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Quantum State Tomography

...on qubits (or qudits)...
...with informationally complete measurements...

...using linear inversion...
...to estimate a d x d density matrix.

Examples:  photon polarization (linear optics)
ion traps

NMR

Wigner Functions 
and 

Optical Mode Tomography

Process Tomography
Estimating the dynamics of a system -- its quantum process -- 
is far more important than state tomography.  But, happily, the 
two are isomorphic -- processes are isomorphic to states on 
two systems.  So we tend to use state tomography as a 
(simpler) playground.

There are some differences.  Positivity is more fraught.  Probing 
a process requires preparing a lot of different input states 
(perhaps in superposition, as in ancilla-assisted methods.  
And the matrices are just bigger, so scaling problems hit us 
faster.

Ancilla-assisted 
process tomography

Direct 
Characterization of 
Quantum Dynamics

"What Measurements Should 
We Make?"Adaptive 

Tomography
- Using a preliminary estimate to guide 
subsequent measurements (measure 
the most relevant dimensions) can 
dramatically improve fidelity -- but not 
2-norm.

Error Metrics 
("How should we measure inaccuracy?")

"Which Estimator?" 
(maps data => an estimate?

Characterizing Uncertainty

Selective Efficient 
Quantum Process 

Tomography

Model Selection -- "What is 
this system, anyway?"

Fundamentally, model selection addresses problems like inferring the 
Hilbert space dimension itself from the data.  This is critical for optical 
mode tomography.

But model selection can also be used to rigorously test assumptions 
(e.g. compressed sensing), and to dynamically generate powerful 
ansatze for the system being studied.

It will be indispensable for teasing information out of stubborn and 
difficult systems.

The Choi-
Jamiolkowski 
Isomorphism

Special-purpose tomography

Full tomography for N qubits may be
unfeasible.  So we have specialized
methods to extract relevant information efficiently, including:

 - efficient tomography of restricted states/processes 
(subspaces, subsystems, or submanifolds).

 - methods to extract specific parameters from arbitrary states/
processes (entanglement, fidelity, etc.)

Why are we doing 
tomography, anyway?

- requirements for QIP are very different from 
(say) the requirements for optical 
tomography in laser physics.

- e.g., fidelity vs. 2-norm; zero eigenvalues... 

Stubborn and Difficult Systems
So far, tomography has been applied -- mostly
-- where it is relatively easy to apply.  But there
 are a host of difficult applications out there --
and these are the real juicy challenges!

Some are just big (continuous 
variables, N qubit systems).

Others have weak/noisy/slow/ambiguous 
measurements (superconductors, 
quantum dots, etc.)

Others do not support universal control
 (simulators, D-Wave, topological systems).

Subsystems/
subspaces

Submanifolds of 
states

Compressed 
Sensing

Matrix 
Product 
States

Parameter 
Estimation

[Entanglement] 
Witnesses

Fidelity
- with a desired state

-with a desired manifold

Failure 
probability 

(twirling)

Randomized 
benchmarking

Hypothesis 
Testing

Informationally Complete 
Measurements

- provide some information about 
every dimension of state space.
- must have at least d2 outcomes

Fidelity

1-norm

2-norm
(Euclidean, 

Hilbert-Schmidt)

Relative Entropy 
(Kullback-Leibler 

divergence)

Bregman 
divergences

Well-
regularized 

metrics

Operationally 
meaningful 
quantities

Physics

Quantum 
Information 
Processing

Showing Off

Mastering 
Entropy

- This is THE fundamental 
chore in QIP -- and almost 
all of our tasks equate to it.

Data 
Compression

Error 
Correction

Fault 
Tolerance

Quantum 
Communication

[Algorithmic] 
Cooling

Solid 
State

Superconductors
Quantum 
simulators

Topological 
systems

Adiabatic 
Quantum 

Computers

Joint Measurements 
on many samples

[Atomic] 
Ensembles

The absolute 
best bounds on 
what we can do

Coherent 
Measurements

Sophisticated 
statistical 
analysis

Measurement 
Tomography Bootstrapping 

(simultaneous 
estimation of all 
aspects of an 
experiment)

Non-CP Maps

Bayesian vs. Frequentist 
controversy

PRIORS:
- do we have them?
- do we need them?
- are they bad?
-are they useful?
- which ones are good?

Constraints:
are NOT priors

...
(but carry some 

of the same 
dangers)

Objective 
Bayesian 
Methods

Minimax 
Estimators

Reference Priors
&

Least Favorable 
Priors

[Learn some]
Measure 
Theory

[please!]

Maximum
Likelihood
Estimation

Ad Hoc 
Estimators

Hedged MLE

L1 
Regularization

Bayesian Mean

THE 
LIKELIHOOD 
FUNCTION

The Zero Eigenvalue Issue

"Positivized" 
Linear Inversion

Confidence Regions

"Error bars"
a.k.a. 
standard 
errors

[Bayesian] 
Credible 
Regions

GOOD

BAD

"Don't 
bother"

"With your 
posterior"

Nonparametric 
Bootstrap

Parametric 
Bootstrap

Resampling 
Methods

Large Deviation 
Bounds

Undergraduate 
Statistics

Likelihood 
Ratio
Regions Christandl 

and Renner's 
construction

Over-Complete 
Measurements

 
- redundant statistics enable 
validation, model selection, etc.
 - potential downside:  naive 
data analysis (linear inversion) 
generally won't work. 

Uniformly 
Informationally Complete

Measurements

See Model 
Selection!

See Optical 
Tomography!

Mutually 
Unbiased 

Bases

SICPOVMs

Homodyne 
vs. 

Heterodyne 
Tomography

[Limitations of]
Tensor Product 
Measurements

Undercomplete (but 
targeted) 

measurements

See Optical 
Tomography!

Likelihood 
ratios

Bayes 
Factors

Akaike 
Information 

Criterion

Good-Turing 
methods

See Data 
Compression!

UGLY

See Error 
Metrics!

See 
Priors!

See Zero 
Eigenvalues!

See 
Estimators!

N-qubit 
Systems

See Special-
purpose 

Tomography

Infinite-
dimensional 

systems

Robin Blume-Kohout  (Sandia National Laboratories)

See Model 
Selection!

See "Absolute 
Bounds"!

See 
Compressed 

Sensing!

See Relative 
Entropy!

Radon Transform:   Linear inversion in an infinite 
dimensional Hilbert space for heterodyne data

Theoretical Wigner Function
(for a Fock state |n=14>) Reconstructed Wigner Function

(for a Schroedinger's Cat state)
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This matrix is illustrated in Fig. 3 "right#. In this case, the
matrix has eigenvalues 0.986 022, 0.013 977 7, 0, and 0; and

Tr$!̂2%!0.972 435, indicating that, while the linear recon-
struction gave a nonphysical density matrix, the maximum

likelihood reconstruction gives a legitimate density matrix.

V. ERROR ANALYSIS

In this section we present an analysis of the errors inher-

ent in the tomographic scheme described in Sec. III. Two

sources of error are found to be important: the shot noise

error in the measured coincidence counts n& and the uncer-

tainty in the settings of the angles of the wave plates used to

make the tomographic projection states. We will analyze

these two sources separately.

In addition to determining the density matrix of a pair of

qubits, one is often also interested in quantities derived from

the density matrix, such as the entropy or the entanglement

of formation. For completeness, we will also derive the er-

rors in some of these quantities.

A. Errors due to count statistics

From Eq. "3.20# we see that the density matrix is specified
by a set of 16 parameters s& defined by

s&!n& /N, "5.1#

where n& are the measured coincidence counts and N
!'&!1

4 n& . We can determine the errors in s& using the fol-

lowing formula (26):

*s&*s+! '
, ,-!1

16 ! .s&

.n,
" ! .s+

.n-
" *n,*n-, "5.2#

where the overbar denotes the ensemble average of the ran-

dom uncertainties *s& and *n, . The measured coincidence

counts n, are statistically independent Poissonian random

variables, which implies the following relation:

*n,*n-!n,*, ,- , "5.3#

where *, ,- is the Kronecker delta.

Taking the derivative of Eq. "5.1#, we find that

.s+

.n&
!
1

N*+&"
n+

N 2
D& , "5.4#

where

D&! '
,!1

4

*, ,&!# 1 if 1/&/4

0 if 5/&/16.
"5.5#

Substituting from Eq. "5.4# into Eq. "5.2# and using Eq. "5.3#,
we obtain the result

*s&*s+!
n+

N 2
*& ,+#

n&n+

N 3
"1"D+"D&#. "5.6#

In most experimental circumstances N$1, and so the second
term in Eq. "5.6# is negligibly small in comparison to the
first. We shall therefore ignore it, and use the approximate

expression in the subsequent discussion:

*s&*s+0
n+

N 2
*& ,+1

s+

N *& ,+ . "5.7#

B. Errors due to angular settings uncertainties

Using the formula "3.7# for the parameters s& we can find

the dependence of the measured density matrix on errors in

the tomographic states. The derivative of s& with respect to

some generic wave plate setting angle 2 is

.s&

.2
!# .

.2 34&$% !̂$4&5#34&$!̂# .

.2
$4&5% , "5.8#

where $4&5 is the ket of the &th projection state (see Eq.
"3.5#). Substituting from Eq. "3.14# we find
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.2
! '

+!1

16

s+& # .

.2 34&$% M̂+$4&5#34&$M̂+# .

.2
$4&5% ' .
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For convenience, we shall label the four wave plate angles

$h1,& ,q1,& ,h2,& ,q2,&%, which specify the &th state by

$2& ,1 ,2& ,2 ,2& ,3 ,2& ,4%, respectively. Clearly the +th state does
not depend on any of the &th set of angles. Thus we obtain
the following expression for the derivatives of s& with re-

spect to wave plate settings:

.s&

.2, ,i
!*& ,, '

+!1

16

s+ f & ,+
(i) , "5.10#

where

f & ,+
(i) !# .
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7 qubits (ions)

FIG. 9
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Quantum processes are completely 
positive (CP), in exact analogy to the 
positivity of the density matrix...
... but only if the system is initially 
uncorrelated with its bath!  This is 
rarely true in experiments -- which 
means that we really can't impose 
[complete] positivity by hand!

Weinstein et al,  J. Chem. Phys. 121(13), 6117-6133 (2004)

Robust error bars for quantum tomography
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In quantum tomography1, a quantum state or
process is estimated from the results of measure-
ments on many identically prepared systems. To-
mography can never identify the state (ρ) or pro-
cess (E) exactly. Any point estimate is necessar-
ily “wrong” – at best, it will be close to the true
state. Making rigorous, reliable statements about
the system requires region estimates. In this ar-
ticle, I present a procedure for assigning likeli-
hood ratio (LR) confidence regions, an elegant
and powerful generalization of error bars. In par-
ticular, LR regions are almost optimally powerful
– i.e., they are as small as possible.

Quantum information processing relies on quantum

hardware, including memory qubits and unitary or

nearly-unitary quantum gates. These individual compo-

nents must perform their allotted transformations with

very high precision, especially for fault-tolerant quantum

computing. The methods used to characterize and vali-

date quantum devices are known, collectively, as quantum
tomography. Tomography usually involves repeated in-

dependent measurements on N identically-prepared sys-

tems (referred to hereafter as “standard tomography”),

but can also involve collective measurements on all N
copies. Because state and process tomography are math-

ematically equivalent, this paper will focus on state to-

mography for the sake of clarity, with the understand-

ing that all results can be extended straightforwardly to

processes
13
.

Tomography cannot identify ρ (the state produced by

a quantum device) exactly, for precisely the same rea-

son that flipping a coin N times cannot reveal its bias

exactly. Any point estimate ρ̂ has precisely zero prob-

ability of coinciding exactly with the true ρ, for there

are infinitely many other states arbitrarily close to ρ̂ and

equally consistent with the data. To make a tomographic

assertion about the device that is true – or at least true

with high probability – we must report a region of states

or processes (vis. Fig. 1).

Such regions are often constructed by attaching error
bars to a point estimate. In quantum tomography, this

approach suffers several drawbacks, some of which are

illustrated in Fig. 2. Näıve error bars define an ellip-

soidal shape (arbitrary), centered at the point estimate

(suboptimal), which may include many unphysical states

(inefficient). Worst of all, it is generally impossible to as-

sign this ellipsoid any rigorous meaning – e.g., “The true

state is within it, with probability at least 99%.” The

same problem applies to the other method used to date,

bootstrapping2 – which means generating a host of simu-

lated datasets {Dk} (either by resampling the real data,

or by simulating measurements on a point estimate ρ̂),

FIG. 1: Point estimators, like the maximum likelihood esti-
mate ρ̂MLE shown on the left, cannot provide meaningful and
rigorous statements about the true (but unknown) state ρ.
But if we replace point estimators with region estimators, like
the likelihood-ratio confidence region shown on the right, then
the region R̂ defines an assertion – “ρ lies within R̂ with 90%
certainty” – that is rigorously valid. The estimates shown
here came from simulated measurements on 60 copies of a
single-qubit state, with 20 measurements each of σx,σy,σz

yielding +/- counts of 7/13, 9/11, and 3/17 (respectively).

then reporting the variance of the corresponding point

estimates {ρ̂k}. The underlying problem is that boot-

strapping and näıve error bars both represent standard
errors – the variance of a point estimator. Unfortunately,

the point estimators used in quantum tomography are all

biased, and standard errors for biased estimators do not

reliably represent uncertainty
14

about the true ρ.
Happily, all of these issues can be resolved with a re-

FIG. 2: General region estimates – adapted to the data, and
constructed so as to minimize volume – can be far more pow-
erful, useful, and reliable than traditional “error bars”. As
illustrated here, a valid confidence region need not be: (i) el-
lipsoidal or rectangular, (ii) centered at a point estimate, or
(iii) aligned with the axes defined by whatever observables
were measured. The figure on the right shows a cross-section
of a 1-qubit LR confidence region, while on the left the small-
est traditional error bars with the same coverage probability
are shown. The LR region is noticeably smaller, and includes
only valid states. Although in this case, the LR region could
be reasonably approximated by the intersection between the
error ellipsoid and the Bloch sphere, this is not always the
case.
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M =
�

Ê1, Ê2, . . . ÊN

�
−→ L(ρ) ≡ p(M|ρ) −→ ρMLE

On one hand, this messy business is worth knowing about.

But... on the other... it's maybe not a good use of time.  :)

There are at least three levels:

   (1)  Bayesians say probabilities are subjective -- they represent beliefs that 
you (an agent) have about a system.  Frequentists say probabilities are 
objective -- measurable physical properties of the system, like mass.  Both are 
insane (Bayesians somewhat less so), but there are no better alternatives!

    (2)  Bayesian statisticians use Bayes' Rule and prior distributions to establish 
their post-measurement beliefs about the system, and use that to make an 
estimate.  Frequentist statisticians get estimates by applying algorithms that 
usually work well.  Naive application of either is BAD -- but sophisticated 
methods of both schools end up nearly identical.  You can be both!!!

    (3)  There are also differences w/respect to interpretations of quantum theory.  
These are almost certainly not relevant to this discussion!

3

B. Why does MLE produce zero eigenvalues?

The zero eigenvalues in ρ̂MLE are connected to the
negativity of tomographic estimates. What I will show
in this section is that, for a given dataset, if ρ̂tomo

is not positive, then ρ̂MLE is rank-deficient. On
the other hand, if the tomographic estimate is positive,
then ρ̂MLE = ρ̂tomo. MLE is thus a sort of “corrected
tomography”[28].

The valid state-set, comprising all positive density ma-
trices, is a convex subset of Hilbert-Schmidt space, the
(d2 − 1)-dimensional vector space of Hermitian, trace-
1 matrices. Its boundary comprises the rank-deficient
states. Whenever ρ̂tomo lies outside this boundary, MLE
squashes it down onto the boundary, producing a rank-
deficient estimate. To demonstrate the connection, we
begin by reviewing tomography.

1. How tomography works

Quantum state tomography is based on inverting
Born’s Rule: If a POVM measurement P =
{E1 . . . EN} is performed on a system in state
ρ, then the probability of observing Ei is pi =
Tr(Eiρ). The probabilities for d2 linearly independent
outcomes single out a unique ρ̂tomo consistent with those
probabilities. Several projective measurements (at least
d + 1) can, in aggregate, form a quorum – i.e., provide
sufficient information to identify ρ̂tomo.

Note, however, that no measurement can reveal the
probability of an event. Repeated measurements yield
frequencies, from which the tomographic estimator infers
probabilities. The measurement is repeated N times, and
if outcome Ei appears ni times, we estimate p̂i = ni/N .
If the measurements form a quorum, then the equations

Tr (ρ̂tomoEi) =
ni

N
(3)

can be solved to yield a unique ρ̂tomo.
Tomography thus seeks a density matrix whose predic-

tions agree exactly with the observed frequencies. Unfor-
tunately, this matrix is not always a state. Suppose that
an experimentalist, estimating the state of a single qubit,
measures σx, σy, and σz – but only one time each! Hav-
ing observed the +1 result in each case, she seeks a ρ̂tomo

satisfying 〈σx〉 = 〈σy〉 = 〈σz〉 = 1. Such a matrix exists,

ρ̂tomo =

(

1 1+i
2

1−i
2

0

)

, (4)

but it has a negative eigenvalue λ = 1−
√

2
2

≈ −0.207.
Moreover, this “state” implies that all three spin mea-
surements would be perfectly predictable, which is im-
possible.

Estimating the state from a single measurement of each
basis is a rather extreme example. However, it illus-
trates a point. Tomography, in a single-minded quest
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FIG. 1: A cross-section of the “Bloch cube”, which contains
all the possible tomographic estimates, and circumscribes the
Bloch sphere containing all positive estimates. The points
shown are possible tomographic estimates for N = 11 mea-
surements each of σx and σz, with 〈σy〉 set to zero for sim-
plicity’s sake. Of the 144 ρ̂tomo shown, 54 are non-positive
(keep in mind that the σy dimension is ignored). Depending
on the state, some ρ̂tomo will of course be more likely than
others; this figure merely illustrates the array of possible non-
positive estimates.

to match Born’s Rule to observed frequencies, pays no
attention to positivity. As the number of measurements
(N) increases, the possible tomographic estimates form
an N × N × N grid. They fill a “Bloch cube,” defined
by 〈σx,y,z〉 ∈ [−1 . . .1], which circumscribes the Bloch
sphere and contains a lot of negative states (see Fig. 1).
If the true state is sufficiently pure, then the probability
of obtaining a negative estimate can remain as high as
50% for arbitrarily large N , since the true state is very
close to the boundary between physical and unphysical
states.

In larger Hilbert spaces, the problem gets worse for
two reasons. First, the state-set’s dimensionality (and
therefore the number of independent parameters in ρ)
grows as d2 − 1. In order to keep the RMS error (∆2 =
√

Tr [(ρ̂tomo − ρ)2]) fixed, N must grow proportional to d.
Second, ρ̂tomo has more eigenvalues, so the probability of
at least one negative eigenvalue grows with d (for fixed
∆2). Together, these scalings ensure that tomographic
estimates of large systems are rarely non-negative.

The problems with tomography are well known – neg-
ative eigenvalues were precisely the embarrassing feature
that motivated MLE. As we shall see, however, MLE’s
implausible zero eigenvalues are closely related to tomog-
raphy’s negative ones.

Should we maximize the likelihood... 
                                            ...or average over it?

If linear inversion -- i.e., picking the state for which each measurement outcome's 
probability equals its observed frequency -- worked, then this question probably wouldn't 
have come up.  But it often gives negative eigenvalues (right figure).  Which forced us to 
delve into statistics to answer the question "Given certain data, what state is the best 
one to report?"  That turns out to be a very hard question...

This turns out to be a lot more important than a lot of people realize.  It's seriously tempting 
to just pick any old metric... but even the well-motivated ones (i.e., ones with operational 
interpretations) can have very different properties.

Different metrics for inaccuracy motivate different estimators.  They suggest different shapes 
for uncertainty regions ("error bars").  They even motivate radically different measurements!

Trace norm is overrated -- its operational meaning is strictly single-shot, and when you 
regularize it (i.e., calculate it for N→∞ copies), you get something more like...

...Fidelity, which is pretty good except that for many purposes it has the wrong operational 
interpretation -- it motivates reporting "the best lie" rather than "the honest truth".  From 
which perspective...

...Relative entropy is great, except that it is really finicky about zero probabilities, which 
may be a feature or a bug.

In a lot of qubit experiments, we just measure local Pauli operators.  Or, if the 
system isn't N qubits, we measure [tensor products of] mutually unbiased bases.  
MUBs and SICPOVMs are both uniformly informationally complete, which means 
they not only sample every dimension of density matrix space, but they are equally 
sensitive to each dimension (a.k.a. 2-designs).

However, tensor products of local measurements cannot be UIC, which poses 
challenges for N qubits.  And in certain systems (continuous variables) UIC 
measurements don't always exist.

Overcomplete measurements can provide valuable redundancy for model selection 
and detection of systematic errors.  On the other hand, undercomplete targeted 
measurements can access specific information much more efficiently.  And adaptive 
tomography can yield startling improvements in efficiency.
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Suppose an experimentalist wishes to verify that his apparatus produces entangled quantum

states. A finite amount of data cannot conclusively demonstrate entanglement, so drawing conclu-

sions from real-world data requires statistical reasoning. We propose a reliable method to quantify

the weight of evidence for (or against) entanglement, based on a likelihood ratio test. Our method

is universal in that it can be applied to any sort of measurements. We demonstrate the method by

applying it to two simulated experiments on two qubits. The first measures a single entanglement

witness, while the second performs a tomographically complete measurement.

Entanglement is an essential resource for quantum in-

formation processing, and producing and verifying entan-

gled states is considered a benchmark for quantum exper-

iments (for a sample from the most recent experiments

on a wide variety of physical systems, see [1]). Several

methods for verifying entanglement have been developed

(for overviews, see [2, 3]). A bipartite state is entangled if

it is not separable, and data D demonstrate entanglement

if there is no separable state that could have generated

them. As the number of data N → ∞, the data are

unambiguous, but for finite N , only probabilistic conclu-

sions can be drawn. In this Letter, we quantify exactly

what can be concluded from finite or small data sets,

using a simple and efficient likelihood ratio test.

We demonstrate the method using two simulated ex-

periments on two-qubit systems [12]. The first mea-

sures just one observable, an entanglement witness [4].

The other performs a tomographically complete measure-

ment. In both cases, we use likelihood ratios to draw

direct conclusions about entanglement, rather than esti-

mating the quantum state as an intermediate step. A

related technique for testing violation of local realism,

and based on empirical relative entropy instead of the

likelihood ratio, was proposed by van Dam et al [5] and

applied by Zhang et al [6].

Likelihood Ratios: Data D could have been generated

by any one of many i.i.d. states ρ⊗N . Each state ρ rep-

resents a theory about the system, and the relative plau-

sibility of different states is measured by their likelihood
L(ρ). A state’s likelihood is simply the probability of the

observed data given that state,

L(ρ) ≡ Pr(D|ρ), (1)

and states with higher likelihood are more plausible. If

the most likely state is separable, the data clearly do

not support entanglement. If it is entangled, then we

need to ask how convincing the data are – specifically,

whether some separable state is almost as plausible. To

judge whether there is (even just one) separable state

ρ̂MLE

most likely
separable state

separable
states

entangled
states

(a) (b)

(c)

randomly distributed MLE estimates

(d)

FIG. 1: General schema of a likelihood ratio test. The
separable states S (cyan) are a convex subset of all states, sur-

rounded by entangled states (red). Data from an experiment

on a state ρ yield a quasiconvex likelihood function [(a)] with
a unique maximum (ρ̂MLE). ρ̂MLE is randomly distributed

around ρ, at a typical length scale δ = O(1/
√
N). If ρ̂MLE is

separable then there is no evidence for entanglement, but if

it’s entangled (as shown), then the relative likelihoods of ρ̂MLE

and the most likely separable state determine the weight of

evidence. Data are “convincing” if they are very unlikely to

have been produced by a borderline separable state. Typical

likelihood ratios for such states depend on the shape of S.
In (b)-(d) we show three possible cases: in (b) S is smaller

than δ and behaves like a point; in (c) it is of size δ and its

behavior is hard to characterize; in (d) it is much bigger than

δ and behaves like a half-space.

that fits the data, we compare the likelihoods of (i) the

most likely separable state, and (ii) the most likely of all

states. Letting S be the set of separable states, we define

Λ ≡ maxρ∈S L(ρ)
maxall ρ L(ρ)

. (2)

Λ is a likelihood ratio, and

λ = −2 logΛ (3)
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The mean (average)
of the posterior 
distribution has some 
excellent properties... 
but computing it (right) 
usually requires 
arduous Monte Carlo 
integration.

Every physicist knows that estimates require error bars.  The problem is... you can't 
just make them up!  Error bars -- or their more powerful generalization, region 
estimates -- must have a rigorous meaning.  Otherwise, they are "security theater".

"GOOD" methods have [some] rigorous meaning that can be guaranteed without no/
few assumptions about the system.  "BAD" methods are ad hoc... and while point 
estimators can be ad hoc (they don't promise much!), this is a mortal sin for error bars.

Unfortunately, the most-used method (bootstrapping) is "BAD".
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Figure 1 | Two-qubit coupling scheme. a, A Bloch sphere can be used to describe the states of the effective two-level system defined by
the singlet and triplet states of the qubit, with the z-axis along the S-T0 axis and the x-axis along the |↑↓〉/|↓↑〉 axes. b, An SEM image of
the top of the device used shows gates used to define the S-T0 qubits (white), dedicated ns control leads, the approximate locations of
the electrons in the two qubits (red), and current paths for the sensing dots (green arrows). The left qubit uses the LR and LL electrons,
while the right qubit uses the RL and RR electrons. c, A schematic of the electronic charge configurations for the |S〉 (blue) and the |T0〉
(red) at non-zero J . This difference in charge configuration is the basis for the electrostatic coupling between the qubits d, The pulse
sequence used to entangle the qubits: initialize each qubit in a |S〉, perform a π/2 rotation around the x-axis, allow the qubits to evolve
under exchange for a time τ/2, perform a π-rotation around the x-axis, thereby decoupling the qubits from the environment but not
each-other, evolve under exchange for τ/2, and perform state tomography to determine the resulting density matrix (see supplemental
information.)
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Supplementary Figure 4 | Calibrated vs uncalibrated state tomography: a,
Data taken to calibrate the tomography shows ripples in the length of the Bloch

vector if we assume that the tomography projects the quantum state on to

Cartesian axes (inset). b-c, The paths around the Bloch sphere for the different

evolutions that are used for tomography calibration. If the tomography is

assumed to project on to the Cartesian axes there are points that lay outside

the Bloch sphere, and the pure |S〉 states are not at the north pole, which is

indicative of flawed state tomography. d, The ripples in the length of the bloch

vector are diminished (compared to panel a) if the axes deduced from state

tomography (inset) are used. e-f, The paths around the Bloch sphere for the

different evolutions that are used for state tomography. When the correct axes

are used, all the points lie inside the Bloch sphere and the pure |S〉 are at the

north pole.

many different evolutions around the Bloch sphere by evolving

from many different starting points at many values of � (Suppl.

Fig. 4b,c,e,f). We determine the axes on to which we project

our state by finding the axes that minimize the amplitude of

the ripples in the length of the Bloch vectors (Suppl. Fig. 4d).

Based on our measurement procedure, we define the S-T 0 axis

to lie along the z-axis. We allow the y-axis to lie anywhere

on the Bloch sphere because a rotation around the x-axis can

suffer from over/under rotation as well as adiabaticity issues

with switching J on and off instantly. We constrain the x-axis

to lie in the x-z-plane because the only expected error is due

to adiabaticity turning J on and off. The typical tomographic

axes are shown in Suppl. Fig. 4d, and the signs of the errors are

consistent with their origins. The variation from calibration to

calibration is ∼1% on the axis lengths and angles.
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Supplementary Figure 5 | Single-qubit rotations: a, The Pauli set for τ=100ns

as measured is complicated by single qubit rotations. b, Numerically rotating

each qubit around the S-T0-axis simplifies presentation and analysis. c, The

expected state for τ=100ns. d, The single qubit rotation angles for both qubits

as a function of τ are smooth and monotonic functions. e-f The entire Pauli set

as a function of τ for the raw and rotated data equation(1). The the y-axes of

adjacent elements in the Pauli set are offset by 1.

Determining Single Qubit Rotations
During the entangling sequence the two qubits rotate very

rapidly around the S-T0 axis compared to the speed of the

CPHASE gate (J1/2π ∼ J2/2π ∼ 300M H z, J12/2π ∼ 1M H z). These

single qubit rotations are not perfectly canceled out by the π-

pulses in the dynamically decoupled sequence due to pulse

distortions, consistent with pulse rise time effects at short times

and capacitive coupling to RC-filtered DC gates at long times.

Moreover, the angles by which the qubits are rotated change

as a function of the evolution time τ. In order to undo these

rotations, we perform a least-square fit of the data to the ex-

pected form of the Pauli set (see equation(1) below), restricting

the rotation to be around the S-T0 axis because J1, J2 � ∆Bz .

These angles are shown in Fig. 3b, and exhibit a smooth,

monotonic behavior. The angles increase quickly for small τ,

which is consistent with pulse rise time effects, and display

linear behavior for long τ, which is consistent with long time RC

filtering. For comparison, we plot the entire Pauli set for both

the rotated and unrotated data in Suppl. Fig. 5 c-d.

3

5

plasma enhanced chemical vapor deposited SiO2. A scan-
ning electron micrograph of the fabrication cross-section
can be found in Fig. 4(b) of Ref. 28. The Nb metal lay-
ers are referred to as BASE, WIRA, WIRB and WIRC,
from bottom to top, respectively. Flux qubit wiring was
primarily located in WIRB and consisted of 2-µm-wide
leads arranged as an approximately 900-µm-long differ-
ential microstrip located 200 nm above a ground plane in
WIRA. Coupler wiring was primarily located in WIRC,
stacked on top of the qubit wiring to provide inductive
coupling. PMM flux storage loops were implemented as
stacked spirals of 13-20 turns of 0.25-µm-wide wiring with
0.25µm separation in BASE and WIRA (WIRB). Stored
flux was picked up by one-turn washers in WIRB (WIRA)
and fed into transformers for flux-biasing devices. Ex-
ternal control lines were mostly located in BASE and
WIRA. Resistors that were used in the PMM demulti-
plexing circuit were made from a TiPt layer referred to
as RESI. All of these control elements resided below a
ground plane in WIRC. The ground planes under the
qubits and over the PMM/external control lines were
electrically connected using extended vias in WIRB so
as to form a nearly continuous superconducting shield
between the analog devices on top and the bias circuitry
below. Transformers for biasing qubits, couplers, QFPs
and dc SQUIDs were enclosed in superconducting boxes
with BASE and WIRC forming the top and bottom, re-
spectively, and vertical walls formed by extended vias in
WIRA and WIRB. Minimally sized openings were placed
in the vertical walls through which the bias and target
device wiring passed at opposing ends of each box. This
design reduced most on-chip parasitic crosstalk to a neg-
ligible level.

An optical image of a unit cell completed through the
processing of WIRB is shown in Fig. 3(a). One can dis-
cern the trenches in which the qubit wiring resides, where
the bottom is formed by ground plane in WIRA that
is electrically connected to thick vertical walls that are
formed by extended vias in WIRB. A number of PMM
flux storage and pickup loops are visible as spirals and
washers, respectively. The PMM circuitry is not visible
in a completed chip as it resides below patches of ground
plane in WIRC that are electrically connected at their
perimeter to the top of the vertical walls defining the
qubit trenches. Thus the qubits (PMM) reside above (be-
low) the nearly contiguous contiguous shielding layer in
a completed chip. Note that much of the coupler wiring
is absent from this image as it resides in WIRC atop the
qubit wiring in WIRB.

Tiling of the eight-qubit unit cell to make a larger pro-
cessor is explicitly demonstrated in Fig. 3(b). One can
discern a 4 × 4 array of eight-qubit unit cells. The par-
ticular unit cell used in this study was in the third col-
umn and third row. Outside of the field of this image are
four blocks of on-chip hysteretic dc SQUIDs, with pickup
loops oriented in-plane and orthogonal to the wafer, that
are used as magnetometers to measure local fields during
active field compensation, as well as wiring channels that

FIG. 3: (Color online) (a) Optical image of an eight-qubit unit
cell completed through the processing of WIRB. Qubits, la-
beled as q0 → q7, reside within the trenches formed by ground
plane in WIRA and extended vias in WIRB. PMM elements
are visible as spirals and washers between qubits. (b) Opti-
cal image of a 4× 4 array of eight-qubit unit cells completed
through the processing of WIRB. Unit cell shown in (a) is
enclosed within the dashed box.

run to wirebonding pads. There are 128 qubits, 352 cou-
plers and 128 readouts on this processor. These analog
components would require a total of 1632 unique biases
to operate if no effort was made to develop a scalable
control architecture. It would be impractical to build
such a processor with so many independent external bi-
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