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Abstract

We develop a mathematically rigorous theory for the quantum transfer processes
in degenerate donor-acceptor dimers in contact with a thermal environment. We
calculate explicitly the transfer rates and the acceptor population efficiency. The
latter depends critically on the initial donor state. We show that quantum coherence
in the initial state enhances the transfer process. If the electron is initially shared
coherently by the donor levels then the efficiency can reach values close to 100%,
while an incoherent initial donor state will significantly suppress the efficiency. The
results are useful for a better understanding of the quantum electron transport in
many chemical, solid state, and biological systems with complex degenerate and
quasi-degenerate energy landscapes.
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1 Introduction and main results

Electron transfer processes in chemical, physical and biological systems are often modeled based
on the assumption of a two-state donor-acceptor model. However, degeneracies or near degenera-
cies in the energy of the donor and acceptor levels are brought about generically, for example, by
space or spin coordinates [21, 22], and generally by the complexity of the molecules exchanging
the electron. This is the case, in particular, for electron transfer reactions in biomolecules [3, 25]
and chromophores in photosynthetic systems [20, 8]. To model this complexity, one should re-
place the two-state model by a two-level model having degenerate energy levels. The degeneracy
of the donor and acceptor levels may be due to a complicated energy landscape with an effective
potential exhibiting multiple minima at equal energies, but corresponding to different values of
additional ‘coordinates’. In this situation, one may view those minima as different ‘sites’ (e.g.
spatial positions) where the electron can be localized, see Fig.1. One is then immediately lead
to questions regarding the influence on the transfer process caused by quantum interference, co-
herence and localization or delocalization of the electrons (excitations) to be transferred. With
regard to biology, it was discussed in [5, 24, 9] (and references therein) that degeneracy plays an
important role in the functional robustness and adaptability of biological systems. The notion
of degeneracy is understood and used differently in various publications on that topic, but a
common statement is that degeneracy leads to a significant decrease of fluctuations, rendering
the performance of biological systems more stable.

Energy 1

Fig.1: Energy landscape, three degenerate minima and generalized coordinate X.

The goal of the current work is to analyze the dependence of the transfer process, such as
its rate and efficiency (the amount of population transfer from the donor D to the acceptor A),
on the initial state and the number of degenerate states for D and A. To start a systematic
analysis of these questions, we propose to study here a simple mathematical model, in which the
energies within the donor and the acceptor are exactly degenerate, the direct donor-acceptor
matrix elements are chosen, for simplicity, to be the same between any donor and acceptor site,
and where the DA complex is subject to the influence of a thermal environment. We use the
formalism of quantum electrodynamics. In the current work, we consider a situation close to
equilibrium, meaning that the DA complex is in contact with a single thermal reservoir. It is
possible to extend our formalism to the non-equilibrium situation and include several reservoirs
at different temperatures, giving rise to out of equilibrium stationary states with non-vanishing
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energy fluxes through the DA system connecting the reservoirs. It has been proposed in [23] that
such a setup can be used to exhibit experimentally the energy degeneracies in certain chemical
compounds.

The parameters of the model are: the donor and acceptor energies Ep, Fa, with their
respective degeneracies Np and N4, the direct matrix element V between any pair of donor
and acceptor sites and the DA-environment interaction strength A\ and temperature, 7. Even
though our technique, the dynamical resonance theory, works as well for a DA system coupled
strongly to the environment [18], we consider in the current paper the parameter regime of weak
coupling to the environment, characterized by

N < |Ep—E4|, and X < |V
Our main results are summarized as follows:

1. We trace out the thermal environment and find the reduced density matrix of the DA
system. We use a mathematically rigorous time-dependent perturbation theory in A and
find the explicit form for each matrix element of the reduced DA density matrix, valid for
all times ¢ > 0, with an error O(\?) which is independent of t and Np, N4 (Theorem 1.1).

2. We analyze the dynamics of the reduced DA density matrix and show that:

— There is a manifold of explicit invariant states (Remarks 1.1).

— For large times, the DA density matrix approaches an explicit final stationary state
which depends on the initial DA state, (1.32).

— The dynamics of all DA reduced density matrix elements (populations and coher-
ences) is irreversible, determined by explicitly calculated decay rates (Theorem 1.1
and Section 1.4). The decay rates are independent of the initial DA state and of Np,
N 4. Generically, the populations in the stationary state are not thermal (no Gibbs
distribution) and coherences in the stationary state do not vanish.

— Define the transfer efficiency to be the acceptor population in the stationary state
(for large t), when starting out completely unpopulated. We show that the transfer
efficiency depends critically on the quantum properties of the initial state. A coherent
spread of the electron position over the donor sites in the initial state enhances the
transfer efficiency dramatically, see Section 1.5.

— The coupled DA reservoir dynamics leaves a two-dimensional DA space invariant.
Namely, there are two fully symmetric states |D) and |A) (see (1.9)) such that if we
take initial states of the form ppa ® pr g, where pr g is the reservoir equilibrium at
inverse temperature 3 and pp4 is any density matrix of the form pp4 = a|D){(D| +
blA)(A| + ¢|D)(A| + ¢|A)(D|, then the following happens. The reduction to the
DA system of the full state at time ¢ is again of the form ppa(t) = a(t)|D){D| +
b(t) | A)(A] + c(t)| D) (A] +2(t) | A)(D].

However, if the initial DA state is not from this precise two-dimensional subspace,
then the DA state ppa(t) explores all directions in Hilbert space and does not stay
within the span of {|D),|A)}.



AlP

Publishing

— We show that the fluctuation of the single donor site population (averaged over
all sites) is proportional to 1/(Np)?. This is in accordance with the central limit
theorem and shows that bigger system size implies smaller fluctuations. This means
that in our simple degenerate donor-acceptor model, fluctuations in electron transfer
are significantly suppressed for large systems. Even though we use a simple (and
quantum mechanical) model, our findings coincide with those found in the literature
on biological systems (e.g. [5, 24, 9]), as mentioned above in the introduction.

3. We outline in Section 1.7 what happens in quasi-degenerate systems, where the donor
and acceptor levels are not all at the same energies, but may vary within energy bands
of size § which are narrow compared to the size of the noise, § << A\?. We argue that
two time scales will emerge. On the first one, oc A™2, the dynamics is very close to that
corresponding to the degenerate situation. On a much larger second time scale, < A\2/62,
the DA system will feel the effect of the energy spread and converges to a final equilibrium
state. This picture is supported by previous results, in [16] where Np = 1 and N4 = 2
was considered, and in [7] where Np = 1, N4 is general, but the noise is classical. A
rigorous study of the quasi-degenerate regime is planned.

Let us now present the model and results in more detail (see Section 2 for further mathematial
detail). We consider Np donor states (sites) coupled to N4 acceptor states (sites) via a direct
matrix element V' (see Fig. 2) and subject to the noise of a heat bath consisting of a collection
of quantum harmonic oscillators, described by the total Hamiltonian

H = Hg + Hg + AG ® o(h). (1.1)

The system Hamiltonian Hg and interaction operator G are

Np Na

Hy = EpY |DiDj|l+Ea A (Al + VY (JAD;| + D) (Al),  (1.2)
j=1 k=1 gk
Np Na

G = gp > IDiNDjl+9a> | Ac)(Akl, (1.3)
j=1 k=1

where |D;) and |Aj) are the states in which the jth donor (site) and the kth acceptor (site) is
populated, respectively and Ep, E4, V and gp, ga € R are constants. The reservoir Hamilto-
nian is that of a field of independent harmonic oscillators, indexed for concreteness by k € R3
(continuous modes),

Hy = /RB w(k)a* (k)a(k)d>k, (1.4)

with dispersion w(k) = |k|.! The creation and annihilation operators satisfy the canonical com-
mutation relations [a(k),a*(k")] = 6(k — k’). The constant A in (1.1) is the coupling parameter

!The dynamical resonance theory established in [16, 13, 14], upon which the present work is based,
uses the form w(k) = |k|. This dispersion relation corresponds to the quantized electromagnetic field.
It is possible to modify the analysis to deal with a class of different dispersion relations. We plan on
elaborating on this elsewhere.
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and @(h) is the field operator

1
V2 Jrs

The form factor h € L?(R3,d%k) is a square-integrable function. The size of h(k) determines
how strongly the mode (oscillator) k is coupled to the DA complex. Of course, (1.4) and (1.5)
are the continuous versions of the discrete mode analogues

o(h) (h(k)a* (k) + h.c.)d’k. (1.5)

Hgp = Zwka};ak, o(h) = \}i Z (hyaj, +h.c.), (1.6)
k

k

which are often used in the literature, and where the continuous mode limit is taken in quantities
of interest after all. We start off directly with a continuous mode reservoir.

The Hamiltonian Hg, (1.2), describes a DA system with high symmetry, having the two
properties:

(S1) The energy of each site within the donor and the acceptor is constant, equal to Ep and
FE 4, respectively.

(S2) The direct matrix element between each donor and acceptor site is the same, V.

This symmetry has direct consequences for the dynamics, which we explain in Sections 1.1
and 1.2. We discuss in Section 1.7 how the present situation can be viewed as a starting point
for the analysis when the donor and acceptor energies fluctuate around the values Fp and E 4
and so does the coupling V', and what to expect in this case.
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Fig.2: In Hg, each donor site is coupled equally to each acceptor site.

1.1 Symmetry induced manifold of stationary states
The Hamiltonian H, (1.1) is block-diagonal,

H=Hgg®Hp, ®Hy,. (1.7)
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We now explain the three independent blocks. Heg is the Hamiltonian of an effective dissipative
two-level system with pure state space

Hs = span{|D),[A)}, (1.8)

spanned by the uniformly populated donor and acceptor states,

R 1 da
|D) = \/N—Djz::l 1Dj), |A) = \/]TA; | Ak)- (1.9)

The effective Hamiltonian is

Heg = Ep|D)(D|+ EalA)(A|l +v(|A)(D| +|D){A|) + Hr
+X\(gp|D)(D| + galA)(A]) ® p(h), (1.10)

where the effective direct coupling matrix element is given by

v=V+/NpNy. (1.11)

It follows from (1.10) that H.g leaves the Hilbert space Hg ® F invariant, where F is the Hilbert
space of the reservoir. In particular, we have the following. The DA density matrix at any time
will be a state on the two-dimensional space Hg if the initial DA matrix is. For instance, if the
donor is initially homogeneously populated, in the state |D)(D]|, then the DA density matrix at
all times is simply a 2 x 2 matrix on Hg, a mixture of pure states involving only |D) and |A).
However, as soon as the initial state does not lie within this effective two-state subspace, whose
invariance is protected by symmetry, the evolution of the DA system explores all parts of the
Hilbert space. We thus introduce the following.

(a) Hp, is the space of all linear combinations of {|D1),...,|Dn,)} which are orthogonal to
| D).

(b) Hay is the space of all linear combinations of {|A41),...,|An,)} which are orthogonal to
|A).

The Hamiltonians Hp, and H,4 in (1.7) have the form
HXJ_:EX]ls+HR+)\gxlls®<,0(h), X:D,A. (1.12)

They act, respectively, on the Hilbert spaces Hp) ®F and H 4 ®F, where F is the Hilbert space
of the environment. The polaron transformation for quantum oscillators is given by conjugation
with a unitary displacement operator, T' = exp{)_, aja; —h.c.} = eV2ivle) (see (1.6)), where
ap € C. It is defined equally well for continuous mode systems. It is well known that, choosing
ay = —iAgxhy/wi and denoting the resulting displacement operator by T'x, the Hamiltonians
Hx | in (1.12) are unitarily equivalent to the uncoupled but renormalized reservoir Hamiltonians,

TxHx,Tx = Hr + (Ex — $)%gx|h/vw|*)Ir, X =D, A. (1.13)

(We explain more details for instance in the proof of Lemma 2.2 below.) Note that modulo
the additive constant, the right side of (1.13) is simply Hg, the Hamiltonian of the uncoupled

6
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reservoir alone. This means that there exist a multitude of invariant states. Namely, let pr g be
the reservoir equilibrium state, where 3 is the inverse temperature. Then e 7R pp 5 iR = pp 5
and (1.13) implies

e—itHXL (|w><w‘ ®T)*(,0R,,8TX)€RHXL — |¢><w‘ R T)*(,ORﬂTXy Vi e Hx,. (1.14)

This leads to the following fact.

Remarks 1.1 (Stationary states due to symmetry) For X = D, A, introduce the
displacement operators Tx = e~ V2Agx¢(ih/w) - Then

1. All density matrices of the form ps @ (T'xpr,gTx ), where ps is any mizture of pure states
taken from Hp, , are stationary states. All density matrices of the form ps ® (Tx pr,gTx ),
where pg is any mixture of pure states taken from Ha,, are stationary states.

2. Let py = e "Hpoe™ be the evolution of an initial DA-reservoir density matriz py. In
open systems without degeneracies, where there is a unique stationary state (the coupled
DA-reservoir equilibrium), one expects that generic initial states py converge to the equi-
librium for large times. However, in the present situation, due to the existence of multiple
stationary states, the asymptotic state (ast — 0o) depends on the initial state.

The invariant reservoir part is

V2iAgx w(ih/W)p —V2iAgx plih/w)

Txprplx =e R,3€

in which the ‘naked’ state pr g is ‘dressed’ with excitations due to the interaction with the DA
system (arbitrarily many additional excitations are created in the reservoir, all in the single
particle wave function x h/w).

The first point in Remarks 1.1 identifies an invariant manifold of dimension dimHp, +
dimHs, = Np + Na — 2. The dimension of the total system is, of course, infinite. The
stationary states identified above are brought about by the symmetry of the Hamiltonian. We
will see that there is exactly one more stationary state (for A # 0), which is the equilibrium
state of the whole, interacting DA-reservoir complex. The second point of Remarks 1.1 is an
obvious general fact for dynamical systems with multiple stationary states.

1.2 An a priori consequence for the dynamics

Due to the decomposition (1.7) the propagator is block-diagonal as well,
e = eTitHer pg 4 e tHDLpp ) e iHALD, | (1.15)

Here, Pog = |D)(D| + |A)(A| and Pp,, P4, are the orthogonal projections onto Hp; ® F and
Ha1 ® F, respectively, defined in (a), (b) before (1.12) above. Consider initial states

psr(0) = po ® pr,s, (1.16)

where pg is an arbitrary density matrix of the donor plus acceptor and pgr g is the reservoir
thermal equilibrium at temperature 7' = 1/8 > 0. Take now for pp a mixture of pure states

7
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from the linear span of {|D1),...,|Dn,)}, so that in particular, only donor sites are populated.
Let O be an observable of the donor alone, meaning that the matrix elements of O involving
any |Ay) vanish. Then we have

po = (|D){D|+ Ppi)po(|D){D|+ Ppi),
O = (IDYD|+Pp1)O(|D)(D|+ Pp.). (1.17)

The expectation value of O at time ¢ is given by
(0), = tr(e*itH(pD ® pr.g) € (O ® nR)). (1.18)
Due to (1.17) the propagators e* in (1.18) are sandwiched between projections,
(ID)(D| + Pp )™ (|D)(D| + Pp.) = |D)(D|e= | D)(D| + e=HrLPp | . (1.19)
This leads to four terms in (1.18),
(0), = tr(|DNDIe | D)(D](py © pr,s)| D) (DI |D)(D](0 @ 1) )
+x(|D)(Dle 1 D)(D] (0 @ pr )1 P (O @ 1))
tx (P Py (po @ pr,g)| D) (DI D)(D|(O & Ty )

+tr(eiitHDJ-PDJ_(p() ® pRﬁ’)CitHDJ‘PDJ_(O & ]IR)>. (1.20)

The Hamiltonian Hp, does not depend on any quantity describing the acceptor. Also, (D|eT#Heft| D)
depends on acceptor quantities only through the energy E4 and the effective direct coupling v
(see (1.11)). Hence so does the right side of (1.20).

We make the following definitions.

o The population of the donor (site) k is defined by (|Dy)(Dgl),. This is the probability of
occupation of the kth donor site at time ¢

e The coherence between the donor sites k and ¢ is defined by (|Dy)(Dyl),, for k # £.

From the discussion in this subsection, we thus have the following.

Remarks 1.2 Suppose that the initial DA state pg is supported entirely on the donor, i.e.,
(Aklpo|Ae) = 0 = (Dk|po|Ae) for all k, L. Then

1. The population of each donor site and the coherences between any two donor sites, depend
on the acceptor only via E4 and v, but are independent of N4, for all times.

2. The asymptotic state of the donor is independent of N, but it depends on the initial DA
state (c.f. point 2 of Remarks 1.1).

In view of point 2, we investigate in this paper, in particular, how the initial donor state
influences the transfer efficiency of the process (i.e., how much population weight is transferred
from an initially populated donor to the initially empty acceptor).

8
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1.3 Main result: Time evolution of the DA system

For all following results, we are assuming a technical condition on the coupling function h €
L*(R3,d%k) defining the interaction in (1.1). Define hg € L*(R x S?, dudX) by

_ U 1/2 h(it, E)a u > O,
s, ) =\ [ 7 o= Ul { “h(—w%) <0, (1.21)

with (u,%) € R x S? and where h on the right side is expressed in spherical coordinates k=
(w,X) € Ry x S?. The technical condition we assume is this:

(T) There exists a §p > 0 such that § — hg(u —6,%) has an analytic extension (as a function
from R to L2(R x 5?)) to 0 < Imf < 6, and that the extension is continuous at Imf — 0.

Condition (T) ensures that the dynamical resonance theory developed in [16, 13] is applicable.
A family of form factors h satisfying condition (T) is given by

h(r,2) = rPe™ hy (),

with p=1/2+4n, n =0,1,2,... and where hy is an arbitrary real function of the angle ¥ € S2.
Condition (T) has physical implications which are discussed in [13]. In particular, it implies
exponential decay (in time) of the reservoir correlation function. By modifying the method of
analysis (replacing analytic spectral deformation theory by Mourre theory [10, 11]), one can
relax the analyticity property a lot and only demand the existence of some derivatives in u
of hg(u,X) along the real line, which in turn corresponds to a polynomially decaying reservoir
correlation function. A detailed account of this improvement is in preparation.

Define
Hs = Ep|D)(D| + EalA)(A] + v(]A)(D| + |D){A]), (1.22)

which is the DA part of Heg for A = 0 (see (1.10)). Its diagonalization is

Hs = e1]pr) (1] + ealp2) (w2l (1.23)
where
ep = %{ED +Es++(Ep—Ea)?+ 4112}7
e = %{ED+EA— \/(ED—EA)2+4’U2}. (1.24)
and?

1
P12 =
Vv2+ (e12 — Ep)?

(01D) + (€12~ Ep)|4)). (1.25)

We consider a fixed, but weak coupling between the DA and the noise,

)\2 < e —eg = \/(ED — EA)2 + 492, (1.26)

2Note that lim, ¢ [o1){p1| = |D)(D| and lim,_sq |p2){@2| = |A)(A].
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The DA density matrix at time t is obtained by the reduction of the full DA-reservoir state,

—z'tH(

pi = Trr (e7" (po @ pr)e™™), (1.27)

where the partial trace is taken over the reservoir degrees of freedom.

Our main result is Theorem 1.1 below, which gives the DA density matrix p; at all times
t > 0. It gives explicitly every density matriz element (populations and coherences) of p; for
arbitrary initial DA states. For convenience, let us recall here the definition of the following
projections.

1. Pp, is the projection onto Hp, which is the space of all pure DA states |¢)) which are
linear combinations of {|Dk>}£]:D1 and which are orthogonal to |D), (1, D) = 0.

2. P4, is the projection onto H 4, which is the space of all pure DA states |¢) which are
linear combinations of {|Ag>}£[:‘“1 and which are orthogonal to |A), (1, A) = 0.

3. Ps is the projection onto the effective two-level Hilbert space, Hg = span{|D), |4)} =
span{[¢1), [¢2)}-

We also introduce the effective two-level equilibrium Gibbs state as
e_ﬁHS

m, (1.28)

ps,B =
a 2 x 2 density matrix acting on Hsg.

Theorem 1.1 (Dynamics of the reduced DA density matrix) Let py be an arbitrary ini-
tial DA density matriz and set

Pro = |pr)(pel, (1.29)

where p1, w2 are the eigenvectors (1.25). The reduced donor-acceptor density matriz at time
t > 0 is given by

_ L (3)
pt = Tr(poPs) ps,p + PoipoPpi + PaipoPai 4+ 2Re €4 Py poPp (1.30)
eitsf)
e P e P Pripg P11 — e P2 Py pgPra — e 7“1 Piapo Pa1 + €' Paopo Pos
., (3) ., (s) ., (s)
+2Re e'ter Poopo P11 + 2Re Z e'te2 PpipoPss + 2Re Z e'te2 PAJ_pOP(S_Q)(S_Q)
s=1,2 s=3,4

+0(N?),
(s)

where the error is uniform int and Np, N4. The resonance energies e; are complex numbers,

all having strictly positive imaginary parts, satisfying Imags) x A2. Their explicit values are
given in Section 1.4.

Remarks. (1) The resonance energies 55-8) depend on the following parameters: the DA
effective energies ey, e2, the coupling parameters A, gp, g4, the reservoir spectral density J(w)
(see (1.39)) and the temperature. They do not depend on Np nor on N4, nor do they depend

10
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(s)

on the initial state pg. It follows that the imaginary parts of € j
decay in the process, are independent of Np, N4, pg.

(2) The ‘topology’ of the error is understood as follows. Denote the main term on the
right side of (1.30) by p}, so that p; = p} + O(A?). Then for any DA observable X, we have
Tr(psX) = Tr(pjX) + Ry(X), where |Ry(X)| < CA2?||X||, with a constant C' independent of
t,X,Np,Ny4.

(3) Another expression for p; is obtained by defining ; = e=P¢ ., j=1,2, and using that

, which determine the temporal

T
r1+x

The right side of (1.30) can be rewritten,

(P11POP11 + PrapoP21) +

Tr(poPs) ps,p = (Pa1poPra + PazpoPaz).

x2
xr1 + X2

Pt = Po
1— ezteg )
e [xl{P22,00P22 — PiapoPor} + zo{Pr1po P11 — P21p0p12}}

—2Re (1 — Ztal )PQQpQPll — 2Re ( — Zt54 )PAJ_p[)PDJ_
—2Re 3 (1— e ) PpipgPus — 2Re S (1= € ) Pat po Pl y(so2)
s=1,2 s=3,4
+O(N?). (1.31)
The form (1.31) of p; shows immediately that the main term on the right side reduces to pg for
t=0.
(s)

One readily sees that the main term on the right side of (1.30) has unit trace. As Ime;” > 0,
the formula (1.30) is directly exhibiting the asymptotic state,
Jim py = Tr(poPs) ps,p+ PpipoPpi + PaipoPar + O(N?). (1.32)

Recall the definitions of donor populations and coherences given after (1.20).

Proposition 1.2 (Donor populations and coherences) Set

[polss' = (s, popsr) s=1,2 (1.33)
where @19 are given in (1.25). Define also

o= 5D (1.34)

v
For all k, 0 =1,...,Np, we have

o (2) 1 1 — a2 _662 _ —661
(Dgs ptDy) = (Dy;, poDe) — (1 — eiter’ )— a” e "2[pof11 — e [polaz

(1.35)

Np1+a? e~Per 4 e=Pez
2 |af ®
e 1— ztsl
Np1l+a? Re(l —e ool
i)y
o Z [ o 7't€2 <Dk7PDLp0PssD€> + ( —€ e ) <Dk’PSSPOPDLD€>}
s=1,2
+0()\?).
11
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Remarks. (1) The variation of each single matrix element (D, p;Dy) during the transfer
process is typically O(1/Np) since Zévfl (Dg, ptDy;) = trpy < 1. Therefore only a macroscopic
group of donor sites can undergo a significant change (of the order one, not O(1/Np)) during
the transfer process. The same holds for acceptor sites.

(2) It follows from (1.24) that @@ = —1, a relation which allows us to replace

easily @ by —1/a in our calculations.

It follows from (1.35) that

1 1—a? e Pepg)11 — e P pglan

Hm (Di, ptDg) = (D, poDy) — Npl+to? e—Be1 4 o—fes
_ 2 o Re[poja1 — L (Dk, Pp1poD) — L (D, poPp1 D)
ND1+OZ2 vNp ’ vNp ’
+0(\?). (1.36)

The last two contributions to the main term on the right side of (1.36) are obtained from the
sum over s in (1.35) by using that >° _, o Pss = [D)(D] +[A)(A[, 50 > _; 5 Pss|Dj) = ﬁ\D)

1.4 Process rates

According to Theorem 1.1, the rates determining the decay of the dynamics are the imaginary

(s)

parts of the resonance energies € - We give here their explicit expressions, which depend on
the matrix elements of the interaction and on the spectral density of noise at the frequency zero
and the transition frequency |e; — eg| of the effective two-level system. More precisely, set

G = gp|D)(D| + galA)(A| (1.37)
and denote its matrix elements in the basis {1, p2} by

gpv? + gale; — Ep)(ej — Ep)

[Glij = (wi, Gpj) = . (1.38)
\/(v2 + (ei — Ep)?) (v2 + (ej — Ep)?)
Also, introduce the spectral density of the reservoir J(w) by?
Jw) =5 [ B w20 (1.39)
4 52
and define Jw)
~ ) w
J(0) = wlg&r — (1.40)

*The definition is J(w) = /5 tanh (ﬁw/2)6’(w), where C(w) = \/% Jp e “tC(t)dt is the Fourier
transform of the symmetrized reservoir correlation function C(t) = %[<eitHR<p(h)e_itHR<p(h)>B +

<g0(h)eitHRg0(h)e_itHR>B}. Here, (-) 5 is the average in the reservoir thermal state.

12



The explicit expressions for the resonances appearing in (1.30) are:

. 2, 4 = =~ =
o = X[ S (G +GBo) T0) + Gl coth (Sler — el /2) T(ler —eal)]
553) e1 — es + N(z12 + iy12),
1) 2 2 Lia0 7 ~2 J(ler —ea|)
62 el —ED+)\ .T1+21)\ <5[G]11J(0)+[G]12‘1_e—,@(61—62)|)’
2 _ 2 a2 liA2 T ~2 J(ler —ea])
52 = €9 — ED + A i) + 2iA (B[G]ZQJ(O) + [G]12‘1_€ﬁ(61—62)‘)’
e = Ep—Ea-N(EL - EX)p, (1.41)
where we set 2 % J(w)
w
w= W/o 5 coth(Bw/2)dw (1.42)
and where the real numbers x1, x2, x12 and yi2 are given by
z = (90— [Glm,
z2 = (9p — [Gl32) s
9 _ _ ~ _
Y2 = B([Gﬁl +[G)35 + 2[G]1,) J (0) + 2[G]3; coth (Bler — e2]/2) J(|e1 — eal),
_ _ 0 2 [ J(w) _ga,
T2 = ([G]gz— [Gﬁl)ﬂ— [G]%27T/0 L)e A coth(fw/2)dw
2 o0 1 1
—— P.V. h 2 — . 1.4
20 PV [T I oD (- e e (149

3)

The other two resonances appearing in (1.1) are &,

(21) and 5&2)

(4)

and €5’. They are obtained from the

above in (1.41) by replacing Fp with F4 and gp with g4.

According to (1.41), the relaxation rates Tme!?

Remark. j only depend on the spectral
density of noise J(w) at the frequencies w = 0 and w = |e; — ez|. Consequently, due to (1.39),
these rates only depend on the coupling function h(w) at these two frequencies. Nevertheless, in
order to be able to derive Theorem 1.1 one must assume that h is a square-integrable function,
ie., [ps|h(w, ) Pw?dwdS < oo, for otherwise, the Hamiltonian (1.1) cannot be defined as an
operator. In particular, the form factor h must contain an wultra-violet cutoff to guarantee
integrability for large values of w, even though this cutoff does not appear in the second order

expressions (in \) for the relaxation rates.

expressions of €

1.5 Transfer efficiency

The total donor population at time t is given by

(1.44)
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and we call the final donor population the quantity lim; . pp(t) = pp(o0). Let p1,...,pnp,
be a given probability distribution, 0 < p; <1, Zj p; = 1. We consider two families of initial
states associated to {p;}:

(inc) The incoherent (classical) superposition pi,. = Z;VZDl pi|D;){(Djl,
(coh) The coherent (quantum) superposition pure state peon = [1) ()|, where |¢b) = ZjV:Dl VPiID;).

For both choices (inc) and (coh), the initial donor population is pp(0) = 1. The incoherent
Pinc May come about due to the prior contact of the donor with a decohering agent, making
its density matrix diagonal. The coherent pure state |¢)) can be produced by applying to the
donor molecule a short impulsive pulse of polarization é, resulting in the initial donor state
|De) o< &3, fij| Dj), where fij is the transition dipole moment vector of D; [19]. Then |De)(De|
is of the form peop.

The von Neumann entropy of the quantum state pi,. coincides with the entropy of the
probability distribution {p;}, given by — Zj pjlnp;. The quantum state pinc, being pure, has
zero von Neumann entropy. Nevertheless, we can view the entropy of {p;} as a measure for
the coherence in peop. It is maximal (= In(N)) for the uniform distribution p; = 1/Np, j =
1,...,Np, and it is minimal (= 0) when exactly one p; is one and all others vanish.

In this section we show the following.

(1) The final donor population for the incoherent initial state is independent of how the donor
is populated initially. For the initially coherent superposition the final donor population depends
on {p;} and is minimized (best transfer efficiency) for the uniform distribution, p; = 1/Np, for
all j, at which the entropy of the initial distribution {p;} is maximized.

(2) The final donor population for the incoherent initial state is always larger or equal to
that for the coherent initial state. Equality holds if and only if a single donor site is initially
populated, i.e., for {p;} having minimal (= zero) entropy. We conclude that coherence in the
initial state increases the final acceptor population.

(3) At large temperatures, T >> e; — eg, the final donor population is at least 1 — O(1/Np)
for large Np and so the transfer is suppressed. At low temperatures, T' << e; — eq, the final
donor population for the initially incoherent state is again at least 1 — O(1/Np) for large Np.
However, for the initially coherent state, it can reach values close to zero (perfect population
transfer).

Here and below in this section, we understand that we give the expressions for all populations
modulo O(\?). To show the above mentioned results, we start by using Proposition 1.2 to get

B e 1 — a? e Pe [pol11 — e~ P [p0]22
pot) = pp(0) = (1 =™ )7 = her o pes

|al jte(®)

—21 + o2 Re(l — e )[po]gl

—2Rez da- ¢ ) (Dy, P poPssDy) - (1.45)
k=1s=1,2
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This gives the asymptotic value

pp(c0) = lim pp(t)
1—a? e P2 [po]11 — e P [po] 2 ol
= pp(0) — Y e—Per 1 o—Pez e Re[pol12
9 b
- Re (Dy, Pp1poD) . (1.46)
VAND (=

A direct calculation yields the following results.

(INC)

(COH)

For the initial state pinc, (1.46) becomes

1 1 e Pean? 4 e Pe
" Npl+a2 ePe4 e Bea

PD,inc(00) = (1.47)

The final donor population is independent of the distribution {p;}. At high and low
temperatures, (1.47) reduces to

1
1—— T -
2ND, >>e1 — €9
DD inc(00) & . (1.48)
l—-—n—— T < — es.
No(l+a2) & Sa7@

For the initial state peon, we have

1 1 e Paqg? 4 e Pe

Np )
() =1 = N e (VIR (149

Now the final donor population depends on {p;}. The Cauchy-Schwarz inequality gives

Np 9 Np Np
(3 am) = (321 (3200) - o a
k=1 k=1 k=1
and equality holds in (1.50) if and only if p = 1/Np for all k = 1,..., Np. This shows
that the acceptor population (=1 —pp con(00)) is maximized for exactly one initial donor
distribution, namely, the uniform one, in which the excitation is most delocalized. In
particular, the transfer is most efficient for the distribution {p;} having mazimal entropy
(= log Np), namely the maximal final acceptor population is given by

. 1 e Perg? e Pe
pgax =1—min pD,coh(oo)

{0} T 1+0? e PP

, (1.51)

with the minimum over the {p;} is achieved uniquely for the uniform distribution.

Since \/pr > pr we have (Zivfl VPr)? > 1 and equality holds if and only if exactly one
of the pj, equals one and all other ones vanish. Therefore, the relations (1.47), (1.49) and
(1.50) show that

pD,coh(OO) S pD,inc(OO)
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for any {p;}, with equality if and only if {p;} is supported on a single site. This case is
the one of minimal (namely zero) entropy of {p;}. We conclude that coherence among
the initial donor sites enhances the transfer efficiency.

At high and low temperatures, (1.49) reduces to

Np 2 1
1_<Z\/]T]€> m, T>>€]_—€2
k=1
pD,coh(OO) ~ (1.52)

Np 9
1
1= (X vm) v T<ea—e
; P) Np+a2) = ST

Consider the low temperature regime with p, = 1/v/Np. Then pp con(00) = 1— H% For
a = 0 we have total depletion of the donor, namely pp con(00) = 0. What is the smallest
value of a? Setting

A
A=FEp—FEs>0, n:=

— >0
2v T

we get from (1.34) and (1.24) that

a=aln) =—-n+/n2+1. (1.53)

The function 1 — «(n) is strictly decreasing and so it takes its minimum for n — oo,
where a(o0) = 0. The condition T << e1 — ea = VA? + 40?2 = 2v4/n? + 1 becomes for
large n simply T << A. Therefore, in the regime

I<rv<A, T<xA

we have pp con(00) ~ 0.

The dynamics of a donor coupled to acceptor levels in a related model are studied in [7]. There,
a single donor level is coupled to N4 acceptor levels at possibly different energy levels. The
donor is coupled to each acceptor level by the same, scaled interaction (V — V/v/N in (1.2),
so V is replaced in the Hamiltonian (1.2) by v, see (1.11)). The noise acts on each donor and
acceptor level (is diagonal in the adiabatic DA basis), similar to (1.1) and (1.3), however, in [7],
the noise is classical (commutative), given by a stochastic process (telegraph noise). For this
model and a degenerate acceptor (N4 levels, all at the same energy, as in our situation), it is
shown in [7] that the final donor population is 1/2. This coincides with our finding. Namely, for
Np =1 (as in that paper) and high temperature (which is believed to be modeled by classical
noise), the donor population given in (1.48) (or equivalently in (1.52)) is also 1/2.

1.6 Population fluctuations

In this section we use our results on the dynamics to show that the variance of the population
of a single averaged donor level is proportional to 1/(Np)?, at each fixed time. This means
that increasing the system (donor) size decreases the population fluctuations of the single donor
level. We show how this stability property occurs in accordance with the central limit theorem.
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In the previous sections, we have analyzed the averages (expectation values) of the donor
population, for instance, (1.44) is the average of the population of all donor sites and similarly,
Tr(p¢|Dy)(Dyl) is that of site k alone. The quantum measurement operator associated to the
population of donor k is the projection | Dy )(Dy|. Let Xj be the corresponding random variable,
that is, the measurement outcome upon measuring the population of site k. Here X takes the
values 0 or 1 and its average and variance, at time ¢, are given by

(Xk) = Tr(pe|Dg)(Dgl) = (D, pt D), (1.54)
Var(Xy) = ((Xp)?) — {(Xp)® = (Xi) — (Xi)%. (1.55)

The last equality is due to (Xj)? = X}, as this random variable takes on the values 0 and 1
only, or equivalently, since |Dy)(Dy]| is a projection. The random variable

1 Mo

Fxp = 5 ; (Xk — (X)) (1.56)

is called the fluctuation of the single level population. It characterizes how much, averaged over
all sites (as we take the weighted sum over k), the population of a single level deviates from its
average value. Fy, has average zero and the standard deviation, which is the square root of its
variance, measures by how much, typically, the site population deviates from the average.

We now calculate the variance of Fly,,. Since its average vanishes, we have

Var(Fy,) = ((Fnp)?)
1 I

= Gt D0 - ()’
k=1

_ pp(t)(1 —pp(t))
= (Np)? . (1.57)
The last equality holds since
Np
> (Xi) =pp(t) (1.58)
k=1

is the total donor population, defined in (1.44). Relation (1.57) means that the population
fluctuations decrease as a function of the size Np of the donor. Note that the relation (1.57)
holds in general — we did not use the explicit form of p; or pp(t). Nevertheless, for the specific
model considered in this paper, we can use our explicit form for the donor dynamics, (1.45), and
so we have an explicit expression for the variance of the fluctuation at each moment in time.

Link to the central limit theorem. For a sequence Yy, £k = 1,2,... of independent
random variables, having average (Y%) and variance Var(Yy), the central limit theorem states
that [2]

N 12 N
(Zvaf(yk)> (Y= (¥i) ~ N(O,1), (1.59)
k=1

k=1
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where N(0,1) is a normal random variable with mean zero and variance one.* The ~ means

convergence in distribution, as N — oo. For (1.59) to hold the Y} are not only supposed to be
independent but, strictly speaking, they must also satisfy a certain technical Lyapunov condition.

Without checking this condition, nor addressing the independence of the X} introduced in
(1.55), we can see what the result of the central limit theorem would imply when applied to X}.
Namely, (1.59) gives, for Y} replaced by X,

Np Np 1/2
Z(Xk_ (Xg)) ~ <2Var(Xk)> 2 N(0,1). (1.60)
k=1 k=1

Next, from (1.55),

Var(Xy,) = (X) — (Xp)? < (Xp) (1.61)
and so

Np Np

> Var(Xp) <> (Xi) =pp(t). (1.62)

k=1 k=1

Dividing (1.60) by Np on both sides, taking the variance on both sides and using the bound
(1.62) gives, for large Np,

1

Var(Fl,,) = G ; Var(Xj) <

pp(t)
(Np)*

(1.63)

This finding, based on an application of the central limit theorem, is consistent with our exact
formula (1.57). It shows in particular the correct scaling in Np.

INlustration. Let us take the initial DA state to be pg = |D)(D|, in which all Np donor
levels are populated, each with equal probability 1/Np, see (1.9). Using that (Xj) = (Dg, p:Dx)
and (1.35), we obtain®

M 2 _ M M 2
(Xk) = Nyt O(A\°/Np),  Var(Xj) N (1 7ND) + O(A°/Np), (1.64)
where p is independent of k and Np, given by
L2 1 —a? 1 e Per
=ut) = 1—(1-¢™ [ — ]
202 3)
—ﬁ [1 — e_ﬂm613 COS (t Re 553))} . (165)

4Note that in case Var(Y}) = o is the same for all k, (1.59) reduces to Z,Ig\[:l(Yk7<Yk>) ~ VNaoN(0,1),
or, + Zszl (Ye—(Y%)) ~ \/#ﬁ (0,02). This last form of the central limit theorem is maybe better known.

®Note that the remainder term in (1.62) is O(A\?/Np), not just O(A\?) as one might infer from (1.35).
This is so for the following reason. If instead of taking the observable |Dy)(Dy| in the trace in (1.55), we
take Z,ivfl |Dy.) (Dy|, then our estimate for the size of the remainder is O(\?), independent of Np. This is
due to the fact that the remainder estimate depends only on the norm of the observable i}V:Dl | D) (Dl
which equals one for all Np. Hence the remainder for (Xj) in (1.62) is O(A?/Np), since when summing
it up Np times (for k =1,..., Np) we obtain a term O(\?) independent of Np.
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We conclude from (1.64) that
(Xy) =O(1/Np)  and  Var(Xy) = O(1/Np). (1.66)

On the other hand, we have from (1.57), (1.58) and the value of (X}) given in (1.64) that

Var(Fy,) = ”&Z)’;) +0(zz) = O(1/(Np)?). (1.67)

We conclude from (1.66) and (1.67) that the single level variance is by a factor Np larger than
that of the fluctuation of the average level (measured by Fi,).

1.7 Quasi-degenerate system, broken symmetry

Instead of (1.2), (1.3), one may consider a system where the symmetry is broken,

Np Na
Hs = Y (Ep+¢2))ID;)(Dsl+ > (Ea+m)|Ak) (Al
=1 k=1
+ 3 (V +vk) (JAR)(Dy] + [ D) (Ak), (1.68)
ik

NDJ Na

G = > 90+ )ID) D51+ > (94 + var)|Ak) (Akl, (1.69)
j=1 k=1

where €5, Mk, Vjk, YD,j, YA,k measure the deviation from the symmetric situation. For simplicity
of the discussion, consider v = vp j = yax = 0, so that the non-symmetric characteristics are
determined entirely by ¢;, n;, defining the donor and acceptor energy bands of size

op =max{le; —exl},  da = max{[n; —nkl}. (1.70)
The method of analysis used here can be extended to the regime
§ =max{dp,da} < N\ < |e1 — ea. (1.71)

The first constraint in (1.71) is called the narrow band regime. We note that the second inequality
in (1.71) is not necessary for our method to work. Indeed, in [18] we dealt with systems where A
is not constrained (including strong coupling). Let us for simplicity continue with the discussion
in the regime (1.71). One can carry out the spectral analysis of the resonances of the system
in terms of a perturbation theory in the two parameters 6 and X\, namely, 0/|e; — es| << 1,
A2/le1 — ea] << 1 and also §/\? << 1.

For a simplified model with one donor and two acceptor levels, we have done a detailed
analysis in [15]. In the general case considered here, we conjecture the same effects to hold.
Namely, there emerge two time scales,

tic A2 and  ty )\2/52 o tl()\z/é)z

satisfying
11 << tg.
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e For short times, t < ta, the system dynamics feels the energy spread 6 > 0 only as an O(9)
correction, whereas the interaction with the reservoir already drives irreversible dynamics.
In particular, at ¢ = 1, the system state has already decayed to a quasi-stationary state
which depends on the initial state. This quasi-stationary state is, modulo O(J), the final
state as predicted by the dynamics with § = 0.

e For intermediate times t; < t < to9, the system state moves away from the manifold of
quasi-stationary states (in a well prescribed way, with decay directions and speeds given
by resonance theory), See Fig. 3, and

e For large times t > ty, the system approaches a unique final state, which is the coupled
DA-reservoir equilibrium reduced to the DA part.

Initial state Final state

Fig.3: The two time-scales ¢; and t».

Of course, for the convergence to a unique final state to happen for ¢t > t5, one assumes that
the coupled system, for 6 > 0 and A # 0, has a unique stationary state (namely, the equilibrium
state). This is a condition on the interaction which is generically satisfied for systems without
symmetries (called the Fermi Golden Rule Condition), but is not satisfied in the presence of
symmetries.

The above picture is also observed in [7], where a DA model with general N4 and Np =1,
is subjected to a classical noise. It is found there that the dynamics of the acceptor population
has two time scales. On the first one, linked to the properties of the classical noise, the acceptor
population approaches the value 1/2. This coincides with the value our model gives here (the
degenerate case and at high temperature), as explained at the end of Section 1.5. Then, on the
second time scale T, o (Na/8)?, in [7] one finds equal population of all levels, hence a total
acceptor population of 1/(N4+ 1) (since Np = 1). This corresponds to the thermal equilibrium
value at very high temperature and is consistent with our prediction. The dependence of our
to (their 7nv,) on Np and N4 will be revealed by calculating the resonances by perturbation
theory in ¢ (small). This approach will work rigorously. However, whether we can obtain
rigorous bounds on errors valid for all values of Np and N4 in this perturbation theory remains
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to be seen. This might be a technical challenge. In the degenerate energy setup considered in
the present paper, this difficulty is dodged since the dynamics is reduced to invariant subspaces
as a consequence of the symmetry of the Hamiltonian.

2 Spectrum, resonances of the Liouville operator

The operator generating the full dynamics is the Liouville operator L. It is the equivalent of the
Hamiltonian H, but expressed in a different Hilbert space than that for H. Namely, L acts on
the purification Hilbert space of the initial state pg ® pr g, where pg is an arbitrary DA initial
density matrix and pg g is the thermal equilibrium of the reservoir.

2.1 The purification Hilbert space H

We refer to [16, 13, 14] for a detailed exposition of the material in this section. Let py be an
arbitrary density matrix on the DA system, acting on the Hilbert space

Hg = CNP @ CN4. (2.1)

The purification of pg is given by a normalized vector Vg in the ‘doubled Hilbert space’ Hg ® Hsg,
satisfying Tr(ppX) = (¥g, (X ® 1g)¥g) for any DA observable X € B(Hg). For example, the
explicit purification of the DA equilibrium state is given in (3.5).

Similarly, a well known purification of the equilibrium state of the quantum field of oscillators
is given by the so-called Araki-Woods representation of the canonical commutation relations
[1, 14]. It is given as follows. For a ‘single particle wave function’ f € L?(R3 d3k), define
fs € L*(R x S?,dudX) by

fa(u, %) = ﬁ \U‘l/Q { Ji(;;L(,_Ez)L: %) Z i 8’ (2.2)

(u,%) € Rx 52 and f on the right side is expressed in spherical coordinates k = (w, ) € Ry x 52,
The Araki-Woods, or thermal representation of the creation and annihilation operators a*(f),
a(f) is given by a*(f3), a(fs), which are simply the creation and annihilation operators acting
on the Fock space

F=Co@PL*n5"), hs = L3R x S?, dudy). (2.3)

n>1

n (2.3), b?sn is the symmetrized n-fold tensor product (Bosons). This is the purification of
the reservoir equilibrium state pg g (in the continuous mode, or thermodynamic limit). More
precisely, if P(fi,..., fx) is any polynomial of a*(f;) and a(f;), then

trr (pr.8P(f1,-- - fn)) = (R, P((f1)8; - - (f&)s)R) ,

where QR is the vacuum vector in F. Accordingly, the thermal field and Weyl operators are
defined by

o(fs) = —=(a"(fs) +alfs),  W(fs) =),

1
V2
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all acting on F. The total DA-reservoir Liouville (purification) Hilbert space is given by
H=Hs®Hs®F. (2.4)

Let X be a DA observable (an operator acting on Hg). The average of X at time ¢ is given
by

(X), = TTS+R((PO ®prp) e (X ® ﬂR)e_itH) = (Tp, (X ® Ig @ Ip)e " Tp),  (2.5)

where ¥y = ¥g ® Qg purifies pg ® pr g and where L is the Liouville operator, constructed from
the Hamiltonian (1.1), given by

L = Lg+ Lr+ M,

Ls = Hs®1Is®1r—1g® Hs® 1 r,
I = GRlIs®eph)—1s® G e(h). (2.6)

The 1g is the identity operator on Hg. The free field Liouvillian, given by
Ly = / u a*(u, X)a(u, X)dudX, (2.7)
RxS2

is self-adjoint for any value of A € R. This is proven for instance by using Glimm-Jaffe-Nelson
triples techniques, c.f. [6].

In (2.6) and in what follows, we simply write p(h) instead of (fz) for the thermal field
operator and we have introduced @(h) := @(hg(—u, ¥)). This quantity is related to the modular
conjugation Jg of the thermal field (see e.g. [1, 16] and also (3.22)), defined by

Tre(fp(u, D)) Jr = &(fs(—u, T)). (2.8)

The equilibrium state with respect to the interacting dynamics is represented in the purifi-
cation Hilbert space by the ‘interacting KMS vector’ (Kubo-Martin-Schwinger) [16]

e~ BlLotAGBIs@9(1)/20)g 5 @ QR

QsrpA = H6_5(L0+)‘G®HS®¢(}Z))/2QS,6 ® QRH’ (2.9)

where (c.f. (2.6))
Lo=Ls+ Ly. (2.10)

Here g 3 and Qg are the (purifications) of the system and reservoir equilibrium (KMS) states.
QR is simply the vaccum vector in F, (2.3) and the explicit form of (g 3 is given in (3.5).

2.2 Decomposition into invariant subspaces

We introduce the decomposition

Hs = Hs ® Hg, Hg = span{|D), |A)}, (2.11)

where Hg is the effective two-level DA space and we set Hg = (Hs)*. The operators Hg and
G, (1.3), are reduced (block-diagonal) in this decomposition,

Hs=Hs® Hy, G=GoG, (2.12)
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written in block form as
T ED v 7l EDl 0
HS_(U EA)’ HS_(O EA1>’
a gD 0 ~ 1 ng 0 >
G = , GL— (921 2 ). 2.13
(0 9A> < 0 |gal (213)
The diagonalization of Hg is given by Hg = >i—126€ilei)(pjl, et (1.25), (1.24). The de-

composition (2.11) induces a decomposition of the total Liouville Hilbert space (2.4) into four
parts,

Hi = Hs®@Hs® F,

4 — —
. Ho = HsH:®F,
_ . h 18 &7 2.14
H @1%], wit o = T oflseF (2.14)
! Hy = Hy @Hg @ F.
The Liouvillian L, (2.6), is block-diagonal in this direct sum decomposition,
4
L=L, (2.15)
j=1
with
Ly = Hy®1lg—1Ig® Hg+ Ly + \G ® 1 ® p(h) — Mg ® G® o(h), (2.16)
Ly = Hs®1ls—1s® Hy + Lg + A\G @ 1Is ® ¢(h) — Ms @ G+ @ $(h), (2.17)
Ly = Hy ®1g—1s® Hs + Lr + AG+ @ s ® p(h) — Ms @ G @ @(h), (2.18)
Ly = Hf ®1lg—1ls® Hf + Lg + A\G* @ 1s @ o(h) — Mg @ G+ @ 3(h). (2.19)

The various 1g in (2.16)-(2.19) are understood to be the identity operators on the appropriate
(sub-)spaces.

2.3 Spectral analysis of L

Due to the decomposition (2.15), (2.16)-(2.19), the spectrum of L is the union
4
spec(L) = U spec(L;). (2.20)
j=1

2.3.1 Spectrum and resonances of [

The operator L; describes the dynamics of an effective spin-boson system, that is, a two-level
system coupled to a bosonic reservoir. The dynamics of this system is not explicitly solvable,
but can be analyzed by perturbation theory in the setting (1.26).5

5We note that it is also of interest to consider the strong DA-reservoir interaction regime, characterized
by v << A2 << Ep — E4. This regime may be treated by first solving the problem for v = 0 and then
implementing a perturbation theory for small v, as has been done in [18].
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The purification of the the effective DA equilibrium state (1.28) is
Qg5 = Zsiém (6_561/2801 D1 +e P %0 ® 902> eHs @ Hs, Zsg=e 7 +eP2 (2.21)

When coupled to the reservoir, the effective two level system has an effective coupled equilibrium
state, which is given according to the perturbation theory of KMS (equilibrium) states by the
vector (in the purification Hilbert space)

QSR,,B,)\ — ZB*’}\/Qefﬁ(f{s@JIlsfﬂs®ﬁs+LR+)\G‘®]ls®<p(h))/2 (QS,E ®Q QR) c 7'_[8 ® 7'_[8 ® F, (2'22)

where (g is the vacuum in F and Zﬁ_}\/ ? is a normalization factor. By the construction of the
Liouville operator, we know a priori that

LiQgr g = 0. (2.23)

The eigenvalues of Hg are e; and eg, given in (1.24), with associated eigenvectors 1 2,
(1.25). The nonzero eigenvalues of Lg = Hs ® 1 — 1 ® Hg + Ly, acting on Hs ® Hg ® F, are
the simple eigenvalues +(e; — e) with associated eigenvectors @12 ® Qr and @91 ® Qr, where
V12 = ©1 D P2, Y21 = w2 ® 1 and (g is the vacuum in F. The other eigenvalue of Ly is zero
and is doubly degenerate with eigenvectors @11 ® Qr and @2 ® Qg, with 11 = ¢1 ® 1 and
P22 = Yo ® po. These eigenvalues are embedded in the continuous spectrum covering all of R.
As the interaction A\G @ 1s ®@ ¢(h) — Mg ® G ® ¢(h) is switched on, the above eigenvalues of Lg
become resonances, some of them acquiring non-vanishing imaginary parts. To describe them,
introduce [Gli; = (i, Gpj). A calculation gives

(Gli; = [Gl(eie)),

Gl(a,b) = gpv? +gala — Ep)(b— Ep) . (2.24)

V(2 + (a = Ep)?) (v2 + (b — Ep)?)

Lemma 2.1 The resonance energies and eigenvectors of L1 are as follows.

(A) Zero remains an eigenva_lue of L1 also for A # 0. Call it egl) = 0. The associated
eigenvector is the vector Qgsr gy (c.f. (2.22)), which has the expansion

QSR,B,)\ = Qsﬁ@QR—i—O()\z),

B —Be1/2 —Be2/2 7
Qsp = ¢ pute = SOZQ, Tre PHs = g=Per  o=Fez, (2.25)
’ VTre—5ls

The other resonance close to the origin is 552) =i)\?

eigenvector \Il?) ® Qr + O(N\?), where

(70+O(N\?)), with associated resonance

Yo = ;([Gﬁ1 +[G135) 7 (0) + 4[G35 coth (Blex — e2/2) J(Jex — eal),

eP12p) — P22y,
VePer 4 ePez '

(2.26)
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(B) A resonance bifurcates out of ey — ea. It has energy

and eigenvector p12 @ Qr + O(\2), with

9 _ o _
yi2 = B([G]%l +[G135 + 2[G]15) J(0) + 2[G]7, coth (Bler — e2|/2) J(ler — eal),
1, = ~ 1
o = ~5(GF = GB) PV. [ hatu D)y dus
Rx S2 u
I o (e P 1 1
—= P.V. h by — dudX.
2[G]12 V/RX52| slu )|{ u +u—l—zﬂ’2—€1 u+€1—62}u
(2.27)
(C) A resonance bifurcates out of ea — e1. It has energy
e = ey — e + A2(—a10 + iyr2) + ONY) (2.28)

with resonance eigenstate pa1 @ QR + O(A?). The x12, Y12 of (2.28) are given in (2.27).

Proof of Lemma 2.1. The arguments are standard within resonance theory, see [16, 12,
13]. We explain them without giving the explicit calculations.

(A) The state Qs s@Qg is a KMS state (equilibrium at temperature 1/3) w.r.t. the dynamics
generated by Li|x—o. By perturbation theory of KMS (equilibrium) states, we know that Qgg .
is a KMS state for L; and hence LJ)SR,@ » = 0 also for A # 0. This shows that the eigenvalue
at the origin persists under perturbation. To track the fate of the remaining part of the twofold
degeneracy of zero as an eigenvalue of Lo (restricted to #Hi), we utilize perturbation theory.
Namely, the resonance energies and eigenvectors are obtained from the level shift operator

Ay = —)\2P0IP0(LO + i0+)_lp()IPO, (229)

where P is the eigenprojection of Ly associated with e = 0 and Py =1- FPy. Here, the
perturbation (interaction) operator is (c.f. (2.16)) I = G ® Is ® p(h) — 1s ® G ® ¢(h). The
operator Ay is identified as a two-by-two matrix acting on span{¢1, ¢2}. A standard calculation
gives

o hopr) = 4{210RT0) + (@RI e

E P - eAlee))
(2 5 ~ _ J(leg —e
(onoge) = 4i{ SIGBT0) + G R 2 (2.30)

We know a priori that AOQS,B = 0 (which follows from L1QSR,5,>\ = 0) and so the second
eigenvalue of Ag is its trace, namely, the sum of the two terms in (2.30), which is iA%yy with 7o
given in (2.26). The eigenvector associated to this nonzero eigenvalue has to be orthogonal to
(2 g and hence it is as in (2.26).
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(B) The level shift operator associated to the simple eigenvalue e; — ep of Lo is one-
dimensional,

Ais = =22 {12 ® Qr, I(Lo +104) ' Ip12 ® Qr) Pio = N (12 + iy12) Pra, (2.31)

where Pio = |12 ® Qr){p12 @ Qr| and x12, y12 are given in (2.27).
(C) This follows again by calculation, or more elegantly, from the well known symmetry [12]
between the level shift operator associated to e; — eo and that of es — e. O

2.3.2 Spectrum and resonances of L,

Consider the decomposition B B B
(”Hs)L =HpL ©Hal (2.32)

where Hp, and H4, are the subspaces introduced in points 1 and 2 before (1.28). Recall that
Pp | and P4, are the orthogonal projections onto Hp, Ha. The operator Lo is block-diagonal
in the decomposition

Hs@Hs @ F = (Hs @ HpL @ F) @ (Hs @ Har @ F).
We have
HgPp, = EpPp,, HgPa, =EaPsi, G3Pp. =gpPpi, G&Pai =gaPai. (2.33)

The restrictions of Ly to Hs ® Hp1 @ F and Hg @ Ha ® F are, respectively

Lyp, = (ﬁs — Ep+ Lr + A\G ® ¢(h) — )\QD@(’Z)) ® Ppy, (2.34)

Lyar = (ﬁs —Ea+Lr+AG® p(h) — )\gASZ(h)> ® Pay, (2.35)

where the operators in the parentheses act on Hg ® F. The spectrum of Ls is the union of the
spectra of Ly p| and Lo 4.

For A = 0, the eigenvalues of Ly p| are ey —Ep and ez — Ep, both having degeneracy Np —1
(=rankPp ). The eigenspaces are Ran |p1){p1| ® Pp) ® |Qr)(Qr| and Ran |p2)(p2| ® Pp; ®
|Qr)(QR|, respectively (where Ran stands for the range of a projection). In the same way, for
A =0, the eigenvalues of Ly 4| are e; — E4 and e — E4, both having degeneracy N4 — 1. The
eigenspaces are Ran |¢1)(¢1|® P4y ®|Qr)(Qr| and Ran |¢2) (p2| @ Pa1 ®|Qr)(Qr|, respectively.

To analyze the spectrum of Ly for A # 0, we proceed as follows. We perform a polaron
transformation to get rid of the terms —Agp@(h) and —Aga@(h) in (2.34) and (2.35), and then
we do perturbation theory in .
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Lemma 2.2 All four eigenvalues of Ly for X =0 turn into resonances, given by

1 =~ ~ J(ler —e2
55 ) = ED + AZ.%'I + QIAQ(ﬁ[G]llJ(O) + [G]%QH—(L_B(EI_LZ”) + O()\4)7
1
o = 5ol VGl = SIGR PV [ hs(u, )P duds
Rx.S2 U
—1[(‘;]%2 P.V./ \hg(u,2)|2¥dud2, (2.36)
2 RxS2 u—e1+ e
. 1 -5 ~ ~ J(leg —e
e = ey— Ep+ Nao+ 21A2(B[G]§2J(0) + [G]§2|1(_’;ﬁ(61_2€2))’> +O(\Y),
1
v = 5oblha/VGl® = 5[ PV. [ lhs(u, ) duds
Rx.S2 U
5 (Gl P.V./RXSQ g, D) o eldudZ. (2.37)

The other two resonances are 5%3) and £§4), obtained from the expressions of Eél) and Egz) above

n (2.36), (2.37) by replacing Ep with E4 and gp with ga. The eigenspaces associated to these
etgenvalues are

&’ = Ran(lp1)(e1] ® Poi @ 9)(Qn]) + 00, (2.38)
& = Ran(lp2) (92l @ Poi @ 90)(Qn]) + O, (2:39)
& = Ran(lp){pil © Par @ [08)(0n]) +00), (2.40)
&Y = Ran(|pa)(wa] ® Pas @ |08} (] ) + O0) (2.41)

The multiplicity of each distinct resonance is the same as that of the corresponding eigenvalue
for X\ = 0 (namely, rankPp | or rankP4, ). The O(\?) terms in (2.38)-(2.41) and the O(A\*)
remainders in (2.36), (2.37) are uniform in Np and N4.

Remark. The exact meaning of Ran(|¢1)(¢1| ® Ppy @ [Qr)(Qr|) + O(A?) in (2.38) (and

similarly for (2.39)-(2.41)) is 52(1) = Ran(|x)(x| ® Pp.1), where x = 1 ® Qg + O()\?) is a vector
on the first DA-tensor factor and the reservoir tensor factor. The O(A?) correction is a vector
in Hg ® F with the O(\?) property holding uniformly in the size of Np.

Proof of Lemma 2.2. We first treat Ly p| . Define the unitary operator T' = JRW(%)JR,
where Jg is the reservoir modular conjugation and W (f) = e?(f) is the thermal Weyl operator.
Note that T' commutes with all reservoir observables. We conjugate Ly p| with T,

TLyp, T* = (Hs+Lr+AG®¢(h)+c)® Ppi, (2.42)

where ¢ = —Ep + 1A\%¢}||h/y/w|®. The operator in parentheses in (2.42) acts on the space
Hs ® F. The relation (2.42) is obtained in a standard way by taking into account that for all

19,
W(f)LeW(f)* = Lr—e(wf)+ i[[Vwfl3,
W(He(@W(f)* = ¢(g) —Im(f,g). (2.43)
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We now analyze the spectrum of Hg + Lr + AG ® ¢(h). For A = 0 this operator has the two
simple eivenvalues e; and es with associated eigenvectors 1 ® (g and @2 ® Qr. The lowest
order correction to e; due to the perturbation AG ® ¢(h) is (again, given by the level shift oper-
ator) =A% (1 ® Qr, (G ® ¢(h)(Hs + Lr — €1 +104)7'G @ ¢(h))p1 ® Qr). An explicit calcula-
tion yields (2.36). The eigenvectors of T Ly p | T* are ;@@ +O()?), for arbitrary normalized
X € RanPp, and j = 1,2. Consequently, the ones for Ly p| are T"¢; ® x ® Qr + O(A\?). But
T* = 1g + O(A?) and hence the eigenvectors of Ly py are of the form ¢; ® x ® Qr + O(\?).
This proves (2.38). The results (2.37) and (2.39) are derived in the same way.

Finally, the same analysis is applicable for the operator Lp 4, we need just to replace Ep
by E4 and gp by ga in the final expressions (compare (2.34) and (2.35)). O

2.3.3 Spectrum and resonances of L3
Just as for Lo, the operator L3 is block-diagonal in the decomposition
HS @Hs@F = (HpL @ Hs @ F) @ (HaL @ Hs @ F).
The associated blocks are denoted by L3 p| and L3 4,
Lypi = Ppi® (Ep— Hs+ Ly — G @ 3(h) + Agpe(h) ), (2.44)
L3ar = Par® (EA — Hg + Lg — A\G ® ¢(h) + AgA‘PUU)- (2.45)

Let C be the operator of complex conjugation acting on Hg (taking complex conjugates of
components of vectors when written in the energy basis). Denote by Jg the reservoir modular
conjugation operator. Then C ® Jg is an antilinear involution (meaning its square is the identity
operator) acting on Hg ® F. We have

Ep — Hs + Lr — AG @ §(h) + Agpp(h) (2.46)
(€ ® Jp)(fs — Ep + Lr + AG @ ¢(h) = \gp@(h) ) (C & Jr).
It follows from this relation and (2.34), (2.44) that z € spec(L3 p1) < —Z € spec(La py) and

that eigenvectors are related by the application of C ® Jr. Analogous relations hold for Ls 4
and Ly 4. Consequently, we obtain the following directly from Lemma 2.2.

Lemma 2.3 All four eigenvalues of L3 for A = 0 turn into resonances, given by

(J) (Eg ))*, j=1...,4 (complez conjugate) (2.47)
where 5gj) are given in (2.36)-(2.37) (and the sentence thereafter). The associated eigenspaces
are

&Y = Ran(Pp1 @lp1)(p1] @ 190) (m]) + OON2), (2.48)
& = Ran(PpL® le2) (2] @ [0)(Qm]) + O, (2.49)
AR R3H<PAJ_ ® |p1)(p1] ® [Qr) QR’) O(N%), (2.50)
& = Ran(Par @ ¢2) (2] @ [Q0)(Qnl) + OO, (251)
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The multiplicity of each distinct resonance is the same as that of the corresponding eigenvalues
for A=0.

2.3.4 Spectrum of L,

We again use the decomposition (2.32) and the relations (2.33) to write Ly, given in (2.19), as

Ly = Lr+AEpPpi ®Ppi® (¢(h) — @(h))
+(Ep — EA)Pp1 @ Pa1 + Lr + APp1 ® Pay ® (Epe(h) — Eag(h))
+(Ea = Ep)Pa1 ® Ppi + Ly + APa1 ® Ppi @ (Eap(h) — Epp(h))
+Lg + AEAPAL @ Pa1 @ (¢(h) — @(h))
= Ly1+ Lyo+ La3+ Lag. (2.52)

Again, the spectrum of Ly is the union of the spectra of L4, j =1,...,4.

Lemma 2.4 Suppose that the form factor satisfies |hg/\/ull2 < oo. The following holds for
arbitrary values of the coupling constant A € R.

(A) The spectra of Ly and Ly 4 consist of an eigenvalue at zero and absolutely continuous

spectrum covering R. We denote these two eigenvalues 6511) = 551 ) = 0. The kernels of Ly and
Ly, have dimension (Np — 1)? and (Na — 1)2, respectively, and are given by

KerL,1 = Ran Pp) ® Pp @ |Yp)(Ypl,
KerLyss = Ran P4 ® Pay ® |VA) (U4l (2.53)

where Vx is given by (recall (2.8) defining Jgr)
Uy = W(i)\EXh/w> JRW (i)\EXh/w> Jrr € F, X =D,A (2.54)
(B) The spectrum of Ly o consists of the eigenvalue

eV = Ep — Eq— W2(E% — E%) |h/vwl3 (2.55)

having multiplicity (Np —1)(Na —1) and purely absolutely continuous spectrum covering R. The
eigenspace is given by RanPp| @ Pa; ® |Ypa)(Vpal, where Upy is given in (2.56).

(C) The spectrum of Ly 3 consists of the eigenvalue 524) = —Ef’) (with 5513) as giwen in (2.55))
having multiplicity (Np — 1)(N4 — 1), and of purely absolutely continuous spectrum covering R.
The eigenspace is given by RanPy | ® Pp) @ |Yap)(Vap|, where Y p (and for later use, Vpy)
are given by

Eph Esh Eah Eph
\IIDA:W< =22 )JRW( A )JRQR and \IIAD:W< =2 )JRW( P2) Iln. - (2.56)
Proof. (A) Consider the operator Lr + a(p(h) — ¢(h)), o € R, which acts purely on

the reservoir Hilbert space. Here, ¢(h) = Jrp(h)Jr, see (2.8). We introduce the polaron
transformation, given by conjugation with the bounded operator

T = W(ah>JRW<ah>JR,
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where W(f) = %) is the Weyl operator. The relations (2.43) with f = % and g = h, give
T(LR + a(p(h) — a(h))):r* = Lg. (2.57)
It follows from (2.57) that
TLyyT" = Lp(Pp1L ® Pp1 @ 1F). (2.58)

The statement (A) of the lemma follows from the unitary equivalence (2.58).
Now we prove (B). Consider

Lip = (Ep—FEA)PpL ®Py1 +Lr+Pp| @ Psa ® ((p()\EDh) - (E()\EAh))
= ((ED — Ep) + Lr + ¢(AEph) — 5()\EAh)>PDL ®@Pa; @ 1r. (2.59)
We modify the above polaron transformation 7" to
AEph AE4h
T = W (2222 ) W (242 ) U
iw iw
Then, again using (2.43) one verifies readily that
T'(Lr + p(\Eph) — GOl ) (T') = L — % (B} — E3) |h/V&l3.  (2:60)
Combining (2.60) with (2.59) we arrive at
T'Lip(T') = (Ln + (Bp = Ea) = 5 (B = ) I/V&I3) P © Par @15, (261)

The statements in (B) now follow from the unitary equivalence (2.61). The proof of (C) is
entirely the same as that of (B). This completes the proof of Lemma 2.4. O

3 The dynamics

3.1 Resonance theory

According to (2.5), the average of X at time ¢ is given by
(X); = (o, " (X ® 1g ® Tg)e "Ty) (3.1)

where Uy = Ug ® QR, with Ug the purification of the initial DA density matrix pg and Qg the
vacuum vector in F, (2.3).
We start by giving the purification vector (g g representing the DA equilibrium density
matrix o B B
psp = Zgp e s = 73} e PUISHIS) = 74 (PsefﬁHS + PSLe*ﬁHﬂ, (3.2)

where Ps = |D)(D| + [A)(A] is the projection onto Hs, see (2.11). The eigenvalues e o and
eigenvectors @12 of Hg are given in (1.24) and (1.25). To express the purification of pg g as a
normalized vector in Hg ® Hg, we introduce

b1, &pnp—1} and {1, 6aNs—1}s (3.3)

30



AlP

Publishing

which are orthonormal bases of RanPp | and RanPy, |, respectively (see after (1.15)). Each &p ;
is a vector in CVP+Na whose last N4 components are zero and whose first Np components
add up to zero ({p; L |D)). Each 4 ; has vanishing first Np components and the sum of the
other ones is zero. The union of all £p; and €4 is an orthonormal basis of Ran(Ps)t. The
purification of the density matrix pg g is the vector {2s 3 € Hg ® Hs given by

No—1
—1/2 —Be. _
Qsp = Zs,ﬁ/ (Z e PP+ Y e PPN g ®€a7j>u (3.4)
j=1,2 a=A,D j=1
Zsp = Tre PHs = N~ e 4+ 3" (Ny — 1) PPe (3.5)

j=12 a=1,2

The interacting equilibrium state (2.9) is separating (a property following from the general theory
of KMS equilibrium states [4]), meaning that there is an operator B’ acting on H having the
property that

Uy =Us®0Og = B'Qgr g and B’ commutes with (X @ 1g @ IR )e - (3.6)
for all system observables X. Moreover,
B =1s® B® lg + O(\?) (3.7)
(see e.g. [10], Lemma 3.4). Concretely, the operator B is obtained solving the relation
Us = (1s ® B)Qg g, (3.8)

which has a unique solution for any given Wg.

Ezample. Take the pure initial system state in which each donor level is populated equally,
with probability 1/Np. The corresponding purified vector state is Ug = |D) ® |D), see (1.9).
We show how to solve (3.8) for B. We will find a B acting nontrivially only on Hg, i.e.,
satisfying B, ; = 0 (see (3.4)). We expand |D) in the eigenbasis {¢1, @2} (see (1.25)), |D) =
x1|p1) + x2lp2), where z1, zo € R. Thus we need to solve the following equation for B,

2311 + 2122 (P12 + 1) + 23021 = (1s ® B) (a1p11 + aopas), (3.9)

where ¢;; = ¢; ® ¢; and o = Zs_jgme*ﬁej/? Taking (¢1]| ® g on both sides of (3.9) gives
x%@l + x1T2¢909 = a1 By and similarly we get z1x901 + 37%(,01 = a9 Byy. Hence, as a matrix in
the basis {1, p2}, we get

Tize/as  w3fas ) TSP \aywgeleR/? gefer/?
_ 2 _
_ 1/2 gHg/2 [ 1  X1T2\ _ 1/2 BHg/2
= ZS,,B ePHs/ (mlznz :E% ) = Zs,ﬁ ePHs/ ‘501901 +x2902><x1<p1 +x2¢2’
= 743 B D)(D). (3.10)

Even though this B is determined explicitly in (3.10) we will see below that we can find the
dynamics without using the specific form of B (see for instance (3.26)).
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We combine (3.6)-(3.8) with (3.1) to obtain

(X), = (Yo, e™(X @ 1g @ Ig)e " Wy)
= (W, Bt X @ 1g ® 1r)QsR,82)
= (U, (Is® B® Ig)e™(X @ Is ® 1r) Q55 ® Qr) + O(N?), (3.11)
where the remainder is uniform in . We have used in the second step that L{lsgr g = 0 and in

the last one that
QSR,B,)\ = Qs}ﬁ ® Or + O()\Z). (3.12)

Writing for short
B=1s®B®1Ig and X = X ® Is ® 1R, (3.13)

we obtain from (3.11) that

(X), = (B0 0, (BEEX)0 5 9 90) + O

|
.M%

(Vs ® Qr, (B PjX)Qg 5 @ Qr) + O(N?), (3.14)
1

J

where we have used the reduction (2.15) of the dynamics and where P; is the orthogonal pro-
jection onto H;, c.f. (2.14). The dynamical resonance representation now gives a concrete
perturbation expansion for each propagator e*’i (c.f. [16, 17, 13, 10, 11]). Namely, in (3.14) we
can use the expansion

(s)
L _ Z ' I + 002, (3.15)

where the remainder is bounded mdependently of time ¢. Here, j labels the invariant sectors
and s ranges over the number of distinct eigenvalues and resonances 5( *) of L; (there happen

to be four of them for each j, see Lemmas 2.1-2.4). Here H(. %) is the eigenprojection (resonance

(s)

O(\?) terms. An equality leavmg away the O(\?) errors, which are uniform in ¢ > 0, is indicated
by = . From Lemma 2.1,

projection) associated to €, given explicitly in Lemmas 2.1-2.3 and which we now list modulo

m) = msm {Qrl, ok (2.25)

n? = [P @ 0r)Qr|,  cf (2.26)

1P = 1) {pia @ QR) (Or],

Y = Jom) (el ® [QR)(OR). (3.16)

Lemma 2.2 gives (c.f. (2.38

ls){ps| ® Pp1 ® |Qr) (R, s=1,2,
lps—2)(ps—2| ® Par @ [Qr)(OQR[, s=3,4.

)
) = {
From Lemma 2.3 we get (c.f. (2.49))

Pp1 ® |ps){ps| ® [Qr) (ORI, s=1,2,

(
H(S) -
3 Pa1 ® |ps—2)(ps—2| @ |Qr) (|, s=3,4.

(3.17)
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Finally, Lemma 2.4 shows that, for arbitrary A € R (c.f. (2.53))

Hgll) = PDJ_®PDJ_®’\I/D><\I/D‘7

Hf) = Py @Pa; @|Va)(Pal,

I = PpL@Pay®[Tpa)(Tpal,

H514) = Pl ®Ppl ®|Yap)(Vap|. (3.18)
The expressions for ng), 7 =1,...,4, are exact equalities, there are no remainders in the four

relations (3.18).

We combine (3.14) and (3.15) and use the expressions (3.16)-(3.18). We view Hg-s), for

j =1,2,3, as operators on Hg ® Hg (i.e., we leave out the factor |Qgr)(Qgr|, c.f. (3.16)-(3.17)).
)

For j = 4 we introduce the notation ﬁflj
(3.18))

to denote the ‘part on the DA space’, for instance (c.f.

ﬁil) =Pp, ®Pp,. (319)

We arrive at the following result.

Proposition 3.1 Let ¥y and X € B(Hg) be any initial DA state and any DA operator (ob-
servable). Then

4
x), =% (ites” <\1/S, BHéS)XQS75> + 3 et <\ps, Bﬁf)XQS75> +O0),  (3.20)
j=1 s=1 s=1

with a remainder independent of time t > 0.

Remark. According to (3.18), the last sum in (3.20) is actually
4 i2(8) ~
3w, el <\Ifs,BH§S)XQw>, (3.21)
s=1

with weights wy = | <\I/D,QR> |2, Wy = | <\I/A,QR> |2, wy = | <\IJDA,QR> |2, Wy = | <\I’AD,QR> |2,
where the Wy are defined in (2.54) and (2.56). The w; depend on A and satisfy w; = 1+ O(\?).
Since the remainder in (3.20) is already O(\?) we can replace w; by 1. One can also calculate
wj exactly, as we illustrate now.

Explicit form of wy: Call for short f = iNEph/w, so wy = [ (W (f)JrRW (f)Jr2, Q) [%. Re-
membering that we are in the thermal representation of the quantum field, the Weyl operators
W (f) are given by ¢¥(/3) where test function fs is defined by (2.2). The effect of conjugating
with Jg is ([4, 16]):

TRW (f3(u, £))Jr = W(fa(—u, %)) = W (e f5(u, ). (3.22)

Then, using the CCR, W ()W (g) = e~ 2™ 9 W (f+g), together with (Qr, W (h)Qg) = e~ il
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(for f,g,h € L*(R x S?,du x dX)), one readily obtains
_Bu 2
wy = ‘ <QR, W((l — € B /Q)fﬁ)QR> ‘

_ ,—Pu/2)2
1 (I—e ) 2,2
- 1 L )| 2uldudy.
exp 2/R><52 T |f(Jul, ©)|*u*du

= exp— [ canh(alk|/4)1 (1)

tanh(B|k| /4
- exp—A2E2D/ SRR (’ﬂ V4 2.
R3

(3.23)

In (3.23), the function h is the form factor of the interaction, (1.1). Similarly one obtains ws

and one can also calculate w3 4 explicitly along these lines.

3.2 Proofs of Theorem 1.1 and Proposition 1.2

Proof of Theorem 1.1. To derive the result we use the expansion (3.20) given in Proposition

3.1 and analyze the individual terms in this expansion.
o Consider j =1 and s = 1. We have
<\IIS, BHPXQS@ = (Ug, (1Is ® B)Qg 5) (Qs 5, (X @ 1g)Qs.5)
and using the expressions of Qg 3 and Qg 4 given in (2.25) and (3.4), we obtain

(g8, (X ®1g)Qg ) = Zgi}f Z e P2 (Qg 5, (X ® 1g)p; @ ¢;)
j=1,2

= ¢! Tr(ﬁsﬁstps),

where we have taken into account that ¢; 1 &, in (3.4) and we have introduced
Tre—PHs

e = o1 ® o = VTre Plls 0% (|op) (oo @ 15) Qs 5, k0 € {1,2}.

Next, it follows from (3.4) that

Due to (3.8), this implies the relation
(Is ® B)pre = VTre BHs /2 (|op) (0] @ 1g) W, k.l e {1,2}.
Therefore, we obtain from (2.25)

(Us, (1s @ B)Qs 3)
e—Be1/2 e—Be2/2

= Ug, (1 B
g (Ts, (1Is @ B)p11) + e

¢ ([pol11 + [po22),

(Us, (Is ® B)p22)
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(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



where
[polke = {@r, poe) = (Us, (lpe) (k] ® 1s)Ts) . (3.30)
Combining (3.24) with (3.25) and (3.30) gives

<\Ifs, BHgl)XQS75> = ([p0]11 + [p()]gg) Tr(ﬁs,gstps). (3.31)
o Next we look at j =1, s = 2. Using the definition (2.26) gives

<\I’s7 (1s ® B)\IJ§2)>

6561/2 ]l €ﬂ62/2 ]l
- WNJS’( s ® B)en) — \/W@’S,( s ® B)paa)
Tre—BHs
- \/ﬁ(eﬁ “[poli1 — €”*[po22)
— 06_’8(61+82)/2 (6/361 [,00]11 _ 6,362 [P0]22). (332)

Combining (3.32) with

(o1, Xop1) — (02, Xpo)
\/(6561 + ePez)(e=Per 4 e—Bez)

(v, (x @ nS)Qs,B> = ¢! <\11§2), (X ©15)0s.5) = :

. —Be1 1B _
yields (use |/ &5t —= BBZIEHESQ = e~Bler+e2)/2)

e P2 pol11 — e[ polag
67661 + 6*532

<\I/S, (1g ® B)H%Q)XQS7B> = ({p1,Xp1) — (p2, Xp2) ).  (3.33)

o Next we address the cases j = 1, s = 3,4. Using (3.28) we obtain
(s, (s ® B)pra) = €”/2VTre=0Hs [poly. (3.34)

Combining (3.34) with
e P2 {p1, X o)

X ®1g)Q = 3.35
<S0127( ® S) S,ﬁ> \/W ( )
gives
<\I’3, (]15 & B)Hgg)XQS,B> = [po]Ql <g01, X(pg) . (336)
The case s = 4 is addressed just like s = 3, with the result
(s, (1s @ BTV X0s.5) = ool (2, Xp1) (3.37)
o Now we consider j =2, s =1,...,4. We need to analyze
(s, (15 @ B (X @ Tg)Qs5) = (¥, (Is @ B)(|ea)er| & Pp1)(X @ 1))
= (Us, {(|er)(p1]|X) @ (BPp1)} s p)
= (¥s, {(lp1)(¢1| X Pp1) ® B} )
= (¥s, (o) (1| X Pp1)¥s)
= Tr(p0]4p1><g01]XPDJ_). (338)
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In the third step we have used that (Is ® Pp)Qs s = (Pp1 ® 1s)Qg s (see (3.4)) and in the
fourth one that (s ® B)Qs 3 = ¥s.
(2)

Proceeding in the same way for Iy we readily obtain
<\1:S, (1s ® B)IY (X ﬂs)ﬂsﬁ> = Tr(po|02) (2| X Pp. ). (3.39)

Finally, for Hgs) with s = 3,4, the same analysis holds and we get

Tr(po| 1) (1| X Par), s=3, (3.40)

(s) —
(s, (15 © BIIY (X @ 15)0s,5) = { Tr(polg2) (w2l X Par), s=4.

o Consider j = 3, s = 1,...,4. Proceeding as for j = 2 and also using that (lg ®
oo} (pel)S2s,8 = (lpe) (el © )53, £ = 1,2 (see (3.4)) we readily get

Tr(poPpi X |es)(esl), s=12, (3.41)

(s) _
<\I’S’ (Is ® B)I3" (X ® HS)QS’B> N { Tr(poPar X|ps—2)(¢s—2l), s=34.

o Take now j = 4. Proceeding in a by now standard way, as above, we get
Tr(pOPDJ_XPDJ_) s=1
~ Tr(poPa XP =2
<\1fs, (1s ® B (X ® HS)QS75> - T;Epo 41X Pa) . (3.42)

poPp 1 XPai) s=
Tr(poPat XPpi) s=4

The result of Proposition 3.1 together with the relations (3.31), (3.33), (3.36), (3.37), (3.38),
(3.39), (3.40), (3.41), (3.42) implies

(X): = ([pol11 + [pol2z) Tr(ps,sPsXPs) (3.43)
+Tr(poPp1 X Pp1) + Tr(poPai XPa.)
+€it5513)TI'(p0PDJ_XPAJ_) + 6“8514) Tr(pOPAJ_XPDJ_)

@ e P [pol1 — e P polan
et e o (P Xen) — (92, X))

z‘tagg) X —it(egg’))* X
+e [pola1 (w1, Xp2) + e [pol12 (w2, X 1)

’itaés) Tr XP it6<28> Tr XP
+> e (pols) (sl X PpL) + ) e (Polps—2)(ps—2| X PaL)

s=1,2 s=3,4
L (5) ()
+ > € T (poPpo X s) (ps]) + D €' Tr(poPar X|ps—a)(ps-al)
s=1,2 s=3,4
+O(N?),

where the remainder term is uniform in ¢ > 0. Now since {¢1, p2} is an orthonormal basis of
Hs = RanPs, we have [pol11 + [po]2a = Tr(Pspo), so the first term on the right side of (1.30) is
Tr(poPs) Tr(Psps s Ps X ), which gives the first contribution to the right side of (1.30). The other
ones are obtained similarly from (3.43). This concludes the proof of Theorem 1.1. g
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Proof of Proposition 1.2. This is a direct calculation of the right hand side of (1.31),
taking into account the relations

1 1
Dy |Py1poP11|D = —
(Dg|P11poPr1|De) ND1+a2[p0]H’
1 1
Dy | P, Po1|D = —
(Dr|Pr2poPo1|Dy) ND1+a2[p0]22’
(DuPapoPulDl) = %)
klL22p0422(¢) = ND1+a2P022,
(DulPupPlD) = ()
kl421p0412(e) = NDl—i—anOH’
1
(Dr|PpipoPp1|De) = <Dk|Po|Dz>+N7D<D|Po!D>
1
D
Pa1|Dy) = Pai|Dg) =0,
1 af
Dy | P, Pys|D = —
(Dg|Pr1poPaz| Dy) ND1—|—042[p0]21’
(Du|Pp1poPss|De) = 0. (3.44)

We remark that we can also compute the matrix elements between acceptor levels, and those
between donor and acceptor levels. O

4 Conclusion

We consider a donor-acceptor (DA) system described by Np and N4 sites at the degenerate
energies Fp and F 4. Each donor site is coupled equally to each acceptor site, and both the donor
and acceptor are coupled to a common noise, modeled by a thermal Bose field of vibrations.
We use the dynamical resonance theory to find the effective evolution of the DA system for
all times ¢ > 0, up to an error term which vanishes quadratically in the DA-reservoir coupling
(independently of time). Due to the symmetry of the Hamiltonian, the dynamics has many
stationary states. We exhibit them explicitly. We show that the DA final state (time ¢ — o0)
depends on its initial state (¢ = 0) and we find the initial-final state correspondence. The amount
of population transferred from the donor to the acceptor during the process depends on quantum
properties of the initial donor state: we demonstrate that if the initial population is shared
coherently by the donor sites then the transfer to the acceptor is high. For an incoherently
populated donor, the transfer is low. We examine the fluctuations in the donor populations
during the transfer process and show that they decrease with increasing system size Np. We also
discuss, in a qualitative way, what will change in our results when the symmetry (degeneracy)
of the Hamiltonian is lifted.
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