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Every physicist knows that estimates require error bars. The problem is... you can't
just make them up! Error bars -- or their more powerful generalization, region
estimates -- must have a rigorous meaning. Otherwise, they are "security theater".
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So far, tomography has been applied -- mostly
-- where it is relatively easy to apply. But there
are a host of difficult applications out there --

and these are the real juicy challenges!

Process Tomography

Estimating the dynamics of a system -- its quantum process --
is far more important than state tomography. But, happily, the
two are isomorphic -- processes are isomorphic to states on
two systems. So we tend to use state tomography as a
(simpler) playground.
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Some are just big (continuous
variables, N qubit systems).

Others have weak/noisy/slow/ambiguous
measurements (superconductors,
quantum dots, etc.)

There are some differences. Positivity is more fraught. Probing
a process requires preparing a lot of different input states

(perhaps in superposition, as in ancilla-assisted methods.
And the matrices are just bigger, so scaling problems hit us
faster.
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Others do not support universal control
(simulators, D-Wave, topological systems).
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On one hand, this messy business is worth knowing about.
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But... on the other... it's maybe not a good use of time.
7 qubits (ions)

There are at least three levels:

(1) Bayesians say probabilities are subjective -- they represent beliefs that
you (an agent) have about a system. Frequentists say probabilities are

objective -- measurable physical properties of the system, like mass. Both are
insane (Bayesians somewhat less so), but there are no better alternatives!
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These are almost certainly not relevant to this discussion!
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