.

486 [35] Lu Q, Li W Z, Zhu X F. Overview of fuel properties of biomass fast pyrolysis
487 oils. *Energy Conversion & Management*, 2009, 50(5): 1376-1383.

488 [36] Santana R C, Do P T, Santikunaporn M, Alvarez W E, Taylor J D, Sughrue E
489 L, et al. Evaluation of different reaction strategies for the improvement of
490 cetane number in diesel fuels. *Fuel*, 2006, 85(5/6): 643-656.

491 [37] Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils state of the art
492 for the end users. *Energy & Fuels*, 1999, 13(4): 914-921.

493 [38] Mishra S, Anand K, Mehta P S. Predicting Cetane Number of Biodiesel Fuels
494 from their Fatty Acid Methyl Ester Composition. *Energy & Fuels*, 2016,

495 30(12): 10425-10434.

496 [39] Qi Z, Jie C, Wang T, Ying X. Review of biomass pyrolysis oil properties and
497 upgrading research. *Energy Conversion & Management*, 2007, 48(1): 87-92.

498 [40] Mullen C A, Strahan G D, Boateng A A. Characterization of various
499 fast-pyrolysis bio-oils by NMR spectroscopy. *Energy & Fuels*, 2009, 23(5):
500 2707-2718.

501