
Bootstrap-based Confidence Interval Estimation for Thermal 
Security Region of China Southern Power Grid
Xue Li1, Tao Jiang1*, Guodong Liu2 *, Hantao Cui3, and Fangxing Li3

1: Department of Electrical Engineering, Northeast Electric Power University, Jilin, JL 132012, China
2: Power and Energy Systems Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3: Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
*: Contact author: tjiang@neepu.edu.cn, liug@ornl.gov

Abstract— Thermal security region (TSR) is a powerful tool for monitoring and controlling the thermal security in bulk power 
grid with high penetration of renewable energy. One of the major challenges of TSR in application is to obtain the exact analytical 
expression of the TSR boundary (TSRB) due to the fact that TSRB is a nonlinear hypersurface described by an implicit function. 
For this reason, the TSRB is usually approximated using hyperplane instead of getting the exact analytical expression. 
Traditionally, the coefficients of the hyperplane are estimated with set of original TSRB points using least square estimation (LSE). 
However, LSE is a point estimation method, which is incapable of evaluating the quality of the estimation. In addition, the 
accuracy and computational efficiency of the hyperplane approximation are influenced by the number of TSRB points significantly. 
In this paper, a bootstrap based confidence interval estimation is proposed to estimate not only the coefficients of TSRB 
approximation hyperplane, but also the standard deviations and confidence intervals of the coefficients for evaluating the quality 
and reliability of the approximation results. First, empirical distribution functions (EDFs) of the coefficients of TSRB 
approximation hyperplane are approximated from set of original TSRB points by using residual resampling bootstrap method. 
Then, the EDFs of the coefficients are employed to estimate the coefficients of the approximation hyperplane. Meanwhile, the 
standard deviations and confidence intervals of the estimated coefficients of the hyperplanes are also calculated for evaluating the 
quality and reliability of the approximation. The proposed approach is tested on the China Southern Power Grid (CSG). Results of 
simulations validate the accuracy and efficiency of the proposed approach in approximating the TSRB.

Keywords—bootstrap, confidence interval, thermal security region, hyperplane

1. Introduction
With growing penetration of intermittent renewable energy sources and increasing variability of generation dispatch, the 

patterns of power flow have become more diverse and further deviating from the pre-designed conditions, leading to more 

uncertainty and risks for bulk power grid operation [1]. To mitigate the impacts of intermittent renewable resources on the power 

grid, new wide-area balancing coordination and cooperation schemes have been implemented [2]. These schemes enable the power 

flow redistribution in the wide area. Nevertheless, the growing variability still presents a challenge for maintaining the thermal 

security for a bulk power system with N-1 contingency. For this reason, the widely used single-directional limited analysis 

methods, which only consider the thermal security constraints in a specified power grid stress direction, are ineffective because 

they are unable to account for the coupling interactions between the transmission interties at the system-wide level [3]. Moreover, 

the intermittency of renewable energy sources and the variability of generation dispatch might change the stress direction which 

cause the results of the single-directional limited analysis method seriously departure from the actual operation condition [4]. 

Under this situation, the transmission thermal constraints should be revisited in terms of their definition, structure and 

characteristics [3], [4]. This necessity is addressed by thermal security region (TSR).

The TSR is defined as a n-dimensional set of nodal power injections or total power on the transmission corridor, in which the 

power flow equations and the thermal security constraints are satisfied[5], [6]. Generally, the TSR composed of n dimensional 
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manifolds is a continuous region, in which the power grid is thermal security in case of N-1 contingency, while TSR boundary 

(TSRB) composed of n-1 dimensional manifolds is a nonlinear hypersurface on which the power grid is at the status of critical 

thermal security with N-1 contingency [3]. Using the TSR, the bulk power gird thermal security evaluation could be fast and 

convenient by simply determining whether the operation point is inside or outside the TSR. The key to this type of thermal security 

evaluation is to determine the TSRB, which separates the secure power grid conditions from the insecure ones and is described by 

an implicit function. However, the exact analytical expression of TSRB is very difficult to obtain due to the nonlinearity of TSRB. 

To address this issue, artificial neural network (ANN) was used to approximate the security region boundary considering the 

nonlinearity [7], [8]. However, the ANN requires huge volumes of training samples to formulate the approximation model of 

security region boundary. Meanwhile, the physical information of power grid is hidden in the black box, which makes it hard to 

provide more underlying information for making control decisions. The sampling-fitting method, which is a major type of TSRB 

approximation was proposed in [9], [10]. In this method, the critical operation points on the TSRB are explored by repeated power 

flow (RPF) or optimal power flow (OPF) with different power gird stresses. Then, these explored TSRB points are fit to certain 

analytical expressions to approximate the TSRB. In [11], Prof. Y. Yu et al. found that the security region boundary could be well 

represented by a hyperplane. The pointwise sampling and least square estimation (LSE) were proposed to estimate the coefficients 

of the hyperplane [12],[13]. The analytical expression of hyperplane was easily estimated. If one hyperplane does not meet the 

desired accuracy level of approximation, more hyperplanes can be employed to improve the approximation accuracy. Using the 

estimated TSRB hyperplanes, the thermal security margin can be directly calculated, and the corrective control actions can be 

determined conveniently. Similar ideas were also used in the Western Electricity Coordinating Council (WECC) system and the  

European Network of Transmission System Operators for Electricity (ENTSO-E) [3], [14]. However, due to fact that the 

sampling-fitting method is a typical point estimation method, there are still some issues, such as lacking guarantee on the quality 

and reliability of the estimated results. The confidence interval (CI) estimation may offer solutions to these issues.

Traditionally, the CIs of given statistical parameters can be estimated using Monte Carlo method through numerical 

simulation.  The Monte Carlo method can calculate the means and standard deviations of the statistical parameters by repeated 

random sampling. However, the Monte Carlo method is a model dependent method, the numerical simulation should sample from 

an already known probability distribution of each variable in the power grid, which is infeasible in practice. Moreover, to achieve 

accurate and reliable estimation of the hyperplane coefficients, the Monte Carlo method needs large amounts of TSRB points 

explored with numerous stress directions, which significantly increases the computational burden. Under such situations, it is very 

difficult to use Monte Carlo method to estimate the CIs for the coefficients of TSRB approximation hyperplane in a limited time 

frame. Bootstrap method can address this problem.



The Bootstrap method originally introduced in [15] is a general resampling technique for estimating the distributions and CIs 

of statistics from identical independent observations. Comparing with the Monte Carlo method, the bootstrap method has the 

following advantages: ①the bootstrap method uses the original samples as the population to resample, whereas the Monte Carlo 

simulation resamples by setting up a random sample generation process with known values of the parameters; ②The distribution of 

parameters is unnecessary for the bootstrap method, but it is essential for Monte Carlo method; ③The bootstrap method is a 

model-free method, while the Monte Carlo method is a model-dependent method. Using the Monte Carlo method to estimate the 

CIs of statistics requires the already known model. Due to the aforementioned advantages, the bootstrap method has been widely 

used in the power systems for available transfer capability (ATC) assessment [16] , electromechanical oscillation mode estimation 

[17], power system optimal scheduling[18], long-term operation planning[20], electricity price forecasting [20], electricity demand 

forecasting [21], wind power forecasting [22], distribution system reliability evaluation [23], and transmission reliability margin 

determination [24]. In this paper, the bootstrap method is introduced to provide the CI estimation of the coefficients of the TSRB 

approximation hyperplanes for the first time. An initial regression model for the TSRB approximation hyperplane is estimated 

using the original TSRB points tracked by RPF. Then, residual resampling is used to bootstrap the synthetic response variables 

based on the predicted values and the residuals which are calculated through the estimated initial regression model. Regressing 

these bootstrapped synthetic response variables on the fixed independent variables drawn from the original TSRB points, the 

coefficients of TSRB approximation hyperplane are solved. Repeat above procedure with large number of times by using 

resampling with replacement, the empirical distribution functions (EDFs) of the hyperplane coefficients are extracted, and then the 

bootstrap means, standard deviations and CIs of the coefficients for TSRB approximation hyperplane are estimated from the 

constructed EDFs of the coefficients. The major contributions of this work are as follows.

1) The CI estimation is introduced to estimate the TSRB approximation hyperplane, and further measure the quality and reliability 

of the estimated results.

2) A bootstrap regression model for the TSRB approximation hyperplane is developed and solved by residual resampling to obtain 

the means, standard deviations and CIs of the coefficients of the TSRB approximation hyperplanes.

The rest of this paper is organized as follows. Section 2 reviews the characteristics of TSRB with N-1 contingency. Section 3 

proposes a hyperplane-based approximation approach to approximate the TSRB to build the TSR. Section 4 develops a bootstrap 

based CI estimation approach to solve the approximation hyperplane. Section 5 validates the performance of the developed 

methods by using the numerical simulations in China Southern Grid (CSG). Finally, Section 6 draws the conclusions.

2. TSR with N-1 Contingency
In power grid, the set of the thermal constraints of the branches can be expressed as [25], [26]: 



 (1) max max: ,T k k k ki i i i k       R B

where，T is a set of the thermal constraints for all the branches in the power grid; B is a set of branches; ik is the current on the kth 

branch. The superscript max means the upper limit of the current on the branch.

According to the thermal constraints of the branches expressed in (1), the TSR of power grid can be defined as a set of 

operation points which satisfy the power flow equation constraint and thermal constraint. Hence, the TSR can be represented as 

   (2)  : , , 0n
T k Ti f    D R x y

where, T is TSR of power gird; f (x，y) is power flow equation；x is a vector of state variables in power grid；y is a vector of 

power injections at buses; D is a vector of descriptor variables reflecting the most influential or understandable combinations of 

parameters that influence the system security margin such as current on branch, power flow on the certain path, total generation, 

total area load, voltage of bus; n is the dimension of D.

In practical power grid, the operators not only concern the thermal security problem at current operation point, but also pay 

attention to the thermal security post N-1 contingency at the operation point. Therefore, the TSR of power grid satisfying the N-1 

contingency can be formulated as：

 (3)  : , , , 0n
T k Ti f     D R x y

where  is a set of N-1 contingency.

According to the definition of TSR with N-1 contingency as in (3)，it can be inferred that, for the critical operation point on 

the TSRB, there is at least  one branch at the critical status of the thermal security.
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Fig.1 Thermal stability region boundary proximated by hyperplanes

3. TSRB Approximation 

In the power grid, although a set of the thermal security critical points with N-1 contingency on the TSRB can be tracked by 

using RPF or OPF, there is rarely existing an exact analytical expression to discrible this boundry. Hence, the tracked TSR is 



inefficient to guide the power grid operators in operation. To address this issue and implment the TSR on the power gird operation, 

the authors of [11] points out that the TSRB can be approximated by hyperplanes.  Fig.1 shows the TSRB with multiply thermal 

secutiry constraints approximated by hyperplanes, and the hyperplanes approximating TSRB can be  described as a set of equalities 

[26] 
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where k=[k,0, k,1, , k,n] is the coefficient vector of kth hyperplane approximating the TSRB with respect to  the thermal 

constraint of the kth branch;  is a vector of descriptor variables at the thermal security critical point on  nkkkk ddd ,2,1, d

the TSRB with respect to the thermal constraint of the kth branch; is the upper limit of current on the kth branch；n is a max
ki

dimension of TSR。

With the approximated TSRB in (4), the current operation point,  can be simply assessed for the thermal  nddd ,,, 21 d

security in case of any N-1 contingency. If  satisfy the set of linear inequalities in (5), the power grid can be  nddd ,,, 21 d

considered as thermal secure in case of any N-1 contingency [3], [4]. Otherwise, a thermal security violation might happen. 
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It is obvious that the TSRB approximated by hyperplane in (4) is very convenient for evaluating the power grid thermal 

security, calculating the thermal security margin, identifying weak elements influencing the security margin and potentially 

providing useful information for making control decisions. However, Determining the coefficients of hyperplanes in (4) is critical 

for the application of TSR. Currently, the general method to solve the coefficients of hyperplanes is to explore the huge volume of 

TSRB points with multiply stress directions by RPF, then estimates the coefficients of hyperplanes as (6) by using LSE

(6)  1max T TT
k k k k ki


 D D D L

where  is a set of TSRB points with respect to the thermal constraint of the kth branch, ， ikkkk ,2,1, ,,, dddD   1,1, ,1 LL

.nL R



Using (6), all the coefficients of hyperplanes approximating the TSRB with respect to the thermal security of the concerned 

branches with N-1 contingency are solved, and the TSR with detailed hyperplane expression is then acheived.

Further, to evaluate the approximation accuracy of TSRB by using the hyperplane, the relative error is defined as [27]:

(7)
max

,0 ,1 ,1 ,2 , ,
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Theoretically, the more precisely the hyperplane approximates the TSRB, the more TSRB points are required. However, more 

TSRB points mean more computational time in TSRB point tracking. To address this issue, a bootstrap-based CI estimation 

approach is developed in this work to determine the accurate coefficients of hyperplanes which approximate the TSRB precisely.

4. Bootstrap based CI Estimation for TSRB Approximation Hyperplane 
As mentioned earlier, the TSRB can be approximated by hyperplanes via the LSM, and the approximation accuracy depends 

on the number of the TSRB points, however, tracking huge amount of TSRB points will aggravate the computational burden which 

is an obstacle for TSR online application. Moreover, the LSM, a typical point estimation method, is unable to evaluate the 

quality and the reliability of the estimated results. To deal with these issues, a bootstrap based CI estimation is developed in this 

section to solve the coefficients of the TSRB approximation hyperplanes.

4.1. Bootstrap method

The bootstrap method originally developed in [15] is a very general resampling technique for estimating the distributions of 

statistics based on independent observations by sampling an original observation dataset with replacement to create large number 

of datasets. It has been successfully demonstrated in mathematics, statistics, physics, engineering, behavioral and life science. The 

general idea of bootstrap is based on resampling from a given sample set. Given a set of independent and identically distributed 

(IID) observation x=x1, x2, , xm and dataset θ(x) statistically estimated from x=x1, x2, , xm. Using the basic bootstrap method 

to estimate the mean   and standard deviation  of θ(x) can be summarized as follows:

1) Randomly draw s samples from a given observation dataset x=x1, x2, , xm where m> s to form a bootstrap dataset xi
=x1, 

x2, , xs.

2) Repeat 1) r times with replacement from that original samples x to obtain r bootstrap datasets x=x1
, x2

, , xr


3) For each bootstrap dataset, estimate the statistic of interest θ(xi
), and then a statistic vector θ=θ(x1

), θ(x2
), , θ(xr

) is 

achieved by using the bootstrap resampling;

4) Construct a sampling empirical distribution function (EDF) of θ(x) from the estimated statistic vector θ , in which the mean 

 and standard deviation  in the EDF of θ(x) are
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5) Approximate the mean  and standard deviation  in the EDF of θ(x) by using the constructed EDF in step 4).

According to the basic bootstrapping procedure above, it is concluded that applying bootstrap to estimate the distributions of 

statistics is very convenient. It is a straightforward way to derive standard deviations and CIs of estimators for parameters with 

complex distribution. Therefore, the bootstrapping has been widely used in the regression model estimation, machine learning, data 

mining, etc. Due to different goals of application, several types of bootstrap scheme were developed such as bayesian bootstrap, 

parametric bootstrap, resampling residuals, wild bootstrap, block bootstrap, etc. The bootstrap approach in this work is employed 

to solve the regression model for the coefficients of hyperplane. Therefore, the bootstrapping regression model is used here and 

solved by the resampling residuals [28]. Take a simple regression model y=+x as example, using the residual resampling to 

estimate CIs around the regression coefficients   and  of the regression model can be briefly summarized below [28], [29], [30]:

1) Estimate initial regression coefficients 0 and 0 on the original samples through  ; ,y x         
1

0 0 = , , ,T T 


1 1 1， y x x x

2) Use the estimated initial regression model y=0+0x to calculate the predicted values and residuals where the predicted values 

 and the corresponding residuals .0 0=i iy x   i i iy y  

3) Formulate the EDF of residuals by using the calculated residuals where m is the number of original  1 2, , , m   L

samples.

4) Bootstrap s residuals from the vector of residuals  and use these ones to create a bootstrap dataset which contains s synthetic 

response variable yi
s. That is, add a randomly resampled residual j drawn from the set of residual values  to each predicted 

values yi,hence, .*
i i jy y  

5) Regress these bootstrapped y∗s on the original x to obtain bootstrap regression coefficients  and through k
 k



 with the samples drawn from the bootstrap dataset. For each bootstrap dataset, both       
1

= , , ,T T
k k k


      1 1 1， y x x x

coefficients  and  are estimated. The values of the estimated regression coefficients  and will be different in each k
 k

 k
 k



bootstrap iteration but the independent variable observations are unchanged from the original sample. 

6) Repeat 4) and 5) with large number of times r, r bootstrap datasets are created. For each bootstrap dataset, the  and  are k
 k



solved. Therefore, for the created r bootstrap datasets, the coefficient vectors of  and , which are 

and   are obtained respectively. 1 2= r
       L， ， 1 2= r

       L， ，
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7) Calculate the bootstrap means and standard deviations of the regression coefficients  and  via (8) by using the estimated 

vectors of  and , and  . 1 2= r
       L， ， 1 2= r

       L， ，

8) Solve the 95% CIs for the means and standard deviations of the  and  as:

(9)
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where t is Student's t distribution and is chi-squared distribution.2

4.2. Bootstrap Based CI Estimation for TSRB

Comparing the bootstrapping regression model above and the hyperplane expressions in (4), it is confirmed that the 

expression of the TSRB approximation hyperplane is a regression model essentially and the hyperplane coefficients, i.e., the 

regression coefficients can be solved using the resampling residuals. Apply the bootstrap-based CI approach to estimate 

coefficients of the TSRB approximation hyperplane, the item in (4) should be rewritten as the following general form

(10)1 1 2 -1= n nd d d     L

where ; and . max
,1k ki   1 ,2 ,1- k k    1 , ,1-n k n k   

Take the  as the output of the regression model and , , , and  as the inputs of the regression model, the 1d 2d 3d nd

 is indeed a general regression model and the coefficients  , 1, 2, , and n-1 in (10) can be hence solved by 1 1 2 -1= n nd d d     L

the bootstrap based CI estimation approach. Following the procedure of the bootstrap based CI estimation approach for 

bootstrapping regression model in section 4.1, given a set of TSRB points  with respect to the thermal  ikkkk ,2,1, ,,, dddD 

constraint of the kth branch, the bootstrap based CI estimation for the coefficients of hyperplane approximating TSRB with respect 

to the thermal constraint of the kth branch can be described as follows.

1) Estimate the initial coefficients of hyperplane 0, 1,0, 2,0, , n-1,0 via  in which      1

0 1 0 -1 0 1, , , = T T
n k k k k


  L， ， d d d d

 by using the given set of TSRB points .,2 ,3 ,, , ,
T

k k k k i   1 Ld ,d d d  ikkkk ,2,1, ,,, dddD 

2) Pass the original TSRB points  through the initial hyperplane model  to  ikkkk ,2,1, ,,, dddD  1 0 1 0 2 -1 0= n nd d d      L， ，

generate the predicted values .1
d



3) Calculate the hyperplane residuals s via by using the original  and the predicted values .1, 1,i i i
 = d d 1d 1

d

4) Formulate the EDF of residuals by using the estimated residuals .

5) Regenerate s residual samples js from the estimated EDF of , and add these resampled residuals js randomly drawn from the 

set of residual values  to the predicted values  to create a bootstrap dataset which contains s synthetic response variables 1
d *

1id

.*
1 1= +i i jd d  

6) Regress the bootstrapped  on the fixed , the hyperplane coefficients , , , and  are *
1id ,2 ,3 ,, , ,

T

k k k k i   1 Ld ,d d d *
1 *

-1n

estimated via .  1* * * *
1 -1 1, , , = T T

n k k k k


    L d d d d

7) Repeat 5) and 6) r times, r bootstrap datasets are created. For each bootstrap dataset, the hyperplane coefficients , , , and *
1

 are all estimated. Finally, the hyperplane coefficients vectors  , , , *
-1n 1 2= r

       L， ， 1 1 1 1 2 1,= r
       L， ，， ，

and  are achieved.1 -1,1 -1,2 -1,=n n n n r
   

     L， ，

8) For each hyperplane coefficient vector, calculate there EDF of the hyperplane coefficient via (8), hence, the means and 

standard deviations for the bootstrapped coefficient parameters are obtained.* * *
1 -1, , , n    L

9) Calculate the CIs of the means and standard deviations for the hyperplane coefficients , , , and through (9) based on *
1 *

-1n

the EDF.

10) Approximate the means s and standard deviations s in the EDFs of , 1, 2, , and n-1 by using the constructed EDF and 

CIs in 8) and 9)

It should be noted that the residual sampling is a model-dependent method which means the estimation results are subject to 

the initial estimated regression model. Big errors in the initial estimated model might affect the CI estimation significantly. 

Therefore, the CI estimation must be interpreted properly.

5. Case study
In this section, the China Southern Power Grid (CSG) is used as a benchmark to evaluate the performance of proposed 

approach for TSRB approximation. CSG, as shown in Fig.2, is one of the largest AC/DC hybrid transmission systems in China. It 

includes the power networks throughout Guangdong (GD), Guangxi (GX), Yunnan (YN), Guizhou (GZ) and Hainan (HN) 

provinces with a total service area spanning 1 million square kilometers and a population of 252 million. In CSG, most of power 

generated in YN, GZ and GX is transmitted to the load center in the GD through AC/DC parallel ties over 1,000 kilometers. The 

transmission corridors from west to east consist of 10 HVDC links and 8 AC interties. Years of operation experiences indicate that 



the thermal security of AC interties seriously threatens the operation security of CSG with inter-area oscillations and multiple 

HVDCs blocking simultaneously [26]. 
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To facilitate the situational awareness of CSG in thermal security, the TSR of CSG with N-1 contingency is developed in this 

section using the proposed approach. Although there are more than thousands of branches in CSG, the thermal security of interties 

dominates the thermal security of CSG.  Hence, the TSR of CSG developed in this work will focus on the interties which 

interconnect the provincial power grids in CSG.  According to the AC corridor partition in CSG and the historical experience of 

operation, the interties Yulin-Maoming (YM), Maoming-Dielin (MD) and Guilin-Xinlinshan (GS) on the AC import corridor of 

GD are subject to thermal violations due to the operating alternations. Note that YM and MD locate in the southern import corridor 

of GD while GS is in the northern import corridor of GD. In this section, the TSR of CSG with respect to the thermal constraints of 

YM, MD and GS are developed. The descriptor variable d1 in this TSR is selected as the total active power on the AC import 

corridor of GD, and the descriptor variables d2 and d3 are selected as the injected active power from buses which significantly 

influence the power flow on the interties YM, MD and GS.

5.1. TSR with respect to thermal constraint of YM

In this section, the TSR with respect to thermal constraint of YM considering N-1 contingency is investigated. According to 

the CSG operational experiences and security analysis, the injected active power of PV bus YX and TS influence the power flow on 

YM significantly. Therefore, the descriptor variables d1, d2 and d3 in this TSR are selected as the total active power on AC corridor 



of GD, active power injections on bus YX and TS, respectively. For the studied interties and the determined descriptor variables, 

60 TSRB points with respect to thermal constraint of YM are tracked via RPF with different stress directions. Using the these 60 

TSRB points as original dataset , an initial hyperplane expression (also named regression model) d1=0+1,0d2+2,0d3 is solved kD

through LSE, where 0=9343.7499, 1,0=0.3224 and  2,0=0.9135. 
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Fig.3 d1 predicted by initial hyperplane expression Fig.4 Residuals calculated by initial hyperplane expression

Pass the original d2 and d3 to the solved hyperplane expression, a series predicted d1 is obtained and shown in Fig.3. 

Comparing the predicted d1 with the original d1, the residuals  are calculated via step 3) in section 4.2 and shown in Fig.4.  

Randomly bootstrap s residuals from the calculated residuals  with replacement to create synthetic d1
, a bootstrap dataset is 1,k

d

obtained. Here, s is set to be the number of the original TSRB points. Hence, the number of synthetic d1
 in  is s.  Regress these 1,k

d

bootstrapped d1
 in  on the original d2 and d3, the statistics , and  are calculated via step 6) in section 4.2. Following 1,k

d k
 1,k

 2,k


step 7) in section 4.2, repeat above process r times where the r is set to be 100000, 10000 bootstrap datasets are achieved. For each 

achieved bootstrap dataset , regress the synthetic d1
s in  on the original d2 and d3, the , and  are all estimated. 1,k

d 1,k
d k

 1,k
 2,k



Therefore, estimated hyperplane coefficients vectors , and 1 2 100000=       L， ， 1 1 1 1 2 1 100000=       L， ， ，， ，

are obtained.2 2 1 2 2 2 100000=       L， ， ，， ，

Table 1 EDFs of coefficients and computational times compared with different samples
TSRB with respect to Intertie Coefficient of hyperplane mean CI for mean Std CI for Std

 9343.7427 [9343.7289,     9343.7562] 3.1172 [3.1083,      3.1276]
1 0.3224 [0.3223,                 0.3224] 0.0047 [0.0046,      0.0047]YM
2 0.9135 [0.9135,                 0.9136] 0.0068 [0.0067,      0.0068]

For the obtained coefficients vectors , and , the means and  standard deviations of  , and , as well as their CIs  1
 2

  1
 2



are estimated through steps 8 and 9 in section 4.2, and the results are listed in Table 1. It is clear that the means of , and   1
 2



fluctuate around 9343.7427, 0.3224 and 0.9135 with narrow Cis, respectively, and the standard deviations of , and  are  1
 2



also around 3.1172, 0.0047 and 0.0068 with narrow Cis, respectively. Based on the narrow CIs of means and small standard 

deviations, accuracy of the estimated coefficients for the TSRB approximation hyperplane could be validated. Moreover, the 

narrow CIs also demonstrate that the proposed bootstrap based CI estimation performs with high quality and reliability for the 

estimated coefficients of TSRB approximation hyperplane. 



In the aid of the estimated means and  standard deviations of  , and  in Table 1, the EDFs of ,  and  are  1
 2

  1
 2



obtained as N(9343.7426, 3.11712), N(0.3223, 0.00472) and N(0.9135, 0.00682), respectively. Hence, the EDFs for  1
 2



the coefficients of the TSRB approximation hyperplane are N(9343.7632, 3.12332), N(0.3223, 0.00472) and N(0.9135, 1 1 2

0.00682). According to estimated EDFs of the coefficients of the hyperplane, it is obtained that the expression of the hyperplane 

approximating the TSR with respect to the YM with N-1 contingency is d1=9343.7426+3.1171d2+0.9135d3. Using the estimated 

expression of the hyperplane, the TSRB with respect to the thermal constraint of YM is approximated and shown in Fig.5.  As can 

be seen, almost all the TSRB points are on the approximation hyperplane, which demonstrates that the estimated hyperplane 

performs a good fitting for the TSRB.
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Fig.5 TSRB with respect to YM approximated by the estimated hyperplane

To further evaluate the approximation accuracy of the proposed approach quantitatively, Fig.6 scatters all the predicted d1 on 

the two-dimensional active power space with predicted d1 and actual d1 as axis. It is obvious that the predicted d1 matches the actual 

d1 very well. Fig.7 further shows the residuals between the predicted d1 and actual d1. As can be seen, the maximum and average 

residuals among the calculated residuals in Fig.7 is 30.0068MW and 7.6152MW, while their corresponding relative maximum and 

average errors are 0.3211% and 0.0805%, respectively. Through the comparisons and discussion above, it is concluded the 

hyperplane estimated via the proposed bootstrap based CI approach can approximate the TSRB precisely.
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5.2. Choice of repetition times

As mentioned above, the repetition times r in the bootstrap based CI estimation significantly influence the approximation 

accuracy. In order to achieve the more accurate EDF of statistic, a large number of bootstrap datasets r is required. There is a 



tradeoff between the estimation accuracy and computational efficiency. The larger number of bootstrap datasets drawn, the more 

computational time cost, and vice versa. Hence, the influences of the repetition times on the approximated results are discussed in 

this section to facilitate the selection of appropriate values to balance the approximation accuracy and computational efficiency. 
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Fig.8 EDFs of coefficients for approximation hyperplane estimated with different repetition times
As described in procedure of the bootstrap based CI estimation in section 4.2, Fig.8 illustrates the estimated EDFs of 

coefficients of the approximation hyperplane as well as their CIs with the drawn 60 samples for each bootstrap dataset and the 

repetition times r to create the number of bootstrap datasets increasing from 1,000 to 200000 by the proposed bootstrap based CI 

estimation. It is clear from Fig.8 that, for the EDF of , the CIs of  and  range from  [9343.4835, 9343.8769] and [3.0372, 

3.3157] with 1000 bootstrap datasets to [9343.7371, 9343.7645] and [3.1129, 3.1322] with 200000 bootstrap datasets, respectively. 

For the EDF of , the CIs of the mean  and standard deviation   range from  [0.3221, 0.3226] and [0.0045, 0.0049] with 1000 1


bootstrap datasets to [0.3223, 0.3224] and [0.0046, 0.0046] with 200000 bootstrap datasets respectively. For the EDF of , the CIs 2


of  and  range from  [0.9131, 0.9139] and [0.0067, 0.0072] with 1000 bootstrap datasets to [0.9135, 0.9136] and [0.0067, 

0.0068] with 200000 bootstrap datasets respectively. Comparing the trends on the estimated CIs of the mean s and standard 

deviation s for the ,  and  with bootstrap datasets increasing in Fig.8, it is found that ranges of the CIs for the mean s  1
 2



and standard deviation s of the ,  and are shrinking to almost constant ranges with the bootstrap datasets increasing.  1
 2



This is inferred that the more bootstrap datasets drawn in the procedure of the proposed bootstrap based CI estimation, the more 

accurate EDFs of ,  and  estimated. However, the more bootstrap datasets drawn, the more computational time costs.  1
 2



Table 2 Computational time and EDFs of coefficients compared with different repetition times
EDF of   EDF of  1

 EDF of  2


r
       1

   1
   2

   2
 

Computational 
time /s

1000 9343.7397 3.0327 0.3224 0.0048 0.9134 0.0066 0.1738
2000 9343.8348 3.1753 0.3223 0.0047 0.9134 0.0068 0.3271
5000 9343.7958 3.1125 0.3223 0.0047 0.9135 0.0068 0.7759
8000 9343.8028 3.1326 0.3223 0.0046 0.9134 0.0069 1.0918
10000 9343.8300 3.1219 0.3222 0.0047 0.9135 0.0068 1.3764
50000 9343.7917 3.1261 0.3223 0.0047 0.9135 0.0068 6.8254
100000 9343.7759 3.1069 0.3223 0.0047 0.9135 0.0068 12.9190



150000 9343.7922 3.1117 0.3223 0.0047 0.9135 0.0068 19.3382
200000 9343.7817 3.1095 0.3223 0.0047 0.9135 0.0068 25.3918

The estimated results and the computational time with different bootstrap datasets are compared in Table 2. It is obvious that 

the EDFs of the ,  and  are slightly influenced by the number of bootstrap datasets, while the computational times are  1
 2



significantly increased from 0.1738s with 1000 bootstrap datasets to 25.3918s with 200000 bootstrap datasets. Note that the CIs for 

the EDFs of the ,  and  in Fig.8 are decreased with the number of bootstrap datasets increasing, and the shrunk CIs mean  1
 2



higher quality and reliability of the estimated results. Comparing the trends on estimated CIs of EDFs, it can be seen that the ranges 

for the CIs are almost constant with the number of bootstrap datasets greater than 100000. Therefore, considering the estimation 

accuracy, reliability and computational efficiency in the proposed approach, the number of repetition times r is set to be 100000 in 

this work. 

Table 3 EDFs and CIs for the coefficients of hyperplanes approximating TSRB with respect to YM and MD
Number of hyperplanes TSRB with respect to Intertie Coefficient mean CI for mean Std CI for Std

 9466.6411 [9466.4831,   9466.7992] 36.0632 [35.9518, 36.1753]
1 0.2966 [0.2881,                0.3051] 0.0548 [0.0545,      0.0549]1 YM and MD
2 0.4409 [0.4407,                0.4412] 0.0526 [0.0525,      0.0528]
 9343.7427 [9343.7289,     9343.7562] 3.1172 [3.1083,      3.1276]
1 0.3224 [0.3223,                 0.3224] 0.0047 [0.0046,      0.0047]YM
2 0.9135 [0.9135,                 0.9136] 0.0068 [0.0067,      0.0068]
 11380.3234 [11380.2436, 11380.4033] 2.2203 [2.1640,      2.2770]
1 0.3708 [0.3707,                 0.3708] 0.0078 [0.0077,      0.0078]

2

MD
2 -2.0394 [-2.0395,              -2.0393] 0.0228 [0.0227,      0.02229]

5.3. TSRB with respect to thermal constraints of YM and MD

The performance of the proposed approach evaluated in section 5.2 proves that the proposed approach can estimate an 

appropriate hyperplane to approximate the TSRB with respect to thermal constraint of one intertie precisely. In this section, the 

proposed approach is used to approximate the TSRB with respect to thermal constraint of multiple interties. The CSG operation 

reports point out that the injected active power at bus YX and TS significantly affects the power flow on intertie MD which may 

violate the thermal constraint with N-1 contingency in CSG. Hence, with the same descriptor variables in Fig.5, the TSRB with 

respect to thermal constraints of YM and MD is approximated by the proposed approach. The original TSRB points with respect to 

these two interties with N-1 contingency are tracked by RPF and shown in Fig.9(a). First, one hyperplane is employed to 

approximate the TSRB with respect to these two interties. The EDFs of the coefficients for the hyperplane approximating TSRB 

with respect to YM and MD are estimated and shown in Table 3. Although the expression of TSRB approximation hyperplane, i.e., 

d1= 9466.6411+ 0.2966d2+ 0.4409d3, can be obtained using the estimated EDFs of coefficients in Table 3, the standard deviations 

for the estimated coefficients ,  and  are very large. Particularly, the standard deviation of  is 36.0632. From the  1
 2

 

estimated standard deviations and CIs in Table 3, it can be inferred that the estimated hyperplane has very poor approximation for 

the TSRB with respect to YM and MD. 
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Fig.9(a) shows the obtained TSR with the boundary approximated by the estimated hyperplane HP1. It is obvious that 

hyperplane HP1 cannot fit the TSRB very well.  Only very few original TSRB points are on HP1, and the rest ones are far from 

HP1. Using this TSR to evaluate the thermal security of the AC import corridor of GD will bring a lot of thermal insecure operation 

points into the TSR and exclude some secure operation points from the TSR. To cope with this issue, the general approach is to 

shift the approximation hyperplane from HP1 to HP2 as shown in Fig.9(a). Although this shifting approach can filter out all the 

thermal insecure operation points from the TSR, there are a few thermal secure operation points are separated into the thermal 

insecure region (TISR). As a result, false alarms will appear in the power grid thermal security monitoring. 

To address the above issue, the TSRB corresponding to thermal constraint of each intertie is approximated by one hyperplane. 

Thus, the intersection of all TSRs is the TSR with respect to all considered interties, i.e., YM and MD. Hence, the EDFs of the 

coefficients for the hyperplanes approximating TSRBs with respect to YM and MD are estimated via the proposed method 

respectively. The results are shown in Table 3. As can be seen, the approximation hyperplane of TSRB with respect to YM is 

d1=9343.7427+0.3224d2 +0.9135d3, and the approximation hyperplane of TSRB with respect to MD is 

d1=11380.3234+0.3708d22.0394d3. The standard deviations and CIs for the estimated coefficients ,  and  of these two  1
 2



hyperplanes are also listed in Table 3. Comparing the standard deviations and CIs for the estimated coefficients ,  and  of   1
 2



the approximation hyperplanes in Table 3, it can be found that standard deviations and CI intervals for the estimated coefficients , 

 and  decrease from one hyperplane approximating TSRB to two hyperplane rapidly. In particular, the standard deviation of 1
 2



decreases from 36.0632 with one approximation hyperplane to 3.1172 and 2.2203 with two one approximation hyperplanes. 

This indicates that TSRB with respect to each intertie approximated by one hyperplane can improve the approximation precision of 

TSRB. Correspondingly, the TSRB with respect to YM and MD using two hyperplanes is approximated and shown in Fig.9(b). 

Comparing the approximation hyperplane in Fig. 9, it is obvious that the hyperplanes in Fig.9(b) better fits for the TSRB with 

respect to the thermal constraints of YM and MD.
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Fig.10 Residuals of the TSRB with respect to YM and MD

To quantitatively compare the precision of the approximation in Fig.9, Fig.10 represents the calculated relative errors of Fig.9. 

As can be seen, using one hyperplane to approximate the TSRB with respect to YM and MD can cause big errors and the maximum 

relative error is 3.4566%, while using two hyperplanes to approximate this TSRB can improve the approximation accuracy 

significantly and the maximum relative error is only 0.3211%. This confirms that the TSRB with respect to each intertie requires to 

be approximated by at least one hyperplane. More interties considered in the TSR, more approximation hyperplanes are required.
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5.4. Application of TSR in CSG

The representations above not only confirm that the proposed bootstrap based CI estimation can accurately estimate the 

coefficients of hyperplane which can approximate TSRB precisely, but also verify the TSRB with respect to the thermal constraints 

of one intertie requires at least one hyperplane to approximate. In this section, the proposed approach is further employed to 

construct the TSR of CSG with respect to the thermal constraints of multiple interties to monitor the thermal security of the interties 

on the AC import corridor of GD. On AC import corridor of GD, beyond MD and YM, the GS which is part of the north AC import 

corridor of GD also may violate the thermal constraint with N-1 contingency because of CSG operation pattern. The security 

analysis and operation experience of CSG reveal that the power flow on YM, MD and GS are all significantly influenced by the 

active power injection from buses YX and TS, moreover, the power flow on MD and GS are also significantly affected by the 

active power injection from buses GPT and QBF. Hence, it is obvious that two TSRs should be formed to monitor the thermal 

security of the interties on the AC import corridor of GD in CSG. Referring to the previous choice of descriptor variables, for the 

former one, the total active power on AC import corridor of GD and active power injections from buses YX and TS are determined 

as the descriptor variables d1, d2 and d3 respectively to construct the TSR with respect to YM, MD and GS. For the latter one, the 



total active power on AC import corridor of GD and active power injections from buses GPT and QBF are selected as the descriptor 

variables d1, d2 and d3 respectively to form the TSR with respect to MD and GS

Table 4 EDFs for the coefficients of hyperplanes approximating TSRB with respect to YM, MD and GS
TSRB with respect to Intertie Coefficient of hyperplane mean CI for mean Std CI for Std

 9343.7426 [9343.2517,     9344.1933] 3.1172 [2.8315,      3.4692]
1 0.3223 [0.3217,                 0.3230] 0.0047 [0.0042,      0.0051]YM
2 0.9135 [0.9125,                 0.9146] 0.0068 [0.0061,      0.0076]
 11380.3234 [11377.5551, 11383.0832] 5.2147 [4.3383,      5.3581]
1 0.3708 [0.3697,                 0.3721] 0.0077 [0.0069,      0.0087]MD
2 -2.0394 [-2.0428,              -2.0360] 0.0228 [0.0202,      0.0255]
 10352.6275 [10351.8803, 10353.3229] 5.0804 [4.6290,      5.6036]
1 -0.1184 [-0.1190,             -0.1179] 0.0037 [0.0034,      0.0040]GS
2 -0.2500 [-0.2508,              -0.2492] 0.0057 [0.0053,      0.0064]

Following the proposed procedure above, the coefficients of the hyperplanes approximating boundaries of TSR are solved. 

For the TSR with respect to interties YM, MD and GS with the descriptor variables as total active power on AC import corridor of 

GD and active power injections from buses YX and TS, Table 4 lists the estimated EDFs for the coefficients of the hyperplanes 

approximating the TSRB with respect to these three interties. The expressions of the three hyperplanes approximating TSRB with 

respect to interties YM, MD and GS are d1=9343.7426+0.3223d2+0.9135d3, d1=11380.3705+0.3708d22.0394d3 and 

d1=10352.62750.1184d20.2500d3, respectively. Moreover, the approximation quality and reliability are evaluated by using the 

estimated standard deviations and CIs in Table 4. It can be concluded that the estimated hyperplanes can fit the TSRB with respect 

to TM, MD and GS very well. The corresponding TSR are approximated and shown in Fig.11. 

Table 5 EDFs and CIs for the coefficients of hyperplanes approximating TSRB with respect to MD and GS
TSRB with respect to Intertie Coefficient of hyperplane mean CI for mean Std CI for Std

 11380.3234 [11377.5551, 11383.0832] 4.2147 [3.3383,      4.3581]
1 0.3708 [0.3697,                 0.3721] 0.0077 [0.0069,      0.0087]MD
2 -2.0394 [-2.0428,               -2.0360] 0.0228 [0.0202,      0.0255]
 10019.3420 [10014.3396,  10024.8030] 2.6972 [2.4235,      3.0424]
1 0.2208 [0.2149,                  0.2273] 0.0399 [0.0362,      0.0449]GS
2 -0.2646 [-0.2721,               -0.2577] 0.0488 [0.0431,      0.0549]

For the TSR with respect to interties MD and GS, and the descriptor variables as total active power on AC import corridor of 

GD and active power injections from buses GPT and QBF, Table 5 lists the estimated EDFs for the coefficients of the hyperplanes 

approximating the TSRB with respect to these two interties. It is indicated from Table 5 that, the expressions of the two 

hyperplanes approximating TSRB with respect to interties MD and GS are d1=13443.96623.4791d20.6799d3 and d1= 

10019.3420+ 0.2208d20.2646d, respectively. Moreover, it is obtained from the estimated standard deviations and CIs in Table 6 

that the estimated hyperplanes can perform a good approximation for the TSRB with respect to MD and GS very well. Using these 

estimated hyperplanes, the corresponding TSR are approximated and finally shown in Fig.12.

Through the represented case studies for approximating thermal security region of China Southern Power Grid by using the 

proposed approach Bootstrap-based confidence interval estimation above, the advantages of the proposed approach over the 

existing method for building the thermal security region in bulk power grids can be concluded as follows

1)The approximation hyperplane, which is estimated by the proposed Bootstrap-based confidence interval estimation, 

exhibits a good performance to fit the TSRB precisely in bulk power grid validated by the above case studies.



2)The proposed Bootstrap-based CI estimation can significantly improve the computational efficiency of the TSRB 

approximation by using the residual resampling bootstrap method to create synthetic TSRB points rather than tracking TSRB 

points by RPF or OPF

3)The TSRB, corresponding to a thermal security limit of a certain intertie with N-1 contingency, should be approximated by 

one or several hyperplanes. For more thermal security limits of interties, the more hyperplanes are needed to approximate the 

TSRB.

4)Comparing the existing methods for estimating the hyperplanes to approximate the boundary of thermal security region in 

bulk power grids, the proposed approach can realize to evaluate the quality and reliability of the TSRB approximation results by 

using the estimated standard deviations and CIs for the coefficients of TSRB approximation hyperplanes.

5)The proposed Bootstrap-based CI estimation can be used to build the TSR of practical power grid with high penetration of 

intermittent renewable energy to strengthen the situational awareness of power system in thermal security monitoring and control. 

6. Conclusion
A bootstrap based CI estimation approach is developed in this paper to estimate the coefficients of hyperplanes approximating 

the thermal security region boundary with N-1 contingency in bulk power grid and improve the situational awareness in power 

system thermal security monitoring and control. The proposed method uses the original tracked thermal security region boundary 

points to estimate the coefficients of the TSRB approximation hyperplane by approximating the distributions of the hyperplane 

coefficients through the random sampling with replacement. In departure from the previous region boundary approximation 

methods as a point estimation method, this work further employs standard deviations and CIs of the estimated hyperplane 

coefficients to measure the quality and reliability of the estimate results. Results of simulation on the CSG prove that the proposed 

method can obtain hyperplanes to fit the TSRB accurately and show great prospect of practical application in bulk power grid. 
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