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The value of looking deeper
—the what, why, and how of high
fidelity adult neurogenesis modeling
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The need for modeling
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* yes, | am responsible for a non-trivial fraction of these

Overlapping EC inputs are encoded separately by the DG
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The real elephant in the room...

. What are all those
Pattern Separation new neurons doing?



Adult Neurogenesis

~1 week
~1.5 weeks

Entorhinal
cortex
(glutamate)

Aimone, Wiles, and Gage

~2months  y4ture Neuroscience 2006



Neurogenesis = Pattern Separation
IS not a satisfying argument

It has to be more interesting than
that...



Modeling considerations

* Neuroanatomy

— Circuit (principal neurons,
interneurons, and how they are
connected)

— Maturation of new neurons

courtesy Chunmei Zhao
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* Dynamics
— Every neuron has unique dynamics

— Neurogenesis results in many
different forms of GC dynamics

e Behavior

— In vivo and immediate early gene
studies of neuron behavior

— Behavior studies in lesion or
knockdown animals
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Arruda-Carvalho et al., 2011



Spectrum of modeling:
the added value of complexity

e Abstract

— Assumptions in design and dynamics are very clear
— Observed behaviors are easy to attribute to specific
design principals
— Relatively straightforward to do
* High Fidelity
— Incorporates features whose importance is yet unclear
— Highlights where biology data is strong and weak
— Can reveal behaviors that were not a priori considered
— Results can often be directly compared to biology



Levels of modeling neurogenesis
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Abstract models have been effective

e 2009 Neuron model (intermediate complexity)

— Made three specific predictions that are being tested
experimentally by many groups
* Pattern Integration (Marin-Burgin, Science 2012)
* Temporal Pattern Separation (Kesner lab, ongoing)

* Long-term Specialization (Rangel et al., submitted \-/;
Alme et al., Hippocampus 2010;(:* Frankland Lab(:"))

e 2012 PNAS model (very abstract)

— Predicts that the difference in synapses number between
young and mature neurons could sufficient for explaining
function

— Can clearly demonstrate the effects of perturbation on NG
and DG function (e.g., effect of dopamine/reward)



Why look deeper?

* |nvestigate interaction of unique physiology
dynamics

— Example: Do young neurons fire before or after
mature cells in response to novel or familiar inputs?

* Explore interaction of complex actors

— Example: Serotonin alters K* conductance thus
membrane resistance in GCs (via 5htla receptors) -
what does this mean for new neuron function?

* More sophisticated readout

— Example: Directly compare to and predict in vivo
metrics of behavior (i.e., place cells, oscillations)



Levels of modeling neurogenesis

ABSTRACT

Present trained and

novel inputs
to final network
Fvvy 1111 1)
FyY Y rrrrr
Anatomy 1
2000000
5000 100
1250 25
Threshold
Spike
- . OFTE
=
. b
Dynamics 3
Silent
Input
100 g 5
80 1
.E'Hﬂ 3
Behavior :
20 0

o E — Ly
100 2000 4000 5000 S000 S000
Mumbar of Excitatary Synapses

Lietal., PNAS 2012

[Lateral Entorhinal Cortex]
[ Medial Entorhinal Cortex |

v v

_______ [ Granule H Basket]

(|

! to CA3

............

---------------------------------------------

B
= o

=

I‘!eurm Voltage (mV) Spiking
o =

Activation Threshold

a =

0.05 0.1 015 0.2 0.25 0.3 0.35 0.4 045 0.5
Time (seconds)

Aimone et al., Neuron 2009

HIGH FIDELITY

” Molecular
Ec PV | cck| mopps GCs | layer
BCs H BCs
r‘ Granule cell
mEC U { Young GCs fiver
ﬁ “ Hilus
\_/:.‘
HIPPs MCs HICAPs
L |
0 500 1000
s
IR
g;
15 %%
2 33 :
B g%
ssiE}]
¥

o




Anatomy

Actual

Dentate gyrus wer srEcrc

Goal: Implement biologically realistic neuron
types, connectivity, and scale

Scope: Current focus on DG, ideally extend to
CA3 and neuromodulatory systems
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Physiology dynamics
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Memories encoded by

high and low information neurons:

Okay without neurogenesis

Maturation of neurons allows

A

Memories rely on
low information neurons:
Impaired without neurogenesis.

Behavior

Goal: Explore more sophisticated theories of
neurogenesis function (e.g., memory
resolution). Hopefully, this will help radically
disparate concepts of pattern separation and
related network behaviors.

Further goals include directly relating function
to behavioral tasks simultaneously being run.
Scope: Current approach is to implement

Aimone, Deng and Gage
Neuron; 2011

memories to now be encoded
by high information neurons

biologically realistic input behaviors

Where we’re at
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(spatial/object tasks where EC inputs change
over time). Will basic EC representations on
grid (e.g., Moser lab) and object cell (e.g.,
Knierem lab) representations

New tools for analyzing real-scaled spiking
networks with population coding will likely be
necessary



How do we build a realistic model

e Details matter

Extract biological data from
many disciplines




How do we build a realistic model

e Details matter

Extract biological data from

many disciplines
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How do we build a realistic model

e Details matter

Extract biological data from
many disciplines

Ask (beg) for raw data from
electrophysiologists
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How to simulate ... at relevant scales

* Preliminary evidence suggests that reduced
scale models can often be misleading and
potentially simply wrong

* Intrinsically parallel code

* Run on supercomputer / cloud resources

| | | |

| | 1 | Which input neurons fired?

| | | g 5 ?
Update synapse, compartment

|| || | and neuron states locally

| | | | | / /

| Communicate to all nodes

which local neurons fired

Distribute neurons and
synapses across nodes



How simulations currently scale

* Takes a long time to
simulate realistic sized

. networks
. . — >1 hour to simulate
¢ o ° mouse-sized network
T Cden™ 7 " Considerably faster for
: 3 'I‘* smaller networks
3 — How small is sufficient?

|, * Little overhead lost due
. to parallelization

i s I — Code appears to distribute

? efficiently

L L I I I I
50 100 150 200 250 300
Neurons (#GCs x1000)



Preli

minary data shows GC activity
decreases with scale
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Presence of immature neurons boosts activity particularly in large scale



Notes on preliminary scaling result
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Very consistent with
observation in previous
iteration of model

Still early

— Needs improved fitting of
neuron dynamics

— Longer simulation epochs

This looks only at novel
encoding, familiar may be
fundamentally different
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Questions to ask of realistic model

How does model DG respond to realistic
behavioral training task?

Memory resolution over time; difference in novel
vs familiar information encoding

Pattern separation — what makes DG unique?
Does scaling affect function?

Network dynamics

— Relationship of neuron activity to network dynamics
(e.g., oscillations)

— Neuromodulation






