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Massive networks are everywhere 
• Many real world interactions/phenomena 

expressed as “graphs” 
– Vertices represent “entities”, edges are 

“connections” 

– Massive (n = 10,000 to millions) and sparse  (no. 
of edges  < 10 n) 

• A very simple, intuitive way of 
representing data 

 

• Sandia’s interests in graphs: communication, 
computer networks (cyber), supply chains, 
counter-terrorism… 
– Generally understanding complex phenomena 

– A very powerful “modeling tool” for entities and 
interaction (e.g. agent based models) 

– DARPA BAA: “Graph–theoretic Research in 
Algorithms and the PHenomenology of Social 
networks (GRAPHS)” 

 

• We need capability in analyzing, processing, 
generally “understanding” these graphs 
– Want to analyze the graph to understand underlying 

process 
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Challenges in analyzing real graphs 
• Kinds of questions and their applications 

– Are there common patterns we can identify? 
(Communication patterns in email) 

– Is there some notion of “normal” and “abnormal” 
structure? (Anomaly detection in supply chain 
networks) 

– How does this evolve over time? Can we track this 
evolution? (Situational awareness in cyber data) 
 

• Graphs are extremely large, and we lack 
scalable algorithms 

• Real graphs have peculiar properties 
– [Barabasi-Albert 98, Watts-Strogatz 97, Newman-

Girvan 04] 

• Graph modeling is a concrete approach for 
understanding graphs 

• How does one create a synthetic graph that 
looks “real”? 
– (We’ve been asked this quite often.) 

– For testing algorithms 

– For validating hypotheses 

– For understanding properties of interest 

• Graph500 supercomputer benchmark is a 
relevant example 
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Broader research perspective 
of graph modeling 

• Physicists/social scientists ask: 
– What kind of physical/social processes produce 

these graphs? 

• Computer scientists/engineers ask: 
– How can we find special structures (e.g. 

communities)? How to generate “benchmark” 
graphs for testing algorithms? 

• Mathematicians ask: 
– Can we formally prove theorems about these 

graphs? “Because graph is heavy tailed, eigenvalues 
must be like…” 

• Graph modeling intimately related to all 
these questions 

• [Watts-Strogatz 97, Barabasi-Albert 98, 
Kumar et al 00, Chakrabarti-Faloutsos-
Zhan, 04 Leskovec et al 05, Bickel-Chen 
06]… 

• “All models are wrong, but some are 
useful” – George Box 

• Good models help in design of faster 
algorithms 
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Our work 

• Understanding current models 
– Mathematical analysis of RMAT/SKG graph model 

(Graph500) 

– Connections of SKG to conceptually cleaner CL model 

• New models and generation methods 
– BTER, a new scalable model with provably good 

properties 

– Theorems about convergence of MCMC methods to 
general graphs 

• Faster algorithms to process graphs 
– Sampling methods to count triangles 

– Speeding up agglomerative clustering schemes 
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Analysis of SKG 

• SKG/R-MAT is Graph500 benchmark 
– Very important for HPC applications 

– Very poorly understood model 

• Complete analysis of degree distribution 
– Standard degree distribution has large oscillations 

– Refute unsubstantiated claims made about dd 

– Define a “fixed” version of SKG. Prove that is gives a 
lognormal distribution 

• Many isolated vertices in Graph500 

• Graph500 benchmark changed because of this 
work 

• Actually, SKG modeled quite well just Chung-Lu – a 
much simpler model 
– Ironically, SKG thought to be “realistic” but not CL  

• Detailed studies of probability matrices underlying 
SKG and CL – much deeper connection 

 

 

6 

Seshadhri, Pinar & Kolda; short version in ICDM11 
“An in-depth analysis of Stochastic Kronecker Graphs” 
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Pinar, Seshadhri & Kolda; short version in SDM11 
“The similarity between SKG and CL models” 



The BTER model 

• Can we construct a scalable model with 
heavy tailed degree distribution and many 
triangles (large clustering coeff)?  

• No current model satisfies these 

• We define formal notion of community 
structure 

• Use extremal combinatorics to show this 
implies presence of dense Erdos-Renyi 
graph 
– Well known that ER graphs are not realistic 

– But we show that a properly chosen “collection” of 
these 

• Construct the Block-Two-level Erdos Renyi 
(BTER) model 

• Provable properties; transparent model 

• We are currently building scalable 
implementation of this model 
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Seshadhri, Pinar & Kolda; Physical Review E, 2012 
“Community structure and scale-free collections of Erdos-Renyi graphs” 



Sampling graphs using MCMC 

• A common method to generate random  
graphs with a given degree distribution is to 
use MCMC methods 

– Usually to generate “similar” graphs from a given 
graph 

– Start with G, perform a series of random rewirings 

• But how many rewirings to perform? 

– Basically mixing time of a large Markov Chain 

• Theoretical bounds infeasible: “run 1010 
steps to generate graph with 10,000 edges” 

• Practical methods: “run for some number of 
steps and hope for the best” 

• We bridge this gap: a theoretical analysis 
giving practical bound 

• We prove that 10|E| steps enough for most 
practical purposes 
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Ray, Pinar, and Seshadhri; short version in WAW12, “Are we there yet? When to stop a Markov chain while 
generating random graphs” 
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Faster algorithms 
for massive graphs 

• Counting triangles is a very important task, but 
graphs are becoming larger and larger 

• We give simple, sampling based method to 
approximate number of triangles 

– Formal accuracy/time tradeoff 

– Provable guarantees of behavior 

– Works well in practice 

 

 

• We prove: Abundance of triangles means it’s 
easy to find “communities” 

– Based on theorem relating conductance to 
clustering coefficients 

• We use theorem to speed up agglomerative 
community finding algorithms 

– How to find right starting seed? 
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Seshadhri, Pinar & Kolda; submitted 
“Fast Triangle Counting through Wedge Sampling” 

Gleich & Seshadhri; submitted 
“Neighborhoods are good communities” 



In conclusion… 
• Study of massive graphs a deeply scientific 

endeavor with deeply relevant applications 

• Lot of exciting research in Sandia on this topic 
– Funded by LDRDs, ASCR Applied Mathematics  

Program, will get DARPA funding 

 

• Impact 
– Graph 500 and benchmarking 

– Many applications within Sandia 

– Theoretical results with practical impact (7+ research 
papers in last 2 years) 
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Graph 500 Model:  
R-MAT/Stochastic Kronecker (SKG) 

• R-MAT/SKG Inputs 
– L = # of levels 
– T = 2 x 2 generator matrix  

(entries sum to 1) 
– M = # edges 

 

• SKG Edge Insert 
Procedure  
– Choose a quadrant of the 

adjacency matrix 
proportional to entries of T 

– Repeat for a total of L 
times to land at a single 
entry of the matrix 
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Chakrabarti , Zhan, & Faloutsos, SDM04; Leskovec et al., JMLR, 2010 

Graph 500 Parameters 
• T = [0.57, 0.19, 0.19, 0.05] 
• L 2 {26, 29, 32, 26, 39, 42} 
• M = 16 ¢ 2L 



Degree Distribution of SKG 

• Standard degree distribution has large 
oscillations 
– Pretty much unexplained 

– Lot’s of well…bogus claims made about dd 

• We give an accurate and easily 
computable formula for degree 
distribution 
– Theorem: oscillates between lognormal and 

exponential 

• We can actually fix the problem 
– Define a noisy version of SKG 

– Prove that is gives a lognormal distribution 
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SKG for Graph 500 for L=16 

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version to appear in ICDM11 



Isolates in SKG for Graph 500 

• An incredibly huge number! 
 

• Number of isolates is 

 

 

 

 

 

 

• Impacts benchmark because 
number of nodes is less than 
anticipated and average degree is 
much higher! 

L  Isolated 
Nodes 

Avg. 
Degree 

26 51% 32 

29 57% 37 

32 62% 41 

36 71% 55 

39 71% 55 

42 74% 62 
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Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version to appear in ICDM11 



CL from SKG 

• G’ is CL graph from degree distribution of G 

 

• How similar is G’ to G? 
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SKG vs CL 
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• SKG is incredibly similar to CL! 

– If we plug in an SKG degree distribution into CL, 
the graphs we get are incredibly similar. 

• Probability matrices used by these models 
are almost same 

– Theorem: For certain parameter settings, 
models are indeed identical 

• If you’re going to use SKG, you might as 
well just use CL 

– It fits real data just as well 

 

Pinar, Seshadhri, & Kolda, preprint, Oct 2011 



Similarity of CL to SKG for Graph 500 
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Fit CL to the degree 
distribution produced by SKG 

for Graph 500 with L = 18 



The math 
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• Suppose a graph has a heavy tail, large CCs and 

contains communities 

– We can mathematically formalize all of this 

• Then a constant fraction of its edges lie in disjoint 

dense Erdos-Renyi graphs, the sizes of which also form 

a heavy tail 



BTER: Block Two-level Erdos-Renyi 
• Preprocessing: Generate 

communities  
– Determined by desired degree 

distribution 

– All nodes have (close to) the same 
degree  

– Size of cluster = min degree + 1 

• Phase 1: Generate ER graph on 
each community 
– User must specify connectivity 

coefficient for each community, ½k  

– We use a function of the min 
degree in the community, dk 

• Phase 2:  Generate CL graph on 
“excess” degree 
– e(i) = d(i) – ½k dk  where vertex i is 

in community k 
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Preprocessing: 
Create explicit 
communities 

Phase 1:  
Erdös-Rényi 
graphs in each 
community 

Phase 2:  
CL model on 
“excess” degree  


