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“Massive networks are everywhere

* Many real world interactions/phenomena

o ”
Computers expressed as “graphs
0 : — Vertices represent “entities”, edges are

A “connections”

— Massive (n = 10,000 to millions) and sparse (no.
of edges <10 n)

 Averysimple, intuitive way of
representing data

e Sandia’s interests in graphs: communication,
computer networks (cyber), supply chains,
counter-terrorism...

— Generally understanding complex phenomena

— Avery powerful “modeling tool” for entities and
interaction (e.g. agent based models)

— DARPA BAA: “Graph—theoretic Research in
Algorithms and the PHenomenology of Social
networks (GRAPHS)”

* We need capability in analyzing, processing,
generally “understanding” these graphs

— Want to analyze the graph to understand underlying
process 2
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Challenges in analyzing real graphs

* Kinds of questions and their applications

— Are there common patterns we can identify?
(Communication patterns in email)

— Is there some notion of “normal” and “abnormal”
structure? (Anomaly detection in supply chain
networks)

— How does this evolve over time? Can we track this
evolution? (Situational awareness in cyber data)

Actor

w REOT L www
Gollakgratior &, ™ 78 e Graphs are extremely large, and we lack
R N scalable algorithms
1':.; 0' * Real graphs have peculiar properties
M ey — [Barabasi-Albert 98, Watts-Strogatz 97, Newman-
Girvan 04]

* Graph modeling is a concrete approach for
understanding graphs

e How does one create a synthetic graph that
looks “real”?
— (We've been asked this quite often.)
— For testing algorithms

GR ‘ — For validating hypotheses
| — For understanding properties of interest

I * Graph500 supercomputer benchmark is a
relevant example
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Broader research perspective &=
of graph modeling

* Physicists/social scientists ask:

— What kind of physical/social processes produce
these graphs?

* Computer scientists/engineers ask:

— How can we find special structures (e.g.
communities)? How to generate “benchmark”
graphs for testing algorithms?

e  Mathematicians ask:

— Can we formally prove theorems about these
graphs? “Because graph is heavy tailed, eigenvalues
must be like...”

 Graph modeling intimately related to all

these questions

» [Watts-Strogatz 97, Barabasi-Albert 98,
Kumar et al 00, Chakrabarti-Faloutsos-
Zhan, 04 Leskovec et al 05, Bickel-Chen

06]...
"% e “All models are wrong, but some are
G i useful” — George Box
;S g
 Good models help in design of faster
algorithms
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Our work

* Understanding current models

— Mathematical analysis of RMAT/SKG graph model
(Graph500)

— Connections of SKG to conceptually cleaner CL model
* New models and generation methods

— BTER, a new scalable model with provably good
properties

— Theorems about convergence of MCMC methods to
general graphs

e Faster algorithms to process graphs
— Sampling methods to count triangles
— Speeding up agglomerative clustering schemes



-~ ‘,1 3 . | J @ @ {\Lﬁ;"rl'f:?&ies
* - Analysis of SKG

Seshadhri, Pinar & Kolda; short version in ICDM11 Pinar, Seshadhri & Kolda; short version in SDM11
“An in-depth analysis of Stochastic Kronecker Graphs” “The similarity between SKG and CL models”
RS g | L e ,
R W *  SKG/R-MAT is Graph500 benchmark

— Very important for HPC applications

Avg. Frequency

— Very poorly understood model

 Complete analysis of degree distribution

— o — Standard degree distribution has large oscillations
7 :l_;l;l:elre[)sme

— Refute unsubstantiated claims made about dd

% isolates gg

3 \\ — Define a “fixed” version of SKG. Prove that is gives a
0 ° - lognormal distribution
62932363942 "o @ e Manyisolated vertices in Graph500
Sz e, _  Graph500 benchmark changed because of this
: e, ||y work

e Actually, SKG modeled quite well just Chung-Lu —a
much simpler model

. — Ironically, SKG thought to be “realistic” but not CL
EE— * Detailed studies of probability matrices underlying

SKG and CL — much deeper connection
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The BTER model

Seshadhri, Pinar & Kolda; Physical Review E, 2012
“Community structure and scale-free collections of Erdos-Renyi graphs”

o (oe (N S & S e Can we construct a scalable model with
ey &~y —— . . . .
B I B LA heavy tailed degree distribution and many
ol NS F\ triangles (large clustering coeff)?
. (e%e N (\/-':) o
2y oo £y e * No current model satisfies these
*  We define formal notion of community
4 structure
A W G U R N b Gl B e « Use extremal combinatorics to show this
*, N %% 190, implies presence of dense Erdos-Renyi
’ e
o " | G %%QM . T graph
S T MR A B R e — Well known that ER graphs are not realistic
. o — _ — But we show that a properly chosen “collection” of
4}%% * BTER g 2 * g[ERp § el these
4 e 150 SL
€ S e T .
w N T ¢ * Construct the Block-Two-level Erdos Renyi
D kY o y R (BTER) model
T e W @ @ 55w ow ow o= ¢ Provable properties; transparent model
[ ]

We are currently building scalable
implementation of this model
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Sampling graphs using MCMC

Ray, Pinar, and Seshadhri; short version in WAW12, “Are we there yet? When to stop a Markov chain while
generating random graphs”

°
Space of
graphs
°
‘u1 u, u, u, u,
°
4 " Vv w v . w
Step 1: Pick an edge Step 2: Pick another edge Step 3: Swap edges °

(uy,v), and pick one
of its vertices, e.g., u;

(u,w), such that d(u,)=d(u,)
or d(u,)=d(w)

A common method to generate random
graphs with a given degree distribution is to
use MCMC methods

— Usually to generate “similar” graphs from a given
graph

— Start with G, perform a series of random rewirings
But how many rewirings to perform?
— Basically mixing time of a large Markov Chain

Theoretical bounds infeasible: “run 1010
steps to generate graph with 10,000 edges”

Practical methods: “run for some number of
steps and hope for the best”

We bridge this gap: a theoretical analysis
giving practical bound

We prove that 10 |E| steps enough for most
practical purposes
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Seshadhri, Pinar & Kolda; submitted
“Fast Triangle Counting through Wedge Sampling’

)

for massive graphs

Gleich & Seshadhri; submitted
“Neighborhoods are good communities”

Counting triangles is a very important task, but
graphs are becoming larger and larger

We give simple, sampling based method to
approximate number of triangles

— Formal accuracy/time tradeoff

— Provable guarantees of behavior

— Works well in practice

We prove: Abundance of triangles means it’s
easy to find “communities”

— Based on theorem relating conductance to
clustering coefficients

We use theorem to speed up agglomerative
community finding algorithms

— How to find right starting seed?
9
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In conclusion...

e Study of massive graphs a deeply scientific
endeavor with deeply relevant applications

* Lot of exciting research in Sandia on this top|
— Funded by LDRDs, ASCR Applied Mathematics
Program, will get DARPA funding

* Impact
— Graph 500 and benchmarking
— Many applications within Sandia

— Theoretical results with practical impact (7+ research
papers in last 2 years)

10
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Graph 500 Model: [ =
R-MAT/Stochastic Kronecker (SKG)

Chakrabarti, Zhan, & Faloutsos, SDMO04; Leskovec et al., JMLR, 2010

e R-MAT/SKG Inputs

To . Nodes—
— L=#of levels Fe :
_ rom a ! b
— T =2 x 2 generator matrix "y b
(entries sum to 1) a PSS
— M = # edges il ¢
* SKG Edge Insert Nedelh ¢ | 4
Procedure ;
— Choose a quadrant of the
adjacency matrix !
proportional to entries of T Graph 500 Parameters
— Repeat for a total of L * T=[0.57,0.19, 0.19, 0.05]
times to land at a single « Le {26, 29, 32, 26, 39, 42}

entry of the matrix « M=16-2"
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Degree Distribution of SKG

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version to appear in ICDM11
SKG for Graph 500 for L=16

Standard degree distribution has large
oscillations

— Pretty much unexplained

— Lot’s of well...bogus claims made about dd

We give an accurate and easily
computable formula for degree
distribution

— Theorem: oscillates between lognormal and
exponential

We can actually fix the problem
— Define a noisy version of SKG

— Prove that is gives a lognormal distribution

T — a_iuTicCll b+ i
’ b+/,Li d 2pLid

a+d
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" Isolates in SKG for Graph 500

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version to appear in ICDM11

 Anincredibly huge number!

L Isolated | Avg.
* Number of isolates is Nodes Degree

L/2
L 26 51% 32
] = —2A1"

2, (L/Q * r) S
32 62% 41

7= (a+b)/(1—(a+0D))
v 36 71% 55
A= la+b)(1 - (a + b))]H/? 39 71% 55
42 74% 62

* Impacts benchmark because
number of nodes is less than
anticipated and average degree is
much higher!

16
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e G’ is CL graph from degree distribution of G

e How similaris G’ to G?

17
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SKG vs CL

Pinar, Seshadhri, & Kolda, preprint, Oct 2011

SKG is incredibly similar to CL!

— If we plug in an SKG degree distribution into CL,
the graphs we get are incredibly similar.

Probability matrices used by these models
are almost same

— Theorem: For certain parameter settings,
models are indeed identical

If you’re going to use SKG, you might as
well just use CL

— |t fits real data just as well

18
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()
Similarity of CL to SKG for Graph 500

3 Scree Plot "
10 . . i 6 Core decompositions
*  SKG 10 ‘ ' ' " ' SR
Fit CL to the degree & o ct o cL
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o The math
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00 00
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e Suppose a graph has a heavy tail, large CCs and
contains communities

— We can mathematically formalize all of this

* Then a constant fraction of its edges lie in disjoint
dense Erdos-Renyi graphs, the sizes of which also form
a heavy tail

20




BTER:

Preprocessing:
Create explicit
communities

Phase 1:
Erd6s-Rényi
graphs in each
community

Phase 2:
CL model on
“excess” degree
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Block Two-level Erdos-Renyi

e

Y,

(2 .

Preprocessing: Generate
communities

— Determined by desired degree
distribution

— All nodes have (close to) the same
degree

— Size of cluster = min degree + 1
Phase 1: Generate ER graph on
each community

— User must specify connectivity
coefficient for each community, p,

— We use a function of the min
degree in the community, d,

Phase 2: Generate CL graph on
“excess” degree

— e(i) = d(i) — p, d, where vertexi is
in community k



