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ABSTRACT Data from Phasor Measurement Units (PMUs) inform powerful diagnostic tools that can help
avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly
problematic, and it is critical to understand their impact. However, there is limited understanding of how
much the PMUmeasurement errors affect the performance of various synchrophasor-based applications, and
thus the ability of these applications to fulfill the users’ requirements effectively is also unclear. This paper
examines internal and external factors contributing to PMU phase angle and frequency measurement errors.
A generic method is proposed to evaluate the impact of measurement errors on application performance.
The impact of measurement errors on several synchrophasor-based Wide Area Monitoring System (WAMS)
applications are analyzed as examples. These applications include power system disturbance location,
oscillation detection, islanding detection, and dynamic line rating. The analysis demonstrated that the
proposed method can be used to quantify the measurement error impact and analyze the performance
degradation of these applications due to themeasurement error. It also reveals that the impact of measurement
error depends on the type, algorithm, and parameters of applications.

INDEX TERMS Frequency, measurement errors, phasor measurement units (PMUs), power grids, syn-
chrophasor, wide area measurements.

I. INTRODUCTION
Wide Area Monitoring System (WAMS) improves the situa-
tion awareness of power system by providing system states in
fast and dynamic operation conditions, as well as unforeseen
situations in a wide range [1]–[9]. Synchrophasors estimated
by phasor measurement units (PMUs) are the major data used
by WAMS applications. The performance and reliability of
these end-use applications depends on data quality of syn-
chrophasors [10]. Measurands, including phasor, frequency,
and Rate Of Change Of Frequency (ROCOF), are subject to
measurement errors from both internal and external factors,
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which may degrade the performance of applications or even
cause them to fail.

Performance requirements of PMU measurements are
specified in the IEEE/IEC Standard 60255-118-1:2018 [11].
The maximum allowed measurement error, such as total
vector error (TVE), frequency error (FE), and rate of
change of frequency error (RFE) have been defined. The
effect of measurement error, however, depend on the spe-
cific application and its algorithm. E.g. locating a gener-
ations trip needs more accurate data than simply detect
it. Therefore, the impact on the performance of the
synchrophasor-based applications needs to be evaluated.
Without understanding how the measurement errors will
impact the performance of various synchrophasor-based
applications, the users are not able to implement them for
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power system monitoring and operation confidently and
effectively.

This paper focuses on quantifying the impact of measure-
ment errors and gives the results such as how much error
or failure are caused by a given measurement error; what is
the worst case for a specific application with measurement
error; to achieve a specific performance, how accuracy the
measurement should be.

Furthermore, we considered the measurement error from
not only the PMU device, but the instrumentation channels.
Formed by instrument transformers, connecting control
cables, and attenuators, the instrumentation channels are used
to scale down the power system voltage and current to the
levels proper for driving relays, fault recorders, and other
monitoring devices such as PMUs [12]. Testing and evalu-
ation indicate that instrument transformers could introduce
phasor error [13].

Some studies are conducted to reveal the influence of syn-
chrophasor error on different applications. The investigations
mainly focus on applications of state estimation [14]–[16],
voltage stability assessment [17], [18], and line fault and
outage [19], [20]. However, these studies are all based on
specific applications and algorithms. There is not a sys-
tematic method proposed for the error impact analysis.
Quite a few synchrophasor-based applications, including
those already being implemented, have not yet been eval-
uated. Furthermore, the errors in some of these studies
are assumed either as fixed values or to follow Gaussian
distribution. In reality, the mean value of synchrophasor
error is not necessary 0. For example, the instrumentation
channel error, which are unavoidable in reality and can-
not be ignored in some applications, introduces a bias to
synchrophasor errors. During power system dynamics and
faults, or due to the imperfection of synchronized tim-
ing, the mean value of synchrophasor error could deviate
from 0, and the error distribution may not follow Gaussian
distribution [21], [22].

In this paper, a systematic method is proposed to eval-
uate and quantify the impact of errors on synchrophasor-
based application. With this method, the impact of different
error ranges can be analyzed, and the application develop-
ers could recommend the required accuracy of PMUs to
be used. In response to users’ concern on the reliability of
the application, failure rates and the worst cases could be
obtained from the analysis, so the users could determine
how to best use the application in their system without nui-
sance alarms. The measurement errors from both PMU and
instrumentation channels are taken into consideration. Four
real applications are evaluated as the specific case studies to
demonstrate how the proposed method is used to quantify the
error impact. Most of them are being operated on wide-area
monitoring systems (WAMSs). The applications are realized
in C# and the testing programs are in MATLAB. This study
also evaluated how the requirements of synchrophasor mea-
surement accuracy vary depending on the specific application
algorithm.

This work makes the following contributions.
(1) To the best of the authors’ knowledge, we first cre-

ate the generic method to access the impact of PMU
measurement errors. This method is applicable to all
PMU based applications with either quantitative or
qualitative output.

(2) Based on this method, the impact of measurement
errors on four real synchrophasor-based applications
are analyzed for the first time, and the quantified impact
are presented. It answers the questions such as in how
much percentage the error impact is tolerable, what is
the worst case, and how the error of output distributes.

(3) The relation of measurement error impact and other
parameters are revealed. For a specific synchrophasor-
based application, the error impact could change with
different input and algorithm parameters. The proposed
method is able to reveal this dependence, which is
demonstrated in case studies.

(4) The instrumentation channel error has not been con-
sidered in the previous publications regardingmeasure-
ment error impact. This work analyzed the main factors
contributing to the instrumentation channel error and
demonstrated that in what scenarios this error should
be considered. It also demonstrated the importance of
calibrating the instrumentation channel error by case
study and quantified result.

The rest of this paper is structured as follows. In Section
II the measurement errors from PMUs and instrumentation
channels are discussed, and the assumption of measurement
errors in this paper is given. The evaluation method for PMU
error impact is proposed in Section III. Section IV - VII
are the case studies on four typical synchrophasor applica-
tions, namely power system disturbance location, oscillation
detection, islanding detection, and dynamic line rating. The
impacts are discussed, and the mitigations are proposed in
Section VIII. Section IX concludes the paper.

II. MEASUREMENT ERROR ANALYSIS
The factors that contribute to PMU measurement errors
mainly consist of two components: internal and external. The
former indicates the errors of the PMU device itself, and the
latter mainly derives from the instrumentation channel.

A. PMU DEVICE ERRORS
PMU device errors are derived from various of factors, such
as estimation algorithm, ADC, timing accuracy, injected
noise and harmonics [23]. PMU accuracy compliance speci-
fied in the IEE/IEC standard is used as the benchmark in this
study [11].

According to the standard, the TVE, FE, and RFE should
be within 1%, 0.005 Hz, and 0.1 Hz/s for M class PMU
when there is no harmonics and out-of-band interference.
With dynamic signal inputs, such as modulation, frequency
ramping, and phase step change, the requirements are relaxed.
E.g., TVE for modulation input should be within 3%, and the
maximum allowed FE for frequency ramping is 0.01 Hz.
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FIGURE 1. Typical instrumentation channel for a PMU.

B. INSTRUMENTATION CHANNEL ERRORS
The instrumentation channel in this paper refers to the circuit
between the transmission system and the PMU. The instru-
mentation channel scales down the amplitudes of voltages
and currents on the transmission system and passes them
to the attached PMU. Components on the channel usually
include instrument transformers, connecting control cables,
burdens and attenuators, as shown in Fig. 1 [24].

An ideal instrumentation channel is supposed to output
a waveform which is exactly a replica of the waveform
scaled down from the high voltage power system [25]. The
instrumentation channels in reality are not ideal and introduce
measurement errors.

One contributor of instrumentation channel errors is the
control cable, which introduces a time delay that is then
transformed into phase angle error. This delay depends on
several characteristics of the cable, such as the cable length,
material, and whether it is shielded. Typically, a 500 ft. RG-8
cable introduces a 0.4◦ phase angle error. In some cases, the
length of the cable can reach 3,000 ft., which will cause an
even larger phase angle error [24].

Instrument transformer is another error source. The
most commonly used instrument transformers include cur-
rent transformers (CTs), voltage transformers (VTs), and
capacitive coupled voltage transformers (CCVTs). For the
American National Standards Institute (ANSI)–class type
transformers, the maximum phase angle error allowed by
the standard is between 0.26◦ and 2.08◦, depending on the
transformer type [26], [27].

While PMU devices are required to meet the requirements
on TVE as discussed in II.A, there is no such requirement on
a complete synchrophasor measurement system. Therefore,
the performance of PMU-based applications could still be
impacted even if the PMU devices are compliance with
the corresponding standards. Furthermore, instrumentation
channel error is usually not calculated and eliminated in
some PMU installation procedures [28], [29]. This is partially
because the actual value of the real system is constantly
changing, and precise values are difficult to achieve. In this
paper, the typical magnitude and phase angle error caused
by instrumentation channels are assumed to be a constant
value in the range from 0 to 0.52% and −1.55◦, respectively,

according to the testing cases in [26], [30]. The frequency
error contributed by instrumentation channel is ignorable
compared to the error from PMU device itself.

III. ANALYSIS METHODOLOGY
A. APPLICATION PERFORMANCE
The impact of PMU measurement errors is reflected in the
performance of synchrophasor-based application. According
to the output, the applications can be generally divided into
two groups. One is with qualitative outputs, such as detecting
and determining whether an islanding, oscillation, or fault
is happening or happened. The other generates quantitative
results, such as the event location, the amount of tripped
generator, and the rating of a transmission line.

For the first group, bad outputs can be described as ‘fail-
ure’, including failed detection, e.g., failed to detect an island-
ing, or false alarm, such as triggering an alarm of oscillation
while no oscillation happens. Here we define the failure rate
r as

r = rFD + rFA =
NFD
N
+
NFA
N
, (1)

where rFD is the rate of failed detection, rFA is the false alarm
rate, NFD is the number of event cases failed to be detected,
NFA is the number of non-event cases causing false alarms,
and N is the total number of cases.

The failure rate due to the PMU measurement error,
denoted as rerr , is used to quantify the error impact. It is
defined as

rerr = rw/err − rw/oerr , (2)

where rw/err is the failure rate when measurements with
errors being injected into the application, and rw/oerr is the
failure rate when the measurement is free of errors. Both
rw/err and rw/oerr are calculated by (1).

For the second group, the impact is described by the error
of the output results, i.e.

Eerr = Ew/err − Ew/oerr . (3)

In (3), Eerr is the impact of measurement error, Ew/err is the
application output error when injectedmeasurements are with
error, and Enoerr is the application output error when there is
no measurement error. Taking fault location as an example,
Ew/err is the distances from the calculated fault location to the
real fault location using measurement data with measurement
error; Enoerr represents the same distance but there is no
measurement error in the input data.

B. IMPACT ANALYSIS
To calculate the quantified impact defined above, the appli-
cation outputs with and without measurement error injected
need to be obtained. For both groups, the outputs can be
expressed as

y = f (x, p) , (4)
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and

y+1y = f (x +1x, p) , 1x ∈ [emin, emax] . (5)

In (4) and (5), x is the ideal PMUmeasurement (no error),1x
is the PMUmeasurement error, p represents other parameters
used in this application, y is the output or failure rate with no
error injection, and 1y is the change of output or failure rate
when error is injected. x and 1x could be scalar or vector,
depending on the number of PMUs used by the application.
[emin, emax] is the measurement error range assumed in the
analysis.

To fully analysis the impact, the relation between 1y and
1x needs to be obtained, denoted as

1y = f (x +1x, p)− f (x, p) = s (x,1x, p) . (6)

For the applications with qualitative output, the output f (·)
denotes the failure rate or corresponding input, as defined
in (1). To ensure the result is representative, a group of cases
should be studied.

For the applications with quantitative output, if f (·) is a
linear function for x, 1y will be independent of x, and (6)
will become

1y = f (1x, p) . (7)

For most applications however, x and1x cannot be decou-
pled. Therefore, the impact analysis needs to take different x,
i.e. system status, into consideration. For some applications,
the function f (·) is so complex that even for a fix x the
analytical relation between 1y and 1x is hard to get. For
the sake of this, Monte Carlo method can be used. A group
of cases with different x should be used to obtain a generic
conclusion. For each case, a cluster of 1x within the defined
error range is generated and added to x. The results will be a
cluster of rerr or Eerr . Applying data analysis, the maximum,
mean, and distribution of the impact can be obtained, and
indicates the performance under PMU error impact.

Sometimes the global maximum impact of an application
is desired to understand the worst case of an application.
Based on (6), the maximum impact of one specific case can
be represented by

1ymaxi = max
1x

s(xi,1x, p). (8)

Here xi represents themeasurement input of case i, and1ymaxi
is the maximum error impact of this case. Then the global
maximum impact can be calculated by

1ymax = max
i
1ymaxi , (9)

where 1ymax is the global maximum impact of the appli-
cation. For most cases, it is hard to obtain the analytical
maximum value of function s(·) regarding 1x. Monte Carlo
method then can be used.

Furthermore, by changing the range and/or distribution of
themeasurement error, the impact of application performance
may subject to change. Hence, the dependence of perfor-
mance impact on measurement error could be obtained.

In addition, 1y may also dependent on parameters p of
the application function f (·). The results of Monte Carlo
simulation can be used to analysis the sensitivity of these
parameters.

C. ERROR INJECTION
In the impact analysis, one of the important steps is to inject
PMU measurement error, i.e. 1x. To simulate the real appli-
cations, the injected error should be determined by analyzing
the specific application algorithm.

The instrumentation channel error may be eliminated in
specific applications. As the instrumentation channel error
is typically a constant value for a specific set of devices,
applications using measurement differences are immune to
this error. E.g., angle of synchrophasor rotates within 0 to
2π when system frequency deviates from nominal frequency.
Therefore, phase angles used in most applications are the
relative value, i.e. the angle different between the object
synchrophasor and the synchrophasor at the reference point,
usually the swing bus. When the instrumentation devices and
control cable lengths at both locations are very similar, their
instrumentation channel errors are also close to each other
and will be eliminated when calculating the phase angle.
Similarly, when an application uses the difference between
measurements at two different times but from the same mea-
surement device, the instrumentation channel error is also
eliminated.

The range of injected error may change depending on the
power system status. For applications used during system
normal status, PMU error of steady state should be used
for assumption. For those applications used for system dis-
turbance detection and analysis, the corresponding dynamic
error should be considered. E.g., oscillation detection should
use the PMU error with modulated signal input; generation
trip should use the error when PMU is fed with frequency
ramp signal.

IV. POWER SYSTEM DISTURBANCE LOCATION
A. SYNCHROPHASOR-BASED DISTURBANCE
LOCATION ALGORITHM
Power system disturbance location is a PMU application used
to detect and locate power grid disturbance events, such as
generator loss and load shedding. This case study analyzed
the power system disturbance location application used by
the Frequency Monitoring Network (FNET) in service at the
University of Tennessee, Knoxville and some electric utility
operation centers [31], [32].

When generator loss or load shedding happens, the active
power of the system experiences a sudden change. According
to the swing equation [33], there is

2H
ωs
·
d2δ
dt2
= 1P, (10)

where H is the inertia, ωs is the system angular frequency, δ
is the rotor angle, and1P is the difference between mechan-
ical power injection and the electrical power withdrawn by
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the load. d2δ/dt2 is the acceleration of the rotor angle. Under
normal operation conditions, the mechanical power injection
and the load consumption are balanced, the rotation speed of
the synchronousmachine keeps constant, and d2δ/dt2 is zero.
During a power system disturbance, the rotor decelerates or
accelerates with respect to the mismatch of power generation
and consumption, i.e. 1P. As the frequency f is the time
derivative of angle, i.e.

f =
1
2π
·
dδ
dt
, (11)

(10) can be rewritten as

2H
ωs
·
2πdf
dt
= 1P. (12)

For an interconnection, in which many generators and
loads are included, an aggregated model of the system can be
constructed based on the superimposing of the synchronous
machines and loads, i.e.

2Hsys
ωs
·
2πdf̂
dt
= 1Psys, (13)

where Hsys is the system inertia aggregated by all gener-
ators’ inertia; f̂ is the average frequency observed in the
network, and 1Psys is the difference between aggregated
power injection and the aggregated electrical power load [34].
With (13), the power system dynamics during disturbance can
be analyzed.

ROCOF is defined as the time derivative of frequency and
can be represented by

ROCOF =
df
dt
=

1
2π
·
d2δ
dt2

. (14)

By combining (13) and (14), we obtain

ROCOF =
1Psys · fs
2Hsys

. (15)

Here fs is the system frequency. During the steady state,
ROCOF is 0. For a single generator loss or load shedding
event, ROCOF is a non-zero constant value.

Denote the angle of the synchrophasor measured by an
FDR as θ . With the first and second derivative of phase
angle described in (11) and (14) respectively, θ can be rep-
resented by

θ = π · ROCOF · t2 + 2π fs · t + θ0 (16)

where θ0 is the phase angle at time 0. The phase angle
after disturbance follows the quadratic function of time. This
change of phase angle does not simultaneously take place
on all the buses in the power system. Instead, it propagates
along the power network with finite and constant speeds [35].
This is also known as the electromechanical wave. Because
of this, the variation of phase angle detected by each PMU
has a unique time delay proportional to the distance from
the disturbance location. The location of the disturbance can
be estimated based on this relationship. When implemented
in FNET, frequency disturbance recorders (FDRs), a type of

FIGURE 2. The plots of processed phase angle measured by FDRs in a
generation trip event. The red horizontal line represents the preset
threshold which is used to calculate TDOA.

single-phase distribution-level PMUs, are used to collect GPS
timestamped voltage phasors and frequency measurements.

In the application, the angles are shifted to start from 0◦ and
the slope of the plot before the disturbance is de-trended to
be 0 [32]. In this way, only the dynamic signature of different
FDRs in reaction to the power system disturbance is reserved.
The absolute values of these angles are then taken for the
disturbance location. Fig. 2 shows an example of phase angle
movements caused by a generation trip.

Coordinated Universal Time (UTC) is used to indicate the
time at which the disturbance occurred. The legends show the
names of the different FDRs used by FNET. The red hori-
zontal line in Fig. 2 represents the preset threshold, denoted
as θTH . The earliest time when the angle measured by an FDR
increases to this threshold is defined as time difference of
arrival (TDOA). It can be seen from Fig. 2 that the TDOAs of
FDRs are different.

The first few responding FDRs are used for disturbance
location. Their geographic coordinators and TDOAs are pre-
sented in (17).

(xi − x0)2 + (yi − y0)2 = V (ti − t0). (17)

In (17), xi, yi and ti are the longitude, latitude, and TDOA
of the FDR with index i, respectively; x0, y0 and t0 are the
longitude, latitude, and TDOA at the disturbance location,
respectively; V is the propagation speed. Disturbance loca-
tion (x0, y0) can be estimated by least square method. Most
disturbances detected are generation trips.

B. PMU MEASUREMENT ERROR IMPACT ANALYSIS
In the power disturbance location algorithm introduced in
last subsection, the constant and linear part of θ in (16) are
eliminated during angle processing. The processed angle is
represented by

θ = π · |ROCOF | · t2. (18)
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FIGURE 3. Location estimation errors distribution of one case.

The angle error, denoted as θerr , furtherly becomes TDOA
error, denoted as terr and represented by

terr =
θerr

dθ
dt

∣∣
θ=θTH

=
θerr

2
√
πθTH |ROCOF |

. (19)

This application generates a quantitative result, i.e. the
location of the power system disturbance. Therefore, it
belongs to the second group stated in III.A. The error of the
disturbance location incurred by θerr can be obtained based
on (6).

As the relation between (x0, y0) and ti is nonlinear, and
TDOAs from multiple units are used for estimation, it is
difficult to directly obtain the impact of PMU measurement
error. Monte Carlo simulation is implemented here. A group
of real power system disturbance cases in the Eastern Inter-
connection (EI) of the North America Power Grid are studied.
For each case, different θerr are tested and the results are
compared. Here θerr is randomly distributed in the range of
[−0.6◦,+0.6◦]. The range corresponds to the largest phase
angle error in a frequency ramping event allowed by PMU
standard, i.e. 1% TVE [11].The result of one case is shown in
Fig. 3.

The estimation errors of over 96% samples are within 100
miles; however, the error surpasses 180 miles in some cases.
The largest possible error reaches 220 miles. It should be
notified that for a large transmission grid as EI, in general the
change of power needs to be as large as 300 MW to induce
enough change of frequency and phase angle and trigger the
disturbance location application. Power stations of that size
are typically far from each other. With a 100-mile error it
is still able to locate the tripped plant, by looking up the
table of power plant locations and capacities. Empirically, an
estimation error larger than 225 miles could cause failure in
EI system [32].

To best use this application, it is desired to understand
the worst case, which indicates the maximum possible error
of the event location. To obtain the largest event location
error, the Monte Carlo simulation is first implemented. Then

FIGURE 4. Boxplots of location estimation errors distribution regarding
different maximum phase angle errors.

the interior-point algorithm is used, with the θerr of each
unit corresponding to the largest fault location in the Monte
Carlo simulation as the initial value. All detected cases in one
year are analyzed, and the distributions of maximum event
location estimation errors are plotted regarding different max-
imum θerr , as shown in Fig. 4.

According to the result, the medium and maximum values
of location estimation error increase with themaximum phase
angle error. Themaximum estimation error is roughly propor-
tional to the maximum phase angle error; it increases from
50 miles to over 300 miles when the maximum phase error
changes from 0.1◦ to 0.6◦. The deviation of the estimation
error also increases with the maximum phase angle error.
When the estimation error is small, it is easier to improve the
location accuracy by estimate the amount of power change
and inspect possible generators around the estimated location.
If the estimation error is too large, this application will give
incorrect result or fail. When the phase angle error increases
to 0.4◦, the cases with estimation error over 225 miles
emerges, and with 0.6◦ error, around 20% cases could get
an error over 225 miles, resulting the application failure. It
should be noticed that these results only indicate the worst
possible results and does not mean these percentage of cases
will surely fail.

According to (19), TDOA error is inversely proportional to
the square root of |ROCOF |. When θerr remains unchanged,
the error will decrease with the increase of |ROCOF |.
However, θerr usually depends on |ROCOF | in a frequency
ramping event. Taking the PMU algorithm in the appendix
of [11] as an example, the maximum θerr is proportional to
|ROCOF |. In that case, a larger generation trip will induce a
larger |ROCOF | according to (15), and hence larger estima-
tion location error.

With the increasing penetration of inverter-based renew-
ables, the inertial of the power systemwill expect to decrease.
As a result, |ROCOF | will increase according to (15). This
change calls for higher PMU accuracy in the future.
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FIGURE 5. Schematic of angle-based oscillation detection.

V. OSCILLATION DETECTION
A. OSCILLATION DETECTION ALGORITHM
Small signal stability problems in a power system can result
in significant electromechanical oscillations that may lead
to grid stability issues and potentially large-scale black-
outs. High-precision and time-synchronized frequency and
phase angles measured by PMUs can be used for oscillation
detection.

Here the angle-based inter-area oscillation detection is
used as an example [1]. In this application, relative angle
measurements of each PMU are obtained by subtracting a
reference PMU’s measurement and shifting to start from 0◦.
These angle measurements remain stable when the system is
operating in the steady state. During an inter-area oscillation,
the relative angles form a wavy curve. The signature of an
oscillation event usually shows a data pattern that has a
steep angle rise or drop beyond a certain threshold right after
disturbance and then, following the oscillation starting point,
the oscillation magnitude (peak-to-peak value) goes beyond
a certain limit and the oscillation is sustained for at least one
swing. The schematic diagram for this is shown in Fig. 5.

If the oscillation deviation of more than one PMU sur-
passes the preset Threshold 1 (denoted as Th1) and the oscil-
lation magnitude exceeds the preset Threshold 2 (denoted as
Th2) and sustains for at least one swing within 5 seconds, an
oscillation will be considered to occur. Th2 is the key value to
determine whether a swing is an oscillation. The thresholds
are empirical values and are determined by the power grid
under observation. Taking EI as an example, Th1 and Th2
are set as 4◦ and 3◦, respectively.

B. PMU MEASUREMENT ERROR IMPACT ANALYSIS
Similar to the disturbance location, instrumentation channel
errors are ignored as they are constant values and are elimi-
nated when the relative angle is calculated and shifted to start
from 0◦. For an oscillation event, the oscillation magnitude
with error could be smaller than the thresholds, and the
oscillation would not be detected. On the other hand, a false
alarm would be triggered if the variation magnitude of a non-
oscillation signal is affected by the measurement error and
surpasses the thresholds.

A real oscillation case in the EI is shown in Fig. 6, with a
1.2◦ error band represented by green shadow.

FIGURE 6. Phasor measurement unit error impact on oscillation signal.

The oscillation magnitude is about 4◦, larger than Th2 (3◦)
and should be detected if there is no error. However, account-
ing for the measurement error, the angle difference could
decrease to 1.5◦, which is below Th2 – the oscillation would
not be detected.

As oscillation detection is a qualitative application as
described in III.A, the impact can be quantified by failure
rate difference defined by (2). As the oscillation detection
algorithm studied here is a non-linear function, (6) is used to
calculate the impact, i.e. the failure rate induced by the error.
The failure includes both failed detection and false alarm, and
the failure rate of each is obtained separately. In all studied
oscillation cases, the failure rate are 0 when inputting clean
data. Therefore, (6) can be simplified to

1y = fosc (x +1x, p) , (20)

where x represents the clean data of phase angles, 1x is the
phase angle error, fosc is the oscillation detection algorithm,
1y is the output, denoting the failure rate, and p represents the
parameters, such as the angle fluctuation of the input signal.

In the PMU standard [11], TVE is required to be within 3%
for modulated signal input, corresponding to 1.8◦ for 60 Hz
system. Different error levels are tested in this study. Monte
Carlo simulation indicates that for a confirmed oscillation
event, the angle error is unlikely to cause failed detection,
and the failure rate is nearly 0. However, for a non-oscillation
fluctuation, phase angle errors could induce false alarm,
depending on the angle fluctuation of the input signal. The
simulation result is shown in Fig. 7.

Results indicates that the false alarm rate increases with
the phase angle error. Meanwhile, the signal with higher
fluctuation amplitudes in angle is more vulnerable to phase
angle error. E.g., if the fluctuation amplitude is 0.8◦, the phase
angle error below 1.3◦ will not cause false alarm; for the
fluctuation amplitude of 1.6◦, however, 0.6◦ error could cause
false alarm. If the fluctuation amplitude is as large as 2.4◦,
PMU error as small as 0.1◦ could cause false alarm, and 0.4◦

phase angle error could cause 100% false alarm.
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FIGURE 7. False alarm rate of angle-based oscillation detection regarding
different phase angle errors and fluctuation amplitudes.

Although phase angle error has little impact on mis-
detection of oscillation, false alarm could also degrade the
performance and trustworthy of the application. Therefore,
the requirements of synchrophasor accuracy needs be speci-
fied and can be determined according to the fluctuation at the
monitoring point of the power grid.

VI. ISLANDING DETECTION
A. ISLANDING DETECTION ALGORITHM
Distributed generation (DG) sources, which use fuel cells,
photovoltaic, and other electricity generation technologies,
are typically placed close to the load being served [36]. The
advantages of DG are well known. However, there are some
technical challenges associated with the use of DG. One of
them is islanding, the situation when part of a distribution
system becomes electrically isolated from the remainder of
the power system while continuing to be powered by DG
sources. Electrical islands are difficult to sustain and typically
result in loss of service to the loads. They can also threaten
the safety of line workers if the workers are not aware that
the circuit is energized. Reconnecting the island to the larger
system requires that both are in synchronicity, but the DG
sources often cause them to drift out of phase. Therefore, it is
very important to detect islands quickly in order to reconnect
them before the generation and load become unbalanced and
the load is lost.

PMUs capture the characteristics of frequency and phase
angle change during the creation of the island in a fast and
accurate manner. Using PMUs in islanding detection is there-
fore promising. Here we take the frequency measurement
based islanding detection method running on FNET as an
example [37]. In this algorithm, frequency deviations (FD)
of each FDR is calculated by

FDi (t) = |fi (t)− fref(t)| , (21)

where fi(t) is the measured frequency value of the i-th FDR
at timestamp t; fref(t) is the median value of all the monitored

FDRs in the same interconnection. The integration of fre-
quency deviation (IOFD) is defined as the accumulation of
the corresponding FD over a certain period of time, given by

IOFDi =
∑t2

t1
FDi(t), (22)

where t1 and t2 are the start time and end time, respectively,
for this integration time period. IOFD is used to prevent
the algorithm from causing a false alarm. For example, an
abnormal frequency data point far away from the actual value
will generate a large FD. Also, during a generation trip event,
the grid remains intact yet the frequency in some locations
may oscillate while dropping. If FD is the only criterion, this
kind of phenomenon could be incorrectly recognized as an
islanded situation.

When the FDi of any FDR surpasses the first threshold,
Fth1, an early warning is triggered, indicating possible island-
ing. Then IOFDi is calculated and compared to the second
threshold, Fth2. If it is larger than Fth2., the algorithm con-
cludes that the system monitored by this FDR is in off-grid
operation. Otherwise, the system is deemed as not islanded.

B. PMU MEASUREMENT ERROR IMPACT ANALYSIS
When measurement error is combined with the frequency,
the result of FDi and IOFDi will be influenced, causing the
islanding detection algorithm to fail to detect an island or
to incorrectly indicate an islanded situation when no island
exists. To demonstrate islanding detection errors, cases are
selected, and data collected by FDRs are fed into the algo-
rithm to verify that the algorithm is functioning correctly.
Frequency errors are then added to the data and the new
detection result is compared with the original one to identify
the impact caused by the measurement error.

Similar to oscillation detection, islanding detection is also
a qualitative application, and the PMU error impact is defined
by (2). Similarly, (6) is used to calculate the failure of each
case. Because the islanding detection algorithm is non-linear,
and the failure rates of all cases studies are 0 when no error is
injected, (6) is furtherly simplified to the following equation.

1y = fisld (x+1x, p) (23)

In (23), vector x represents the clean data of frequency at
different measurement locations, 1x is the vector of fre-
quency errors of each location, fisld is the islanding detection
algorithm, 1y is the output, i.e. failure rate, and p represents
the parameters such as the detection time t2 − t1 and the
average frequency deviation in the islanding area.

One case study occurred during Hurricane Sandy in 2012.
During that time, the off-gird operation was detected by an
FDR in Sussex, New Jersey. The frequencies are plotted in
Fig. 8.

In the experiment, errors within ±5 mHz are added to the
data. However, due to the large frequency deviation, the added
errors are not large enough to be the cause that the islanding
detection algorithm failed. Further analysis shows that the
islanding detection would not fail until the frequency error
is larger than ±0.35 Hz.
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FIGURE 8. Frequency measured by frequency disturbance recorders
during Hurricane Sandy case shows the Sussex FDR (in red) operating in
an island.

Several other cases are also studied by adding frequency
errors and changing the integration time. The islanding detec-
tion time of this algorithm mainly depends on the integration
time of IOFD. Analysis shows that the ±5 mHz error does
not influence the detection accuracy on detection time from
2 s to 30 s. No islanding event is missed by the algorithm, nor
does any false alarms take place. The corresponding failure
rates are 0.

The success rate of detecting an island depends on the
thresholds selection and the generation-load imbalance of the
island. For an island in which the imbalance is very small, this
method will be vulnerable to frequency errors.

VII. DYNAMIC LINE RATING
A. DYNAMIC LINE RATING ALGORITHM
The rating of a transmission line indicates the highest current
that the line can transfer safely and securely. Currently, the
ampacity of the transmission lines are generally determined
by conservative seasonal estimations of meteorological val-
ues [38]. Dynamic line rating (DLR) technology is developed
to calculate this ampacity at each time unit of operation.
The application of DLR can dynamically increase the trans-
mission capacity and effectively use the thermal capacity of
the transmission line (assuming there are no stability limits),
especially for the overhead transmission lines. As intermittent
renewable energy sources put stress on the existing infrastruc-
ture of the power system, DLR provides a solution to accom-
modate the surge in installation of distributed/renewable
energy sources while minimizing or postponing the high cost
of power network enforcement [38].

PMU measurement data can be used to dynamically cal-
culate the rating of that line. One method based on IEEE
Standard 738-2012 is used here as an example [39]–[41].
In this method, the phasors of voltage and current measured
by PMUs installed on both ends of a transmission line are

FIGURE 9. Overall framework of phasor measurement unit (PMU)–based
dynamic line rating technology.

used to obtain the line resistance. Together with the weather
data measurement, the dynamic line rating is calculated. The
procedure is shown in Fig. 9.

B. PMU MEASUREMENT ERROR IMPACT ANALYSIS
The PMU measurement error could induce uncertainty in
the estimation of the transmission line parameter. As the
output of dynamic line rating application is quantitative, the
error impact is calculated based on (3). Because magnitude
measurement can be corrected by voltage and current sensors
with high accuracy, here we only consider the phase angle
error, which includes ±0.6◦ error from the PMU and 0◦ to
−1.55◦ error from the instrumentation channel, as assumed
in II.B. In this studied case, the conductor of the transmission
line is the 26/7 Drake aluminum conductor, steel-reinforced
(ACSR) conductor. The configuration and the parameters of
the conductor are based on [41]. The DLR model in this
system is assumed to refresh every 10min. In this application,
the relation between line rating and phase angles is non-linear,
so (6) is used to get the impact of PMU measurement error.
Monte Carlo simulation is implemented by adding multiple
combinations of errors to the voltage and phase angles on both
terminals of the transmission line. Each phase angle error is
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FIGURE 10. Distribution of dynamic line rating error of one case.

FIGURE 11. Dynamic line rating error on one day in summer.

the addition of both PMU device error and instrumentation
channel error.

The effect of PMU measurement error depends on the
weather condition. In this case study, weather parameters are
assumed to be consistent, with ambient temperature, wind
speed, and solar heat gain being 30◦C, 1 m/s, and 12 W/m,
respectively. Totally 106 error combinations are randomly
picked and simulated in the study, and the histogram of DLR
error is shown in Fig. 10.

According to the simulation result, the DLR error caused
by the measurement error ranges from −5% to 16.93%.
In 93.17% samples the DLR errors are less than 5%, and
99.74% of them are within 10%.

To understand theworst result under the impact of the PMU
measurement error, the maximum DLR error is evaluated
under various weather conditions. The result of one-day in
summer is shown in Fig. 11.

In this figure, the red-circle line represents the true value
of DLR, and the red shadow represents the error band. The
green, brown, and purple dashed curves are the ambient
temperature, wind speed, and solar heat gain, respectively.
According to the calculation, the maximum error in summer
with high wind speed reaches 46%. For a case with lower
temperature and wind speed, the maximum error decreases to

FIGURE 12. Maximum DLR error respect to PMU phase angle error and
instrumentation channel phase angle error in a low temperature and
wind speed day. The error is in percentage. PMU phase angle error is
positive and negative boundary.

approximately 22%. It should be noted that these only indi-
cate the worst cases under very high and low temperatures.
For most cases, the DLR error is much smaller than these
extreme values. Also notice that these examples are obtained
from a basic method and are not intended to give a specific
DLR error boundary.

The relation between maximum DLR error and measure-
ment error for a low temperature and wind speed day is shown
in Fig. 12.

From this figure, it can be seen that the maximum error
will decrease from 22% to 16% if the instrumentation chan-
nel error is eliminated (e.g., by calibration). With −0.8◦

phase angle error contributed from instrumentation channel
the PMU error should be as accurate as ±0.1◦ to ensure
the maximum DLR error is below 10%. By calibrating the
instrumentation channel error, the requirement of PMU accu-
racy could be relaxed to ±0.3◦, i.e. only one third accuracy
requirement of the PMU without this calibration. This is an
effective way to improve the accuracy of the dynamic line
rating.

VIII. DISCUSSION
A. SYNTHESIS OF RESULTS
The result obtained in this study can be synthesized as
follows.

1) POWER SYSTEM DISTURBANCE LOCATION
measurement error can result in location estimation failure.
With the PMU error of ±0.6◦, typically over 90% location
errors induced by inaccuratemeasurement is within 100miles
and tolerable. However, when considering the worst cases,
more than 50% of them are possible to generate an estimation
error over 100 miles. With the increasing of DERs and the
decreasing of system inertial, smaller phase angle error will
be required to achieve the same location estimation accuracy.
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2) POWER SYSTEM OSCILLATION DETECTION
measurement error is unlikely to result in failing to detect
but could cause false alarm. The probability of false alarm
depends on the selection of detection threshold, fluctuation
amplitude of the observed signal, and the phase angle error.
In EI, if the fluctuation amplitude is up to 2.4◦, a 0.1◦ mea-
surement error is enough to generate a false alarm, and 0.4◦

phase angle error could cause 100% false alarm.

3) ISLANDING DETECTION
measurement error is unlikely to influence the frequency-
based islanding detection when the generation and load
imbalance is large. If generation and load are close to each
other and the detection time window is short, the frequency
deviation may be submerged in the frequency measurement
error and the application may failed to detect an islanding.

4) DYNAMIC LINE RATING
the error of this application shows dependency to the parame-
ters related to weather conditions. Under the normal weather
condition, the thermal rating error is within 5% in 90% cases,
with the maximum error of 16% (worst case). In severe
weather conditions, the maximum error can reach up to 46%.
Meanwhile, the phase angle error introduced by the instru-
mentation channel contributes considerably to the total error.

B. PMU ERROR
In this paper, the PMU phasor and frequency errors are
assumed based on the requirement of IEC/IEEE 60255-118-
1:2018 standard. They are random values within 1% TVE
and±0.005 Hz, respectively during steady state. For dynamic
inputs such as phase and magnitude modulation, the permit-
ted error range is even larger, e.g. 3% TVE for phasor error.
According to the analysis presented in this paper, a standard
compliance PMU does not guarantee the performance of all
applications. Same amount of PMU error has different perfor-
mance impact depending on the type, algorithm, parameters,
and other inputs of the application.

In the four applications studied in this paper, most cases are
not influenced when the PMU is compliance with the stan-
dard. In abnormal conditions the error impact may increase.
For example, phase angles with large fluctuations may lead
to higher possibility of false alarm in oscillation detection.
An islanding area with small generation-load imbalance
may not be detected by the islanding detection application.
Developers and users could use the method proposed in this
paper to evaluate the impacted performance and determine if
the PMUs with higher accuracy are required, or the algorithm
should be improved.

Furthermore, the maximum error impact studied in this
paper indicates the worst cases that could happen. In the
applications we studied here, these cases are either rare, or
only happen at extreme and/or abnormal conditions. Mostly,
they can be ignored. However, for applications used for power

system control, these worst cases may cause large impact to
the system, hence should be fully evaluated and addressed.

C. INSTRUMENTATION CHANNEL ERROR
Instrumentation channel error, if not calibrated, would intro-
duce an offset in phase angle measurement. Unlike voltage
and current magnitude, usually there is no other devices in
substations to provide a reference for phase angle, so instru-
mentation channel error may remain in the measurement.
Some applications use relative changes of phase angles, such
as disturbance location and oscillation detection discussed
in this paper. This constant error is therefore eliminated
and is unlikely to influence the corresponding applications.
However, in some other applications, such as dynamic line
rating, the measurements are directly used, and instrumenta-
tion channel error could cause large impact.

No particular standards have been published for phase
angle error calibration of the instrumentation channel to
which PMUs are connected. Two software-based methods
can be considered for instrumentation channel calibration.
One is to model the instrumentation channel and calculate the
error; the other is using state estimationmethods to correct the
instrumentation channel error [30], [42]. Some PMUs provide
user configurable settings for phase and magnitude correc-
tion factors. How to precisely calibrate the instrumentation
channel error is out of the scope of this paper. Further work
is needed to develop methods to characterize and correct the
instrumentation channel errors.

D. RECOMMENDATIONS
PMU measurement errors could impact the performance of
synchrophasor-based applications. Without the awareness of
the existence and the effect of the impact, the application
users may be misled by the influenced outputs and make
wrong decisions, and the applications cannot be implemented
confidently and effectively. As the measurement error cannot
be fully eliminated, it is recommended for the PMU applica-
tion developers and users to:
• Evaluate the performance of the applications by consid-
ering the actual measurement error. The method pro-
posed in this paper can be used to quantify the error
impact.

• For applications with high requirement on every output,
such as those for power system control, the worst cases
and their impact should be evaluated.

• Analyze whether the instrumentation channel would
contribute to the measurement error. If so, the developer
and/or user should analyze its impact and decide if cali-
bration is required.

Approaches to decrease or eliminate the measure-
ment error impact include upgrading PMU hardware and
algorithm, calibrating PMU and instrumentation chan-
nel, and improving application’s error tolerance [30].
These approaches relate to the specific devices and
algorithms being used and will be included in the continuous
study.
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IX. CONCLUSION
In this paper, a generic method is proposed to analyze and
quantify the impact of error on synchrophasor-based applica-
tions. Depending on the output of the object application, the
method evaluates its failure rate or error distribution under the
impact of the given synchrophasor accuracy range. It can be
used to determine the desired accuracy level of synchrophasor
measurement. This method could also be used for sensitivity
analysis on parameters of application algorithm or the input
signal, based on which the application can be optimized.

The impact of PMU measurement errors on four typical
applications is studied. The measurement errors from both
the PMU device itself and the instrumentation channel are
investigated. According to the analysis, measurement errors
could result in applications mal-operation, including incor-
rect disturbance location, false alarm of oscillation, and error
of transmission line thermal rating. Though all these appli-
cations have different measurement error tolerance, most of
them are potential to be influenced.

The analysis method demonstrated in this paper can aid
other developer and user in identifying and quantifying the
measurement error impact, the pervasiveness in deployed
systems, the desired PMU and instrumentation channel accu-
racy. With a full evaluation of the impact from all possible
measurement error, the synchrophasor based applications can
be used for power system monitoring and operation with
knowledge of its performance. In addition, the assessment
from the evaluation can lead to the development of new
technologies resilient to measurement error.
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